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The plant rhizosheath-root niche is an edaphic “mini-oasis” in
hyperarid deserts with enhanced microbial competition
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Plants have evolved unique morphological and developmental adaptations to cope with the abiotic stresses imposed by (hyper)
arid environments. Such adaptations include the formation of rhizosheath-root system in which mutualistic plant-soil
microbiome associations are established: the plant provides a nutrient-rich and shielded environment to microorganisms, which
in return improve plant-fitness through plant growth promoting services. We hypothesized that the rhizosheath-root systems
represent refuge niches and resource islands for the desert edaphic microbial communities. As a corollary, we posited that
microorganisms compete intensively to colonize such “oasis” and only those beneficial microorganisms improving host fitness
are preferentially selected by plant. Our results show that the belowground rhizosheath-root micro-environment is largely more
hospitable than the surrounding gravel plain soil with higher nutrient and humidity contents, and cooler temperatures. By
combining metabarcoding and shotgun metagenomics, we demonstrated that edaphic microbial biomass and community
stability increased from the non-vegetated soils to the rhizosheath-root system. Concomitantly, non-vegetated soil
communities favored autotrophy lifestyle while those associated with the plant niches were mainly heterotrophs and enriched
in microbial plant growth promoting capacities. An intense inter-taxon microbial competition is involved in the colonization and
homeostasis of the rhizosheath zone, as documented by significant enrichment of antibiotic resistance genes and CRISPR-Cas
motifs. Altogether, our results demonstrate that rhizosheath-root systems are “edaphic mini-oases” and microbial diversity
hotspots in hyperarid deserts. However, to colonize such refuge niches, the desert soil microorganisms compete intensively and
are therefore prepared to outcompete potential rivals.

ISME Communications; https://doi.org/10.1038/s43705-022-00130-7

INTRODUCTION

Deserts are heterogeneous habitats that cover approximately a
third of the global land surface [1] and which are expanding with
global climate change [2, 3]. In addition to aridity, numerous
abiotic stresses are imposed on hot desert indigenous (micro)
biota, including oligotrophy, elevated daily temperatures and
radiation, high salinity, eolian erosion and environmental-physical
instability [1, 4, 5]. Consequently, deserts are characterized by a
lower biodiversity than more temperate ecosystems [3, 6], and are
populated by macro- and microorganisms adapted to poly-
extreme conditions [7-9].

Xerophytic plants are desert specialists that play key roles in
desert ecosystem functioning. These plants have evolved both the
aerial (stem and leaf) and subterranean (root system) organs to
prevent water loss, improve water storage and optimize water and
nutrient uptake [4, 10-12]. Thus, xerophytic plants represent
ecological and fertility islands [13] where animals and micro-
organisms can find shelter, nutrients and thermal protection
[10, 14]. Among these, desert speargrass species of the Poaceae
family represent highly successful examples found in most deserts

[4, 15]. The majority of speargrasses growing in arid soils develop a
rhizosheath (RS)-root system constituted by soil particles (sand
and other small mineral particles) that physically adhere to the
surface of the entire root system [15-18]. Root hairs, fungal
hyphae and adhesive agents, such as microbial- and plant-derived
mucilages, are responsible for the aggregation of soil particles
along the RS structure and for water/nutrient retention and uptake
[17, 19-21]. Therefore, RS-root systems ultimately improve the
overall fitness of plants under stressful environmental conditions
[22-24].

The higher moisture and nutrient contents of RS (compared to
non-vegetated (NV) soil) create favorable niches for colonization
by edaphic microorganisms [15, 18, 25, 26]. In return, the RS
microbiome provides beneficial plant growth promoting (PGP)
services by improving the plant’s nutrient (e.g., P, N and Fe) status,
growth, and/or resistance to abiotic and biotic stresses, such as
drought, salinity and phytopathogens [27-32].

Inevitably, the process of colonizing and subsequently residing
in the favorable RS niche must involve complex microbe-microbe
competition dynamics [33, 34]. By using amplicon and shotgun
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Fig. 1 Rhizosheath-root system niche of S. ciliata in Namib Desert gravel plain. a The speargrass S. ciliata growing in the gravel plain as
shown by the new green leaves developing from the basal portion of the plant (bar, 2cm). b Close-up photograph of the S. ciliata
rhizosheath-root system extracted from the soil (bar, 1 cm). The rhizosheath (RS) is composed of sand grains physically attached to the root,
along with trapped stones and sand grains. ¢ Stereomicroscope image of the rhizosheath-root system structure shows the external RS layer of
the matrix with long root hairs developing from the epidermis (internal layer of RS; i.e., outermost cells of the root) that entrap sand grains and
stones, as well as the central root tissue of vascular plants (bar, 1 mm). d Magnification of a stone detached from the RS; biological mineral
weathering is indicated by black arrows (bar, T mm). e Relative humidity (%) and f temperature (°C) measured (n = 10; +standard deviation) in
NV soils (surface and in-depth) and soils under S. ciliata plants (surface and in-depth RH); S, surface, and D, in-depth. Values from air are also
reported. Results of the ANOVA main test are indicated, along with lowercase letters referring to results of the post-hoc multiple comparison
Tukey's tests. g Non-parametric multidimensional scaling (NMDS) ordination plot showing the relative distribution of humidity and
temperature measured; the relative humidity trend is plotted onto the ordination space. The result of the PERMANOVA main test is reported.

metagenomic sequencing, we aimed to evaluate the microbial
competition-colonization course associated with the RS-root
system in xerophytic desert plants. We used the perennial
Stipagrostis ciliata (Desf.) De Winter var. capensis (Trin. & Rupr.)
De Winter (Poaceae family)—locally known as “Tall bushman-
grass”"—as the model plant in the study. This species grows
extensively in the Namib Desert gravel plains [35, 36] and has
shown the capacity to rapidly establish RS structure and biotic
interactions with the surrounding soil microbiota after limited
rain events (10-20 mm precipitation [35]). We hypothesize that
(1) the compartmentalization of the RS-root structures of S.
ciliata (root tissues (RT), RS, rhizosphere (RH)) will lead to
deterministic processes dominating the assembly of its asso-
ciated microbial communities [15] and that (2) the communities
from the less extreme niches (the cooler and more humid RS
and RH) would be enriched in microbial cells and stable than
those from the most extreme NV soils [15, 37]. Furthermore, by
adapting the Darwinian “Survival of the fittest” theory [38] to
the microbial world, we expect that (3) desert soil microorgan-
isms strongly compete to colonize the protected favorable
RS-root system niches. Consequently, we anticipate that the
microbial communities colonizing this niche will present
significantly more markers indicative of competitive interactions
(e.g., antibiotic production and resistance) to remain in the
refuge than those inhabiting the NV soil. Similarly, we predict
that (4) the microbial communities associated with plant will
exhibit significantly more PGP traits (e.g., biopromotion and
biofertilization) to favor the host and their own survival in such
extreme environment.

SPRINGER NATURE

MATERIAL AND METHODS

Rhizosheath-root system sampling and processing

To cope with the hyperarid and oligotrophic conditions of the desert
habitat, S. ciliata rapidly responds to rare and limited moisture events,
adopting an amphiphytic lifestyle; i.e., either facultatively annual from seed
growth or perennial by re-sprouting from existing live grass clumps [35]. In
April 2017, in an area of 1km? of the Namib Desert gravel plains (S 23°
32'53"; E 15°08'11"; Supplementary Fig. S1a), a total of ten S. ciliata plants
of similar size were randomly selected to collect the RS-root systems. All
selected plants had green leaves growing from the base of the clump, as
evidence of active growth (Fig. 1a and Supplementary Fig. S1b, c). The
entire plants were carefully exhumed from the rocky soil to preserve their
RS-root systems (Fig. 1b). Intact portions of the RS-root system were
subsequently excised from each plant using sterile scissors and tweezers
and transferred into sterile plastic tubes (example of excised RS portion in
Supplementary Fig. S1d). In addition, control NV soil samples were
collected (0-10 cm depth; n = 10) at approximately one meter from each
plant. All samples were collected under the research/collecting permit
number 2248/2017, issued by the Namibian Ministry of Environment and
Tourism.

Soil and air temperature and relative humidity were measured in situ
using handheld Ebro Electronic™ Hygrothermometer (TFH 620 with TPH
100 Air Probe) during five consecutive days (April 24th-28th; n=10).
Measurements were conducted between 12:00 and 13:00 p.m. as these
were the hottest hours of the day in the central Namib Desert gravel plains
[39]. The edaphic measurements were recorded at the soil surface (first 5
cm) and shallow sub-surface (from 5 to 10 cm deep) from two contrasting
niches: NV soils and within S. ciliata plant clumps in the vicinity of their
RS-root system. Data were analyzed by performing non-metric multi-
dimensional scaling on the Euclidean distance matrix in R [40, 41];
permutational multivariate analysis of variance (PERMANOVA) was
performed in Primer v.6.1 [42] using sample categories as explanatory
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variables (five levels: under plant sub-surface or surface, NV soil sub-surface
or surface, and air).

In the laboratory, portions of the RS-root system were visualized with a
stereomicroscope (Leica S8 APO) to define and divide the different
compartments (i.e, RT, RS and RH) and measure the average sizes of RT
and RS from a portion of RS-root from each plant. The RH was
characterized as loosely adherent sand, detachable from the RS by gentle
shaking. The RS (root coating containing sand and mineral particles
physically trapped by the root hairs along the entire length) and RT
(internal tissues) were separated with sterile scalpels [15].

The NV soil (n=3), RH (n=3) and RS (n =3) samples were used for
physicochemical analyses (2-3g per sample); water content, pH, con-
ductivity, salinity, organic matter (OM), carbon (TC, POC, PIC) nitrogen (TN,
PON, PIN, nitrite, nitrate and ammonium), phosphate (PO,37), silicate,
potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) contents were
analyzed by the commercial company GEOMAR (WischhofstraRe, Ger-
many) using standard protocols. Data were analyzed by performing
PERMANOVA in Primer v.6.1 [42] on the Euclidean distance matrix, using
sample categories as explanatory variables (three levels: NV soil, RH and
RS). NV soil structure (percentages of rock, sand, silt, and clay) was also
characterized at the Soil Science Laboratory of the University of Pretoria
(South Africa).

DNA extraction

The surfaces of RT obtained from the RS-root system were sterilized as
previously described [43]. Briefly, the RT were soaked in 70% ethanol for 3
min, followed by sodium hypochlorite 2.5% for 5 min and 70% ethanol for
30s. Several washes with sterile water were performed to remove any
trace of the chemicals used for surface sterilization. Subsequently, all
samples (sterile RT, RS, RH and NV soil) were separately homogenized in
liquid nitrogen with sterile mortars and pestles. Total DNA from the
homogenized edaphic samples (NV soil, RH and RS) was extracted using
0.7 £0.05 g of sample and the PowerSoil” DNA Isolation Kit (MoBio Inc,,
USA), while from RT total DNA was extracted from 1+ 0.1 g of sample and
the DNeasy Plant Maxi Kit (Qiagen, Germany). The total DNA extracted was
quantified on a Qubit Fluorometer using the high sensitivity dsDNA assay
kit. The concentration of total DNA (ng/g of soil) extracted from RH and NV
soils was further used as biomass proxies [44] and t-test was used to
evaluate differences among the two compartments. Total DNA concentra-
tions of the RT and of the RS compartments were not included in this
comparison as large amounts of plant DNA were co-extracted.

Amplicon library preparation for phylogenetic analysis of the
prokaryotic 16S rRNA genes and microeukaryotic ITS regions
The V3-V4 hypervariable regions of the prokaryotic 16S rRNA gene were
amplified using the universal primers 341f and 785f, and the microeukar-
yotic ITS2 region amplified using the primers ITS3f and ITS4r [15]. PCR
reactions mixture of 30 pl were performed for each sample using 1 U of
Platinum” Taq DNA Polymerase, High Fidelity (Invitrogen) with 1x High
Fidelity Buffer, 1.5mM of MgSO4 0.3 mM dNTPs mix, 0.3 uM each of
forward and reverse primers, and ca. 10 ng of template DNA. The reaction
conditions were as follows: denaturation at 95 °C for 5 min, followed by 25
cycles of denaturation at 95 °C for 30, annealing at 55 °C for 30s, and
extension at 68 °C for 45 s, final extension at 68 °C for 5 min. Total DNA
extracted from sterile water and PCR mix (reagent without DNA) was used
as an additional control in the amplicon PCRs; no amplification was
detected by running the PCR product on 1% agarose gel. All the amplicon
products obtained were used to incorporate the sequencing adapters by
using the 96 Nextera XT Index Kit (lllumina). All tagged samples were
pooled together, concentrated in a CentriVap DNA Concentrator
(Labconco) and sequenced with the lllumina MiSeq platform at the
Bioscience Core Lab, King Abdullah University of Science and Technology
(Saudi Arabia). Raw forward and reverse reads for each sample were
assembled into paired-end reads (minimum overlap of 30 nucleotides and
maximum of one mismatch within the region) using the fastg-join
algorithm  (https://code.google.com/p/ea-utils/wiki/FastqJoin) and ana-
lyzed using the Qiime 1.9 pipeline. After quality filtering, trimming,
dereplication, and paired-end merging of the sequences, a total of
1,830,127 (average length of 405 bases) and 3,669,396 (average length of
310 bases) sequences were obtained for prokaryotic and microeukaryotic
components, respectively. Operational taxonomic units (OTUs) were
clustered at 97% sequence similarity. Prokaryotic representative sequences
of each OTUy; were searched against the SILVA 138 database [45], using
uclust command, while microeukaryotes OTUy; representative were

ISME Communications

R. Marasco et al.

searched against the UNITE database [46], using the blast command.
OTUs not identified as prokaryotes (i.e., chloroplast, mitochondria and
unclassified or microeukaryotes (i.e., non-fungi and unclassified), and OTUs
present in PCR and DNA blank controls were removed from the dataset
(number of reads and OTUs removed per compartment are reported in
Supplementary Table S2). OTUs showing low relative abundances (<0.01%
for the prokaryotic 165 rRNA gene and <0.001% for the microeukaryotic ITS
region datasets) were also removed (Supplementary Table S2). Rarefaction
curves are shown in Supplementary Fig. S2.

Alpha- and beta-diversity, taxonomic distribution, and
statistical analyses

Compositional similarity matrices (Bray-Curtis (BC) of the log-transformed
OTU tables) were calculated in PRIMER v.6.1 [42, 47, 48] and homogeneity
of multivariate dispersions (PERMDISP) tested to evaluate the dispersion of
samples for each compartment. The specific roles of RS-root system
compartmentalization in explaining the variation of microbial communities
were quantified using the PERMANOVA function adonis2 in the vegan
package in R [49]. Principal coordinates analysis (PCoA) and multivariate
generalized linear models (many GLM, main and multiple comparison
tests, using negative binomial family errors; Supplementary Fig. S3) were
performed, with the factor “compartment” (of four levels: RT, RS, RH, and
NV soil) as explanatory variables and by using PRIMER v.6.1 and the R
package mvabund [50], respectively. Components of beta-diversity
(similarity, richness difference and replacement) in the microbial commu-
nities associated with the root-system compartments and the NV soil were
also quantified using the function beta.div.comp of the R package
adespatial [51, 52]. The occurrence of distance-decay patterns in the
RS-root system and NV soil was tested using the linear regression
(GraphPad Prism 7 software, La Jolla California, USA) between the similarity
of bacterial/microeukaryotic communities (BC) and the distance between
the different compartments. Alpha diversity indices (richness and
evenness) were calculated using the PAST software [53]. Shared and
exclusive bacterial and microeukaryotic OTUs (fungi and algae) in the
different compartments were visualized using Venn-diagrams. The
Kruskal-Wallis test (FDR p correction) was used to detect significant
differences (p <0.05) among taxonomic groups in RS-root system
compartments.

Co-occurrence network analysis

To identify ecological clusters of strongly associated microorganisms, a co-
occurrence network was generated for each RS-root system compartment
and for the NV soils using the CoNet plugin of Cytoscape 3.4 [54, 55] and
Gephi 0.9.1 [56] for computation and visualization, respectively. We used
the compartment-OTU tables described above for the analysis and merged
the bacterial and microeukaryotic datasets using their relative abundance.
We considered all the OTUs present in a compartment (i.e., RT, RS, RH and
NV soil) to identify co-occurring OTUs within each network, possibly
indicating functional/physical interactions among them in the different
compartments. A combination of BC and Kullback-Leiber dissimilarity
indices, along with the Pearson and Spearman correlation coefficients were
used to build the networks. Edge-specific permutation and bootstrap score
distributions with 2000 iterations were performed. For each measure and
edge, 100 permutations and bootstrap scores were generated. The
obtained data were normalized to detect statistically significant non-
random events of co-occurrences, i.e., co-presences and mutual exclusions.
The p values were computed by z-scoring the permuted null and bootstrap
confidence intervals using pooled variance [57]. The most important
statistical network descriptors were calculated [58], along with the
normalized degree (number of node connections standardized by the
total number of connections [59]), node betweenness centrality, and
frequency of edges connecting the three microbial components; i.e.,
bacteria-bacteria, fungi-fungi, bacteria—fungi, and algae-algae/bacteria/
fungi. Hubs (nodes with degree >75th percentile among all network
nodes) and keystone taxa (nodes with betweenness centrality >75th
percentile among hubs) were identified in the final networks.

Metagenome library preparation, sequencing and analyses

A total of nine samples (three RS, three RH and three NV soil) were selected
for metagenomic analyses. Metagenomic libraries were prepared at the
Bioscience Core Lab, King Abdullah University of Science and Technology
(Saudi Arabia). First, 100ng of total DNA were diluted in 52.5ml of
Nuclease-Free water (Ambion), in Covaris snap cap microtube (PN 520045,
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Table 1.
(RH); values are expressed as mean of three replicates + standard deviation.
Variable Unit ANOVA (p) NV
Organic matter % 0.0008
Total C pg/mg <0.0001

POC pHg/mg 0.0008

PIC vg/mg 0.0197
Total N yg/mg 0.0021

PON pg/mg 0.0074

PIN pg/mg <0.0001

0.066 + 0.002 (a)
2.030 + 0429 (a)
0.332+0.010 (a)
1.698 + 0.421 (a)
0.038+0.100 (a)
0.043 £ 0.002 (a)
0.005 +0.004 (a)

Characterization of carbon and nitrogen contents of the gravel plain non-vegetated (NV) soil, speargrasses rhizosheath (RS) and rhizosphere

RH RS
2.869+0.723 (b) 0.140 £ 0.076 (a)
17.185+2.962 (b) 2.199 +0.886 (a)
14.344 +3.616 (b) 0.698 + 0.382 (a)
2.842+2.130 (b) 1.502 + 0.622 (ab)
0.418+0.100 (b) 0.056 £ 0.021 (a)
0.357 +£0.099 (b) 0.056 +0.018 (a)
0.0611 +0.008 (b) 0.0006 + 0.002 (a)

Results of ANOVA tests are reported (p value); different letters indicate the significant difference across samples (Tukey’s multiple comparisons test, p < 0.05).
The other physicochemical parameters measured are listed in Supplementary Table S4.
POC particulate organic carbon, PIC particulate inorganic carbon, PON particulate organic nitrogen, PIN particulate inorganic nitrogen, NV non vegetated, RH

rhizosphere, RS rhizosheath.

Covaris) and it was further fragmented by sonication with Covaris M220 to
target DNA fragments of 300 bp, following this sonication protocol:
treatment time 70s, cycle per bust 200, duty factor 20%, peak incident
power 50 W. The 300 bp fragmented DNA was used as input to prepare
metagenomic libraries by using lllumina TruSeq Nano DNA Library Prep kit
according to manufacturer’s instructions. Individual libraries were pooled,
and the quality and quantity checked using a BioAnalyzer (Agilent) and the
KAPA Library Quantification Kit (Roche). Pooled libraries were loaded on
lllumina NovaSeq 6000 using 150 bp x 2 paired-end sequencing with an S1
flow cell following the NovaSeq XP workflow at the Biological Core Lab,
King Abdullah University for Science and Technology (Saudi Arabia). Raw
read sequences were quality filtered and trimmed using Trimmomatic
v0.32 [60] to remove adapter sequences and leading and trailing bases
with a quality score below 20 and reads with an average per base quality
of 20 over a 4-bp window. The metagenomes were quality checked and
filtered using FastQC v0.11.9 [61] and PRINSEQ-lite v0.20.4 to remove short
sequences and those with ambiguous bases [62]. The sequencing depth of
each metagenome was assessed using Nonpareil 3 [63]. All metagenomic
reads were taxonomically classified using Kraken 2 [64] against the
standard NCBI RefSeq database (accessed April 2022). Kraken 2 uses a
k-mer based lowest common ancestor method with whole genome
references to estimate read taxonomy to the deepest possible taxonomic
resolution. High-quality reads were then assembled into contigs using
metaSPAdes v3.12.0 [65]. The assembled metagenomes were quality
checked using MetaQUAST v5.0.2 [66] after which we identified open
reading (ORFs) using Prodigal v2.6.3 [67] through Prokka v1.12 [68]. These
data were searched for genes related to plant growth-promotion (PGP, i.e.,
biofertilisation, biopromotion and bioprotection), nutrient and energy
acquisition (N and P cycling, cellular metabolism, and energy acquisition)
and competition (biotic competition and trophic interaction); the list of
genes analyzed is given in Supplementary Table S3. Ribosomal genes were
identified and taxonomically annotated from the unassembled sequence
data using SingleM from which an OTU table of unique sequences was
constructed. Secondary metabolic biosynthetic gene clusters (BGCs) were
identified from contigs longer than 5 kb using antiSMASH v5.0 [69] under
strict settings which only detects well-defined clusters containing all
required parts. Carbohydrate-active enzymes were analyzed against the
dbCAN2 database [70] whereby hits in two of the following databases
were required to be accepted: HMMER (E value <1e 13, coverage >0.35),
DIAMOND [71] (E value <1e~'%%) and Hotpep (Frequency > 2.6, Hits >6).
Using the standards reported in Supplementary Methods S1,
metagenome-assembled genomes (MAGs) were assembled with high-
quality (>90% complete, <5% contamination) and medium-quality (>50%
complete, <10% contamination) drafts.

RESULTS

Rhizosheath-root systems of S. ciliata create favorable
resource islands

The NV soils of the central Namib Desert gravel plain were
extremely oligotrophic (0.33 + 0.01 pg/mg of organic carbon (POC)
and 0.046+0.01 ug/mg of total nitrogen (TN)) and were
structurally constituted by fine/very-fine sand particles and stones
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(Table 1 and Supplementary Table S4). In these soils, S. cilata is the
dominant plant species [35] and often constitutes a monospecific
vegetation cover after rain events exceeding 20 mm (Supplemen-
tary Fig. S1a). All the S. ciliata plant clumps tested (Fig. 1a and
Supplementary Fig. S1b, c) exhibited a well-developed RS-root
system (Fig. 1b). The RS matrix (RS and RH) appeared as thick and
compact sandy cylinder, covering the entire length of each root
(Fig. 1b, c and Supplementary Fig. S1d) and showed significantly
different physicochemical properties from the surrounding NV
soils (PERMANOVA: F, s = 37.53, p = 0.001; pairwise comparison of
RS/RH vs. NV soil: t=8.45, p=0.001 and t=2.61, p=0.017,
respectively). In general, RH and RS were less oligotrophic than NV
soils with significantly higher concentrations of total carbon (TC;
organic [OM, POC]) and total nitrogen (TN; organic [PON] and
ammonium [NH,']; Table 1 and Supplementary Table S4); the
inorganic C/N forms [PIC and PIN] were only enriched in the RH.
The RS soils had also the highest concentrations of phosphate
[PO,>7], calcium [Cal, magnesium [Mg] and sulfur [S] (Supple-
mentary Table S4). Notably, the rocks associated with the RS
showed signs of biological minerals weathering, possibly
mediated by microorganisms and S. ciliata roots and root hairs
(Fig. 1d and Supplementary Fig. S1e-g).

The relative humidity of surface and sub-surface NV soils was
significantly lower than the soils under the plants (RH, Fig. 1e). The
niche that showed the highest relative humidity values was the
sub-surface RH (ranging from 17 to 25%), while those with the
lowest values was the surface of NV soil (6% + 0.5%). Both these
variables varied significantly with the distance between S. ciliata
individuals and the corresponding NV soils (relative humidity: p <
0.0001, R>=0.81, r=—0.89; temperature: p <0.0001, R*>=0.78,
r = 0.88). Consequently, day ambient temperatures, which ranged
from 40°C to 52°C, were significantly lower in the RH of
speargrass clumps than in NV soils at equivalent depths (4.2°C
+1.3°C and 3.8°C+1.2°C cooler for surface and sub-surface
horizons, respectively; Fig. 1f). The field parameters measured
showed the presence of an environmental gradient, with the more
favorable conditions in the deep S. ciliata RH and the harshest
conditions in the surface NV soils (Fig. 1g). Altogether, these
results and the fact that the most recent rain event recorded
occurred over a month prior to sampling (Supplementary Table S1)
show the enhanced water retention capacity of the RS-root
systems.

Niche-partitioning dominates the assembly of S. ciliata
rhizosheath-root microbial communities’ structure

The “horseshoe shape” distribution of samples in the PCoA
ordination plots reveals that both bacterial and microeukaryotic
communities were assembled via niche-partitioning processes
along the RS-root system compartments (manyGLM, F335=
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Fig. 2 Diversity and dynamics of microbial communities associated with the S. ciliata rhizosheath-root system. Principal coordinate
analysis (PCoA) of (a) bacterial and (b) microeukaryotic communities associated with the rhizosheath-root system (root tissue (RT),
rhizosheath (RS) and rhizosphere (RH)) and non-vegetated (NV) soil. Arrows indicate the “horseshoes” shape distribution of microbial
communities associated to different compartments, starting from the RT, and ending into the NV soils. Decay relationships among microbial
communities’ similarities (BC: Bray—Curtis) and compartment relative distance (cm) for (c) bacteria and (d) microeukaryotes; red regression
lines indicate the significant correlation among BC' similarity and distance considering all the compartments. We note that when excluding
the root tissues from the analyses, the correlation coefficients increased; blue regression lines, bacteria: p < 0.0001, R*> = 0.81; microeukaryotes:
p <0.0001, R*=0.73. Ternary plot presenting the variation in species composition among sites (beta-diversity) as result of its three
components: similarity, replacement and richness difference [51]; the indices decomposing beta-diversity are visualized for the (e) bacterial
and (f) microeukaryotic communities. Each point represents a pair of samples, and its position is determined by a triplet of values from the
similarity, replacement, and richness difference. In each ternary plot, the large central dots where the lines start are the centroid of the points
for each beta-diversity component; the lines represent their mean values.

64815, p=0.001 and F335 =7196, p = 0.001, respectively; Fig. 2a,
b and Supplementary Tables S5 and S6). Even though the NV soils
was the microbial-source of the vast majority of the plant-
associated bacterial and microeukaryotic OTUs (91% of OTUs (96%
of relative abundance) and 56% of OTUs (97% of relative
abundance), respectively; Supplementary Fig. S5), the selective
process exerted by the RS-root system defined a non-random
distribution of OTUs across the compartments with a significant
relationship between microbial occurrence and abundance
(Supplementary Fig. S6). The niche partitioning was further
confirmed by the significant decline in compositional BC
similarities with increasing distance; i.e.,, the edaphic microbial
communities associated with close compartments (RH and RS)
were more similar than those from the distant NV soils for both
bacteria and microeukaryotes (p=0.0003, R*=0.02 and p<
0.0001, R?>=0.45; red regression lines in Fig. 2¢, d). While the
dissimilarities among bacterial communities were determined by
similarity and richness differences, for microeukaryotes it was
equally driven by the three components (i.e., similarity, richness
differences and replacement; Fig. 2e, f and Supplementary
Result S1). Despite such difference, the significant and positive
relationship between bacterial and microeukaryotic BC similarity
matrices (F; 778 =523.9, p<0.001, R*=0.4; considering only
edaphic compartments: F; 433 = 1464, p <0.001, R*=0.77) indi-
cated commonalities in the processes driving the assembly,
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diversity and composition of the two microbial communities’
components at the RS-root system micro-scale.

The impact of niche partitioning was also reflected in the
microbial community compositions of each compartment. Sig-
nificant compartment-specific differences for bacterial and micro-
eukaryotic richness (F5 3¢ =834.3, p <0.0001 and F336 =418, p<
0.0001, respectively) and evenness (F335= 126, p <0.0001 and
F336 =104, p <0.0001, respectively) were detected. Specifically,
lower species richness and evenness metrics were detected in RT
and increased outwards from the plant in the RS up to reach the
highest values in the RH and NV soils (Supplementary Table S7).
However, the concentrations of the total DNA extracted, which
can be used as a proxy for microbial biomass in desert soils [44],
showed significantly higher values in the RH than in the NV soils
(357 £ 137 vs. 85 + 33 ng DNA/g soil, respectively; t; 15 = 6.097, p <
0.0001), revealing a local enrichment of microbial cells in the
vicinity of the plant.

The edaphic bacterial communities were consistently domi-
nated by Actinobacteria (45%, 41% and 47% of the RS, RH and NV
soil communities, respectively), Alphaproteobacteria (27, 26 and
15%) and Bacteroidetes (9, 9 and 6%), while RT bacterial
communities were dominated by Firmicutes (59%) and Gamma-
proteobacteria (14%) (Fig. 3a; Supplementary Table S8 and
Supplementary Data S1). The microeukaryotic communities were
less diverse; Dothideomycetes, Pezizomycetes, Tremellomycetes, and
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Rhizophylyctidomycetes classes dominated the NV soils, while
Sordariomycetes and unclassified fungi were significantly enriched
in all compartments of the speargrass RS-root systems (RT, RS and
RH; Fig. 3b; Supplementary Table S8 and Supplementary Data S1).

Rhizosheath-root system niches enhance microbial
connectivity and network stability

A total of 66% (£15%) of all microbial OTUs significantly co-
occurred with one another (Fig. 4a, b and Table 2). Networks
based on these co-occurrences were bacteria-dominated (66-80%
of nodes). Fungal OTUs represented the remaining portion
(19-33% of nodes), along with algal OTUs (<2% of nodes). A
reduction in heterogeneity and modularity, together with an
increase in connectedness and centrality of nodes, was observed
from the NV soils to the RT (Fig. 4a and Table 2). The analysis of
the node connectivity (i.e., normalized degrees per node) revealed
a significantly higher level of connection in the RT network when
compared to the edaphic networks (RS, RH and NV; ANOVA:
F32579 =125.7, p < 0.0001; Supplementary Fig. S7a). The contribu-
tion of each microbial group was compartment dependent: in RT
the bacterial nodes showed the higher level of connections, while
in all the edaphic compartments those of fungi were the most
connected (Fig. 4c; Supplementary Result S2 and Supplementary
Fig. S7b). In the RT network, the key connectors were the Firmicutes
(including the well-known plant-associated Bacillus and Paeniba-
cillus genera [72]), Actinobacteria (Nocardioides, Isoptericola and
Streptomyces), and Gammaproteobacteria (Acinetobacter, Ramlibac-
ter and Pseudoxanthomonas), as well as fungal PGP taxa such as
Preussia (Ascomycota [73]), Rhodotorula (Basidiomycota [74]) and
Mortierella (Zigomycota [75]; (Fig. 4e; Supplementary Data S2 and
Supplementary Result S2). The edaphic RS, RH and NV soil networks
showed significantly more fungal hubs and keystones species than
the RT (Fig. 4e). Hub fungal taxa were affiliated to Ascomycota
(among others, Acremonium, Aspergillus, Bipolaris, Chaetomium,
Chrysosporium, Curvularia, Eurotium, Monosporascus, Pseudospiro-
mastix and Thermomyces) and Basidiomycota (Coprinopsis, Filobasi-
dium, Rhodotorula and Wallemia; Supplementary Data S2). The
edaphic bacterial hubs/keystone species mostly belonged to the
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Actinobacteria and Alphaproteobacteria (Fig. 4e and Supplementary
Data S2). It is also noteworthy that the photoautotrophic unicellular
alga Trebouxia was ubiquitously identified as a network hub in the
edaphic compartments (Fig. 4e).

Microbial communities in the root-rhizosheath-rhizosphere
continuum favor a heterotrophic lifestyle
The shotgun metagenomes from the edaphic compartments (RS,
RH and NV soils) supported the taxonomic results obtained by
amplicon sequencing, i.e.,, each compartment showed taxonomi-
cally distinct communities (PERMANOVA; R* = 0.73, adjusted p <
0.005; Supplementary Fig. S8; Supplementary Results S3 and
Supplementary Data S3). Evaluation of indicator genes for the
potential-acquisition of carbon, nitrogen and phosphorous
showed evidence of different lifestyles across the edaphic niches
(PERMANOVA; R?>=0.72, adjusted p < 0.003). For example, com-
pared to NV soil metagenomes, those in RS and RH were
significantly enriched in genes involved in the metabolism of
simple carbon substrates, such as sugars, amino acids and organic
acids, that are typically present as root exudates [18, 76], as well as
in carbohydrate-active enzymes, such as glycosyl hydrolases and
glycoside transferases; p <0.05) and cellulases (celE; p <0.04).
Similarly, N and P microbial uptake genes suggest that the RH and
RS microbial communities relied on readily assimilable and/or
abundant substrates (Table 1), including ammonia and nitrate
(NOs™; ammonia monooxygenase subunits (amoABC; p < 0.001)
and assimilatory nitrate reductases (nas; p <0.02)), ammonia/
ammonium (NHs/NH,"; nitrate reductase (nrfA; p < 0.03)), inor-
ganic phosphate (low-affinity phosphate importers, pit (p < 0.002)
and glycerol-3-phosphate ABC transporters ugpABCE (all p < 0.02))
and phytic acid (a plant-derived molecule; acid phosphatases
(acpp; p < 0.05) and 3-phytases phyA (p < 0.03)). In the RS we also
observed significant overrepresentation of transporter genes
(hsrA, pbuE, sugar efflux transporter C, hmuU, gsiA), suggesting a
high capacity for metabolite uptake, such as for photosynthates
released by the speargrass root system.

In contrast, the NV soil communities were significantly enriched
in aerobic carbon fixation capacity (prkB, rbcLS, RuBisCO; p < 1.52

ISME Communications
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taxonomy are reported in Supplementary Data S2.

e3), assimilatory hydrogenases ((NiFe) hydrogenases; p < 0.015),
the Wood-Ljungdahl pathway for anaerobic carbon fixation
(acdABCSD; p <0.03) and aerobic respiration (cytochrome C
oxidases; p<9.38 e 3), indicating a prioritization of energy
acquisition strategies based on gasses (i.e, CO, and Hj). A
preference for autotrophic metabolism was consistent with the
higher proportion of biological N fixation (nifH) genes (p < 0.0004)
in the NV soil metagenomes, as well as with the higher presence
of genes encoding for the acquisition of inorganic phosphate
(PO,*) directly from the environment through alkaline phospha-
tases (phoA, p < 0.0001), the Pho regulon (phoBR, p < 0.02) and the
high-affinity phosphate transport system (pstSCAB; p < 0.0001).
Along with these, in the NV soil microbial communities we
observed a significant enrichment of genes involved in abiotic
stress mitigation, including DNA repair mechanisms (radA, recNO,
mutHLS; p <0.02), breakdown of reactive oxygen species (super-
oxide dismutase; p <0.015) and UV-damage repair (uvrABC; p <
0.03).

ISME Communications

Rhizosheath-root system microbiome is enriched in plant-
beneficial traits

We explored the ecological services potentially provided to the
plant by the RS and RH microbiomes, focusing on three distinct
plant-beneficial functions: biofertilization (solubilization of nutri-
ents for the enhancement of plant nutrition), biopromotion
(stimulation of plant growth mediated by microbial-derived
phytohormones and volatile compounds), and bioprotection
(mitigation of plant abiotic and biotic stresses; list provided in
Supplementary Table S3). Overall, plant-associated RS and RH
microbial communities were significantly enriched in PGP traits
from all the three categories, compared to those associated with
NV soil communities (PERMANOVA; R> = 0.85, p < 0.05; Fig. 5a, b).
For instance, the RS and the RH metagenomes had significantly
higher abundances of biofertilization markers involved in side-
rophore production (catecholate siderophore receptor (fiu; p <
0.05), siderophore-binding lipoprotein (yfiY; p < 0.0001) and heme
uptake protein (mmplLS, p<0.0001)), ammonification (nitrite

SPRINGER NATURE
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Table 2.
and rhizosphere (RH)) and the non-vegetated (NV) soil.
Network parameter RT
Node 301
N. bacteria (%) 199 (66)
N. fungi (%) 100 (33)
N. algae (%) 2(1)
Interaction 2548
N. positive (%) 2133 (84)
N. negative (%) 415 (16)
Degree® 17
Betweenness® 608
Betweenness centrality® 0.010
Cluster coefficient 0.719
Centralization 0.188
Average path length 3.167
Average neighbors 16.93
Density 0.056
Heterogeneity 0.704
Modularity 0.137

RT root tissue, RS rhizosheath, RH rhizosphere, NV non vegetated.
®Median values are reported for each compartment.

reductase (nirD, p =0.002)), potassium metabolism (potassium
transporters (kimA; p <0.002, and kdpC; p <0.0001)) and phos-
phate solubilization (pgqBCDE, p = 0.04) compared to the NV soil
metagenomes (Fig. 5a and Supplementary Data S3). The selection
of beneficial microorganisms by S. ciliata was also indicated by the
significant enrichment in the RS and the RH metagenomes of
microbial genes encoding for cytokinin (cytokinins riboside 5'-
monophosphate phosphoribohydrolase (LOG9; p =0.04)), ACC
deaminase (acdS; p =0.04), auxin (indole-3-glycerol phosphate
synthase, idpC; p = 0.003) and exopolysaccharide synthesis (epsF;
p =0.002). Genes involved in pathogen inhibition mechanisms,
such as hydrogen cyanide production (hcnABC; p = 0.04), chitinase
B (p < 0.0001) and ABC transporters (ytfQ, yphF, uup, ramA, modF,
natB and natA [77]; all p < 0.05) were more common in the RS and
RH metagenomes than those of NV soils (Fig. 5a).

Analysis of PGP traits and taxonomic diversity revealed that the
RH and RS microbial communities had a higher functional
redundancy than NV soil communities (i.e., coexistence of multiple
distinct taxa capable of performing a given PGP function [78];
Fig. 5b). Considering all the PGP genes analyzed, we found that RS,
RH and NV had 5.6, 5.2 and 3.7 microbial species per PGP gene,
respectively, and the relationship between gene copies and
diversity (number of species) was significantly different among the
three compartments (GLM: x*; , = 14.35, p < 0.0007). RH and RS
also showed a higher number of occurrences for gene encoding
PGP traits compared to NV soils (average count of genes: 35.7, 33.1
and 24.3, respectively). Functional genetic PGP potential of the
102 medium- and high-quality MAG confirmed the prevalence of
multiple PGP traits in RS and RH (Supplementary Data S4).

Microbial competition biomarkers are abundant in
rhizosheath-root system compartments

BGCs encoding for secondary metabolite production, such as
antibiotics, pigments and sunscreens [79], were analyzed (Fig. 5¢
and Supplementary Data S3). The vast majority of BGCs belonged
to bacteria, especially Actinobacteria, with only 252 BGCs assigned
to fungal guilds, possibly due to the low percentage of reads
assigned to the latest (Supplementary Results S3). The bacterial
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Co-occurrence network topology indices reported for the three rhizosheath-root system compartments (root tissue (RT), rhizosheath (RS)

RS RH NV

832 733 717

669 (80) 549 (75) 542 (76)
159 (19) 176 (24) 159 (22)
4 (1) 8 (1) 16 (2)
2550 2320 2660
1484 (58) 1568 (68) 2107 (79)
1066 (42) 752 (32) 553 (21)
6 6 7

2354 2116 952
0.016 0.025 0.028
0.279 0.278 0.236
0.118 0.089 0.069
4.678 5.52 5.939
6.129 6.33 5419
0.007 0.009 0.001
1433 1.444 1.513
0.199 0.322 0.647

BGCs significantly decreased in abundance from the RS to the NV
soil metagenomes (527 + 33 BGCs in RS, 269+ 21 in RH and 37 +
19 in NV; p<0.0001; Fig. 5c), suggesting that the RS and RH
microbiomes are subject to higher levels of inter-taxa competition
than NV soil microbiomes. Beside their limited number, also the
fungal BGCs become more prominent in proximity of the plant (5
fungal BGCs in NV, 103 in RH and 144 in RS). Many BGCs were
found to encode for antibiotic production (RS = 36% + 7%, RH =
28% + 5% and NV = 9% =+ 13%; Fig. 5c and Supplementary Data S3)
but the RH and RS metagenomes were also significantly enriched
in antibiotic resistance genes (p <0.001). The number of phage-
related contigs showed the same trend with 75+ 15, 34 + 16 and
2+3 viral contigs in the RS, RH and NV soil metagenomes,
respectively (Supplementary Result S3). Ninety three percent of
these phage contigs were unclassified using protein-sharing
networks. The classified viral contigs belonged to Siphoviridae
(Caudovirales, dsDNA tailed phage; Supplementary Data S3),
possibly infecting the dominant actinobacterial genera, such as
Streptomyces, Actinoplanes and Arthrobacter. Similarly, we
observed a significantly higher proportion of CRISPR-Cas systems,
which are proxies for previous viral infection events and bacterial
immunity acquisition processes [80], in the RS and RH metagen-
omes than in the NV soil metagenomes (p < 0.05; Supplementary
Data S3).

DISCUSSION

In hyperarid desert ecosystems, resource (i.e., water and nutrients)
availability is a key challenge for macro- and microorganisms. In
this context, xerophytic plants and their root systems serve as
important resource hotspots that affect both the structure and
function of the surrounding edaphic microbial communities
[15, 18, 81]. Here, we investigated the effects of the RS-root
system of S. ciliata on the surrounding edaphic microbial
community in the extremely oligotrophic gravel plain soils of
the hyperarid central Namib Desert. S. ciliata is an amphiphytic
speargrass which is abundant on rock-sandy gravel plains of the
Namib Desert after spatio-temporally isolated rainfall events
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vegetated (NV) soil. Relative abundances are calculated by first normalizing by sequencing depth and then scaling against the highest
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exceeding 20 mm [35]. A conspicuous adaptive trait evolved by
Stipagrostis plants, and other xerophytic plants within the Poaceae
family, is the development of a RS-root system [15], a cylindrical
sheath of sand particles surrounding all elements of the root
system. The RS is rich in exopolymers and mucigels produced by
the root and its associated microorganisms [18, 22, 82] to
efficiently retain water by reducing evapotranspiration [21, 83],
as confirmed by the fact that the S. ciliata RS studied retained
water more than a month after a light (<7 mm) rainfall.

An additional key adaptive trait of S. ciliata is the recruitment of
specific microbial taxa and their functional capacity in the RS-root
system. Indeed, the RS and RH edaphic niches have been
described as “resource islands” and “diversity hotspots” in
(hyper)oligotrophic and (hyper)arid soils [15, 18, 84, 85]. As
already observed for Namib Desert dune speargrass species [15], S.
ciliata recruits and assembles the microbial community in the
RS-root system via strong deterministic niche-partitioning pro-
cesses. While such communities have a reduced (RS) or similar
(RH) compositional diversity than NV soil in term of richness, they
present high functional redundancy (i.e, a same function can
potentially be carried out by different microorganisms) with
multiple taxa carrying a given PGP trait, including auxin and EPS
production and provision of essential nutrients, e.g., P, N and Fe
[15, 86-91]. Such functional redundancy suggests that the RS and
RH compartments represent “functional shields” to support/ensure
the fitness of the holobiont during extended dry periods, as well
as “functional reservoirs” from which the plant selects its
intimately associated endophytic communities.

RS and RH microbial communities of S. ciliata form more
cohesive co-occurrence networks than those of NV soils, support-
ing the concept that both water and nutrient availability are
determinant factors in the assembly and stability of desert
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edaphic microbial communities [37, 59, 92, 93]. Key components
of the co-occurrence networks are microorganisms known to
possess PGP traits that improve plant-fitness, such as Firmicutes of
Bacillus and Paenibacillus genera. Members of these genera are
often recognized as PGP taxa resistant/tolerant to drought
[27, 72, 94-96] and have previously been found as connectors in
RS-RH microbial networks of other Namib Desert speargrass
species, namely S. sabulicola, S. seelyae and Cladoraphis spinosa
[15]. This suggests that members of these bacterial genera have
developed an intimate relationship, and possible co-evolution
[97], with Namib Desert xerophytic plants forming RS-root
structures. Similarly, the root fungal colonizers Mortierella sp.,
Auxarthron sp. and Xylaria sp. [98, 99] were also identified as
important connectors in the RS and RH co-occurrence networks.
These fungi support plant nutrient uptake [75, 100] and plant
protection from herbivores and phytopathogens [101]. Their
hyphae can further promote soil aggregation and stabilization,
and therefore participate in the development of the RS structure
surrounding plant roots [15], ultimately increasing soil water-
holding capacity [102-105] and connectivity between edaphic
microorganisms [90, 106, 107].

The inter-taxon interactions established between the microbial
community members can either be positive (mutualism) or
negative (competition) [15, 39, 90, 108]. While positive co-
occurrences dominate in the oligotrophic NV soil networks, those
negative increase along the RS and RH compartments (Table 2).
This strongly suggests that desert edaphic microorganisms
associated with the “limited niche-space” of the RS oasis compete
more with each other than those inhabiting the unhospitable NV
soil to reduce the invasion of possible competitors. The fact that a
larger number of genes involved in antibiotic production, export
and resistance was observed in the RS and RH strongly supports
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“Discussion” section of the manuscript.

this view [93, 109]. As well, the presence of CRISPR-Cas proteins in
these plant niches hints at defense mechanisms against the
numerose and diverse edaphic phages [110] that might act as
moderating agents within the community by controling popula-
tion density [111].

Altogether, our study supports the contention that plant
RS-root systems represent resource islands and microbial density
and competition hotspots. We therefore propose a dual selection
process as a model of plant-microbe interaction in the coloniza-
tion and occupation of the RS-root system niches (Fig. 6): to
colonize the plant-associated niches desert edaphic microorgan-
isms must (1) possess the capacity to improve the fitness and
survival of the plant (plant selection) and be able (2) to compete
successfully against other microorganisms (microbial competi-
tion); i.e,, that both long-term plant-microbe co-evolution [112]
and a microbial “arms race” [113, 114], respectively, co-occur. In
contrast, NV soil desert microorganisms are less competitive but
better equipped with self-sustaining processes to cope with the
extreme/oligotrophic conditions to which they are exposed to. By
some ecological analogies with the RS-root system, we speculate
that similar processes should occur in other desert microbial
refuge niches, such as lithic environments and biological soil
crusts [8].

CONCLUSIONS

The RS-root system of S. ciliata is an “oasis” for hyperarid desert
edaphic microorganisms as it provides more favorable abiotic
conditions (with more nutrients and water) in otherwise poly-
extreme and highly oligotrophic gravel plains. Consequently,
these refuge niches and resource islands are hotspots for which
edaphic microorganisms compete intensively to colonize. This is
particularly emphasized by the fact that, despite presenting similar
diversity in term of species number, the RH communities
presented a significantly higher microbial density than the NV
soil communities. This is in agreement with our initial hypothesis
that the RS-root system of S. ciliata acts as hotspot for microbial
colonization. The microorganisms able to colonize and remain in
association with the RS—root system are (1) functionally equipped
to support the host (and their own) growth and survival through
biopromotion and biofertilization activities, that is they have been

SPRINGER NATURE

selected for their plant growth promoting capabilities, and (2) they
have been selected to compete against the other microorganisms
(e.g., through antibiotic production and viral pathogen resistance).
Indeed, while presenting more favorable abiotic conditions, the
biotic pressure endured by the resource island microbial
colonizers is also an important factor to be considered to
disentangle the mechanisms regulating the colonization of such
“resource islands” in poly-extreme deserts. By applying Darwin'’s
evolutionary theory [37], we further postulate that such density/
competitive niches may also represent evolutionary hotspots that
can enhance the resilience and success of the RS-root microbial
communities and their host, i.e., the plant holobiont in the
extremely harsh and inconsistent environmental conditions of
deserts and those arising from climate change.
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