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ABSTRACT

RNA G-quadruplexes (rG4s) are RNA secondary
structures, which are formed by guanine-rich se-
quences and have important cellular functions. Ex-
isting computational tools for rG4 prediction rely on
specific sequence features and/or were trained on
small datasets, without considering rG4 stability in-
formation, and are therefore sub-optimal. Here, we
developed rG4detector, a convolutional neural net-
work to identify potential rG4s in transcriptomics
data. rG4detector outperforms existing methods in
both predicting rG4 stability and in detecting rG4-
forming sequences. To demonstrate the biological-
relevance of rG4detector, we employed it to study
RNAs that are bound by the RNA-binding protein
G3BP1. G3BP1 is central to the induction of stress
granules (SGs), which are cytoplasmic biomolecu-
lar condensates that form in response to a vari-
ety of cellular stresses. Unexpectedly, rG4detector
revealed a dynamic enrichment of rG4s bound by
G3BP1 in response to cellular stress. In addition, we
experimentally characterized G3BP1 cross-talk with
rG4s, demonstrating that G3BP1 is a bona fide rG4-
binding protein and that endogenous rG4s are en-
riched within SGs. Furthermore, we found that re-
duced rG4 availability impairs SG formation. Hence,
we conclude that rG4s play a direct role in SG biol-
ogy via their interactions with RNA-binding proteins

and that rG4detector is a novel useful tool for rG4
transcriptomics data analyses.

GRAPHICAL ABSTRACT

INTRODUCTION

RNA G-quadruplexes (rG4s) are non-canonical higher-
order RNA secondary structures, which fold from guanine
(G)-rich RNA strands due to the propensity of Gs to self-
assemble in a plane and form G-quartets via Hoogsteen
hydrogen bonds (1–3). The formation and subsequent self-
stacking of G-quartets provide rG4s with a high thermo-
dynamic stability, which is further regulated by the binding
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of monovalent cations (e.g. K+) in between the G-quartet
planes and also by steric factors such as loop length (the
number of intervening nucleobases between G stretches)
and the number of G-quartets (dictated by the number of
Gs within each stretch) (3).

rG4-forming sequences (rG4FSs) in the human tran-
scriptome have been detected by various experimental as-
says based on RNA next-generation sequencing (NGS), in-
cluding rG4-seq (with >13 000 rG4FSs (4) in vitro) and
G4RP-seq (with >6000 rG4FSs in vivo) (5,6). Several bioin-
formatic tools (7), including G4RNA screener (8), indi-
cate that ∼60% of the human transcripts have at least one
rG4FS. This prevalence is strongly indicative of rG4s’ func-
tional relevance. Accordingly, numerous studies have shown
that rG4s play regulatory roles in key cellular processes such
as transcription, RNA splicing, translation, and stress re-
sponse (1,3,9,10).

A main feature of the cellular stress response is formation
of stress granules (SGs), which are cytoplasmic biomolec-
ular condensates that assemble in response to a variety of
cellular stresses. SGs are composed of untranslated mRNA
and RNA-binding proteins (RBPs) (11,12) and regulate dif-
ferent aspects of RNA metabolism, including translation,
sequestration of RBPs and mRNA molecules and signal-
ing cascades (12–16). Aberrant SG dynamics have been
implicated in several human neurodegenerative disorders,
including amyotrophic lateral sclerosis (ALS) (12,17–21).
This highlights the importance of SGs in cells’ function but
also of the critical need to better understand SG biology in
mechanisms underlying pathologies.

Several lines of evidence indirectly implicate rG4 func-
tion in SG biology. Notable changes in SG formation have
been observed in response to addition of exogenous G4-
forming repeated RNA sequences (22), or as a result of
perturbations of DHX36 expression, a main rG4-helicase
(23). In addition, RAS GTPase-activating binding protein
1 (G3BP1), a SG core protein, has been suggested to bind
rG4s (24,25). Taken together, rG4FSs appear to be key play-
ers in SG biology. However, to date, firm evidence demon-
strating direct involvement and roles of rG4s in SG biology
is still lacking.

Several computational methods were developed to pre-
dict rG4 formation in the human transcriptome (7). QGRS
was developed to identify sequences that contain four G-
tracts (26), while cGcC-scoring (27) and G4Hunter (28)
are based on a scheme that attributes a high score for any
G- or C-tract. Hence, these methods for the discovery of
rG4s rely on simple scoring schemes that mostly identify
canonical G4 motifs. In contrast, G4NN is a neural net-
work trained to distinguish between experimentally vali-
dated rG4 sequences and non-rG4 sequences (8). G4NN is
thus a powerful approach but its accuracy is still suboptimal
as it was trained on a limited number of rG4FSs (<500) and
does not include quantitative data of rG4 stability. There-
fore, the need for an accurate rG4 prediction method is not
fully met.

rG4-seq assesses the prevalence of rG4s in vitro on the
basis of their ability to act as roadblocks to reverse tran-
scriptase (RT). Hence, rG4 sites are ascribed to RT stalling
(RTS) sites, which is measured both in rG4-defavoring con-
ditions (Li+-rich buffer, as a control) and rG4-promoting

conditions (K+-rich buffer and with the presence of pyri-
dostatin (PDS), a well-known G4-stabilizer (29)). An im-
proved processing of available high-throughput datasets
was achieved by rG4-seeker (30), which was developed to
process the rG4-seq dataset (4). rG4-seeker calculates the
ratio of stalled reads (RSR), which is correlated with the
stability of the rG4 upstream of the RSR (4), to improve
the detection of significant RTS sites (especially dedicated
to the identification of non-canonical rG4FS). These rich
and accurate quantitative data were still not utilized for de-
veloping machine-learning-based methods for rG4 predic-
tion.

In this work, we tested the hypothesis that a machine-
learning-based detector can improve rG4 prediction
and lead to new biological discoveries. We developed
rG4detector, a convolutional neural network for predicting
rG4 folding of any given sequence based on rG4-seq
data. rG4detector assigns an rG4 propensity score for any
RNA sequence, and outperforms G4NN, G4Hunter, and
cGcC-scoring. In addition, we interrogated rG4detector’s
biological relevance and discovered both known and novel
biological principles behind rG4 folding. To demonstrate
that rG4detector effectively predicts rG4FSs and can set
forward testable biological hypotheses, we characterized
the dynamic enrichment of rG4s bound by G3BP1 in SGs.
On this basis, we demonstrate that endogenous rG4s play a
direct role in SG formation through rG4 interactions with
RBPs.

MATERIALS AND METHODS

Computational materials

Datasets. In this work, we used the raw data produced by
the rG4-seq protocol on RNA from human HeLa cells (4)
(accession code GSE77282) to calculate RSR scores across
the human transcriptome (Supplementary Figure S1A). We
extracted reads using SRA Toolkit, trimmed adapters with
Cutadapt (31), aligned them to the hg38 reference genome
using STAR-2.7 (32), and merged all output files using
SAMtools (33). Then, we used rG4-seeker, an improved
statistical pipeline for processing rG4-seq data, to extract
read coverage and stalling-events counts per position. Us-
ing these counts, we calculated the RSR scores in single-
nucleotide resolution. For adjacent nucleotides we summed
their number of stalling events and the total read coverage,
and then calculated their combined RSR (as described in
rG4-seeker (30)). We then calculated an RSR-ratio score,
which we defined as a proxy to rG4 stability, as follows:

RSR-ratio = log

(
RSR

(
K+)

RSR
(
Li+

)
)

To attain high-quality RSR-ratio scores, we filtered out
RSR-ratio scores based on <1000 total read count. We were
left with 53 991 high-quality RSR-ratio scores (Supplemen-
tary Figure S1B).

We used several independent datasets to validate the pre-
diction performance of rG4detector. First, we used Guo
and Bartel rG4 experimental dataset (34). This dataset,
which contains 11 606 sequences, includes RTS frequen-
cies over the mouse transcriptome. RTS was measured us-
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ing the fold-enrichment value, i.e. the ratio of the number
of reads stalled at a given position over the background
read density of the read-stalled-position nucleotide within
the same transcript. We used as labels the log of the ra-
tio of fold-enrichment under K+ over fold-enrichment un-
der Li+. Second, we used rG4-seq data on Arabidopsis
thaliana transcriptome (35), which contains 178 sequences
with RTS measurements. Third, we applied rG4detector
to classify rG4s from the G4RNA dataset. We obtained
all unique G4RNA sequences from the G4RNA plat-
form (http://scottgroup.med.usherbrooke.ca/G4RNA) and
merged overlapping sequences, which had the same label,
leaving 128 sequences, where 103 are experimentally veri-
fied rG4s and 25 are non-rG4s. Last, we used the dataset
from Zhang et al. (36) low-throughput experiment, which
examined the dependence of rG4 thermodynamic stabil-
ity on its loop length. In this experiment, �Gvh values
were measured for 29 canonical rG4s with variable loop
lengths (27 sequences with all combinations of loop lengths
from 1 to 3, and 2 sequences of loop lengths of 4 and
5). In this dataset, loop nucleotide content is any nu-
cleotide except for guanine in the adjacent positions to the
G-tracts.

Sequence extraction. To extract the sequences correspond-
ing to the RSR-ratio measurements, we followed the guide-
lines proposed by Uhl et al. (37). We mapped each RSR-
ratio position to a single transcript, which has the high-
est transcript support level, i.e. is correlated with the most
prominent transcript isoform. For each position associated
with an RSR-ratio score, we extracted sequences of length
30nt upstream of the RTS location, and since previous stud-
ies demonstrated that G4-flanking sequences are informa-
tive of G4-folding potential (38), we appended each se-
quence we assigned an RSR-ratio for by its 25nt-long up-
stream and downstream flanks, obtaining a sequence in to-
tal length of 80nt. In case of sequences crossing transcript
boundaries, we used zero padding before the 5’ end or past
the 3’ end.

Computational methods

rG4detector architecture. rG4detetor is a random initial-
ization ensemble of multi-kernel convolutional neural net-
works, based on an architecture previously proposed by
Zhang et al. (39) (Figure 1A). Convolutional neural net-
works are very popular in genomics for their ability to
capture specific sequence patterns. But, using a kernel of
fixed size might not be beneficial for identifying potential
rG4 sequence features because of their variable lengths.
Therefore, we implemented in rG4detector two parallel one-
dimensional convolution layers with 128 kernels each of
sizes of 10 and 17, respectively. rG4detector input is a 80nt-
long one-hot-encoded RNA sequence. We replaced N po-
sitions in the RNA sequence with a uniform vector of
0.25. The one-hot-encoded matrix is first processed by the
convolutional layer. The output of each one of the con-
volutional kernels goes through a max-pooling layer with
pool sizes of 2. The max-pooling output matrices are flat-
tened and concatenated to form a single numerical vector.

This vector is the input to a fully connected layer with 64
nodes with ReLU activation function. Finally, the output
of the fully connected layer is the input to a single neu-
ron, which outputs the network prediction. To prevent over-
fitting, we used in the convolution layers kernel regulariz-
ers (regularizer weight of 0.0005) and dropout (probability
0.2). Dropout was also used following the fully connected
layer.

To train the model and select optimal hyper-parameters,
we excluded the data of chromosome 2 from the training
dataset and used it as a validation set. We chose the hyper-
parameters values using a search over 600 random hyper-
parameter combinations with a pre-defined range for each
parameter (Supplementary Data S1, Table S1). Once the
hyper-parameters were set, we trained 50 models with differ-
ent initial weights and evaluated their performance on the
validation set. We tested 15 ensemble models based on 1–
15 of the best-performing models, and observed that an en-
semble of 11 models performs the best in this setting (Sup-
plementary Figure S1C). rG4detector final prediction is the
average of all 11 models’ outputs. We held out the data
of chromosome 1 to use it as a test set. We implemented
rG4detector using Keras library with Tensorflow backend
(version 2.9.1). The models were trained over five training
epochs, with batch sizes of 128 and were optimized using
Adam optimizer with learning rate of 0.005 and default �1
and �2 values (0.9 and 0.999, respectively).

Running existing methods. We generated rG4 pre-
dictions of G4Hunter (28), G4NN (8) and cGcC-
scoring (27), by locally running G4RNA screener
(gitlabscottgroup.med.usherbrooke.ca/J-Michel/g4rna
screener) (8), a tool that runs the three methods. We ran
G4RNA screener with three window sizes: 60 (G4RNA
screener default), 25 (G4Hunter chosen window size) and
80 (rG4detector input size), and with step size of 1, pre-
ferring high prediction resolution over computing time.
We assigned the maximum prediction per sequence to be
the final prediction. At each task, we report the results on
the window size that enabled each method to achieve best
performance (performances over all window sizes are in
Supplementary Data S1, Table S2).

Detection of rG4FSs. We utilized the predictions of
rG4detector and existing methods to identify rG4FSs in a
given transcript. To test rG4 detection ability, we retrieved
all human transcripts which contain an rG4 by the rG4-
seq experiment in the held-out test set (chromosome 1).
For each transcript, we assigned a binary label to each nu-
cleotide: 1 for a nucleotide belonging to an rG4FS, and
0 otherwise. We scanned each transcript to obtain predic-
tions with window size of 80nt and step size 1nt. Since
rG4detector input includes both the potential rG4FSs and
its flanking sequences, whose size varies according to the
rG4FSs size, we used a Gaussian weighted average to com-
bine each position’s predictions into one final score. By do-
ing so, we assigned more weight for predictions where the
given nucleotide is closer to the center of rG4detector input

http://scottgroup.med.usherbrooke.ca/G4RNA
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as follows:

Position final prediction

= 1
2πσ 2

∑80

i=1
e

( 80
2 − i

)2

2σ 2
pi (1)

with σ 2 = 12, which led to best performance on the valida-
tion set over δ2 ∈ [1, 2, . . . , 20].

We performed the same process using G4NN and cGcC-
scoring with window sizes of 25, 60, and 80. For G4Hunter,
we implemented and applied the transcriptome-wide de-
tection algorithm as previously described by the develop-
ers of G4Hunter (28) with window sizes of 25, 60, and 80.
We gauged detection performance by the precision–recall
curve.

Interpretability of rG4detector. To deduce insights behind
the molecular mechanism of rG4 formation, we interro-
gated the rG4detector-trained model. We first visualized the
impact of loop lengths on predicted RSR-ratio scores. We
predicted RSR-ratio scores for a canonical rG4 with vari-
able loop lengths while varying the length of each loop sep-
arately between 1 to 12. The loops and flanks were encoded
such that each nucleotide at those positions was assigned an
equal uniform probability, i.e. 0.25.

Next, we further validated the effect of loop length on
RSR-ratio predictions. We composed a dataset of canon-
ical rG4s with multiple combinations of loops lengths as
previously defined (36). We generated 27 sequences with all
possible combinations of loop lengths from 1 to 3, and two
sequences with constant loop length of 4 and 5. Following
the experimental protocol, we set loop nucleotide content to
equal uniform probability for any nucleotide, except at po-
sitions adjacent to the G-tracts, which we set to have equal
probability for A, C, and U only, i.e. 1/3 for each.

To examine the effect of G-tracts length on RSR-ratio
predictions, we predicted the RSR-ratio scores for a canon-
ical rG4 sequence with a constant length of G-tracts, which
we varied between 1 and 8, with loop lengths between 1 to
4. We set positions outside the G-tracts to equal probability
distribution for any nucleotide, i.e. 0.25.

In addition, we visualized the importance of each posi-
tion and nucleotide in a given RNA sequence on its RSR-
ratio prediction using a mutation heatmap and a sequence
logo. For this visualization, we chose one of the rG4 se-
quences that were identified in the human rG4-seq exper-
iment, and predicted the RSR-ratio score of all possible
single-nucleotide mutated sequences. We then calculated
their difference from the original sequence prediction and
visualized the differences in a heatmap. In addition, we used
the integrated gradients (IG) approach to identify key fea-
tures within the given sequence (40). The IG approach at-
tributes a differentiable model’s prediction to features of the
input relative to a neutral baseline and assigns an impor-
tance score to each feature. The method computes the path
integral of the gradients along a straight path between the
input and the baseline. We used an all-0.25 matrix base-
line representing equal probability for each nucleotide in
each position of the sequence. To visualize the preferences
learned by rG4detector by IG we generated a sequence logo
using logomaker (41).

Last, we explored the impact of mutations in the G-tracts
on predicted RSR-ratio scores. For this aim, we defined
the wild type rG4 as GGGNGGGNGGGNGGG. We pre-
dicted an RSR-ratio score for each rG4 variant with a mu-
tation in one of the Gs in the G-tracts to all possible nu-
cleotides. The impact of the mutation was measured as the
difference between the predicted score of the wild-type rG4
and the mutated rG4.

MEME analysis. To evaluate the most common motif
within G3BP1-bound RNAs, we ran Multiple Expecta-
tion maximization for Motif Elicitation analysis (MEME)
online (MEME suite version 5.4.1; https://meme-suite.org/
meme/index.html) by using the parameters: classic motif
discovery mode, distribution of any number of repetition,
search for ten motifs with minimum width of 6nt, and max-
imum width of 20nt.

Experimental materials

Reagents. We used the next stock reagents in this
study, specifically for in vitro experiments: MgCl2 (pow-
der; Mallinckrodt CHEMICALS, 6066-04), 100% glycerol
(Sigma-Aldrich, G5516), RNase/DNase-free UPW (Invit-
rogen, 10977-035), 1 M Tris–HCl pH 8.0 (Invitrogen, 15568-
025), 1 M Tris–HCl pH 7.5 (Invitrogen, 15567-027), 0.5 M
EDTA (Invitrogen, AM9261), 1 M DTT (Sigma-Aldrich,
43816), TBE ×10 (Fisher BioReagents, BP13334). Stock
solutions of 3 M KCl (powder; MERCKGaA, 104936) or
3 M LiCl (powder; J.T. Baker, 2370-01), were prepared by
dissolving the powders in UPW and treated with DEPC
(Sigma-Aldrich, D5758) before use.

RNA oligos. We chemically synthesized 6FAM-labeled
RNA sequences (Supplementary data S1, Table S3) from
Sigma-Aldrich/MERCK or from Integrated DNA Tech-
nologies (IDT). We dissolved the oligos in RNase-free TEx1
buffer (10 mM Tris–HCl pH 7.5 and 1 mM EDTA) for
stock concentration of 100 uM and stored them at –80◦C
in aliquotes to avoid from thaw-freeze cycles.

Cell culture. We cultured G3BP1-GFP expressing U2OS
cells (Human Bone Osteosarcoma Epithelial Cells) in
growth media consisting of Dulbecco’s modified Eagle’s
medium (DMEM, Biological Industries, 01-050-1A) sup-
plemented with 1% penicillin-streptomycin (Sartorius, 03-
031-1B), and 10% fetal bovine serum (FBS, Sartorius, 04-
007-1A), at 37◦C, with 5% CO2.

Experimental methods

RNA G4 preparation. We diluted the FAM-labeled RNAs
to desired concentration in a TEx1 buffer with or with-
out 150 mM DEPC-treated KCl or 150 mM DEPC-treated
LiCl. Then, using a PCR machine we annealed the diluted
RNAs to form secondary structures by heating to 90◦C for
5 min and then lowering the temperature to 25◦C in 5◦C in-
tervals (from 95◦C to 50◦C and from 30◦C to 25◦C) or in
10◦C intervals (between 50◦C to 30◦C) as follow: 85–70◦C
for 5 min each, 65–50◦C for 15 min each, 40–30◦C for 30
min each and 25◦C for 2 h. After that, we stored the RNAs
at 4◦C.

https://meme-suite.org/meme/index.html
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Circular dichroism (CD) spectroscopy. We annealed
10uM FAM-labeled RNA oligos in TEx1 buffer with or
without 150 mM DEPC-treated KCl or LiCl, as mentioned
above. We performed CD experiments at 25◦C using
Chirascan™-plus ACD spectropolarimeter with a quartz
cuvette with a 1 mm path length. We collected CD spectra
from 320 to 210 nm. The bandwidth was 1 nm, and the
response time was 1s. We baseline-corrected all CD spectra
for the signal by the buffer and represented the average of
3–5 runs.

Thermal difference absorbance spectrum (TDS). We an-
nealed 10 uM FAM-labeled RNA oligos in TEx1 buffer
with or without 150 mM DEPC-treated KCl or LiCl, as
mentioned above. We obtained the TDS spectra from the
difference between the absorbance recorded at high temper-
ature (90◦C) and low temperature (25◦C) under the same
conditions. For technical details of the runs, see the above
CD section.

Electro-mobility shift assays (EMSA). We prepared 20 ul
reaction mixtures, which contained 160 nM 5’ 6FAM-
labeled RNA oligos of both rG4FSs and non-rG4FSs (Sup-
plementary data S1, Table S3), and binding buffer con-
sisting of 10 mM Tris–HCl pH 8.0, 150 mM KCl, 1 mM
EDTA, 2 mM MgCl2, 10% glycerol, 2 mM DTT, 0.1 mg/ml
Ultrapure-BSA (Invitrogen, AM2616) and Ribolock (1:40;
Thermo Scientific, E00381), with or without recombinant
human G3BP1 protein (Prospec, Enz-048). We incubated
the binding reactions at 37◦C for 1 h and then loaded
them onto a 5% native non-denaturing polyacrylamide
(acrylamide:bis-acrylamide 29:1 (30%); Bio-Lab, UN3426)
gel consisting of (for 12.5 ml) 9 ml DEPC-ddW, 1.25 ml TBE
×10, 2.075 ml 30% polyacrylamide, 125 ul 10% ammonium
persulfate (APS; Bio-Rad, 1610700) and 12.5 ul TEMED
(Bio-Rad, 1610801). We performed gel electrophoresis at
100 V for 50 min in TBEx1 buffer on ice and in the dark.
After 50 min, we performed gel scanning using ImageQuant
LAS4000 (GE Healthcare) gel imager at cy2 channel (488
nm). For the EMSA experiments with the oligo r(AGG)5 we
then electro-transferred the RNA-protein complex from the
gel to a nitrocellulose membrane (Whatmann; 10401383)
and used primary anti-G3BP1 antibody (Santa cruz; sc-
365338) to detect the recombinant hG3BP1 within the
lanes.

Staining procedure in fixed cells. For staining of BioTASQ
(produced as described previously (5)), we seeded 50K
G3BP1-GFP expressing U2OS cells per well 24 h prior to
the stress. After the stress induction, we fixed the cells and
permeabilized them with ice-cold 100% methanol (Bio-Lab,
UN1230) for 10 min at RT, and washed them with RNase-
free PBS ×1 (Gibco, 14200-067) once for 5 min. Next, we in-
cubated the cells with 25 uM BioTASQ for 1 h at RT. Then,
we washed the cells with RNase-free PBS ×1 three times for
5 min and blocked by Cas-block reagent (Life Technolo-
gies, 008120) for 10 min at RT, and incubated them with
Streptavidin-TexasRed antibody (1:200; Invitrogen, S872)
for 1 h at RT in the dark, and washed them with RNase-
free PBS ×1 three times for 5 min each, and shortly dried

and mounted them with DAPI (FleuroShield with DAPI;
Sigma-Aldrich, F6057).

For QUMA-1 (Sigma-Aldrich, SCT056), we seeded 20K
G3BP1-GFP expressing U2OS cells per well 24 h prior to
the stress. After the stress induction, we fixed the cells with
4% PFA (Alfa Aesar, 43368) for 10 min and washed them
with RNase-free PBS ×1 three times. Then, we incubated
the cells with 2 uM QUMA-1 and Hoechst 33342 (dilution
of 1:8000; Sigma-Aldrich, B2261) for 15 min at 37◦C. We
saved the plate in the dark from this point. Next, we washed
the cells with RNase-free PBSx1 three times 5 min each. We
treated the cells with UPW or DMSO as controls (no stress
conditions). For SG induction, we incubated the cells with
several stressors and conditions as follows: NaAsO2 (400
�M for 30 min, Sigma-Aldrich, 71287), Puromycin (200
ug/ml for 4 h, Invivogen, ANT-PR), MG-132 (100 uM for
1hr, Sigma-Aldrich, C2211), and Thapsigargin (1 uM for
1 h, Sigma-Aldrich, T9033). We acquired the fixed cells (in
the procedures) via a Zeiss LSM800 laser scanning confocal
microscopy system equipped with a Zeiss Axiovert micro-
scope and using a 63× 1.4 NA oil immersion lens.

Live-cell imaging. We seeded 12K-15K G3BP1-GFP ex-
pressing U2OS cells per well 24 or 48 h prior to the exper-
iment in a 96-well plate (Brooks, MGB096-1-2-LG-L). We
incubated the cells with 10 uM cPDS (carboxypyridostatin
trifluoroacetate salt; Sigma-Aldrich, SML1176) for 24 h or
with 1 uM QUMA-1 for 3 h before the experiment. Then,
we replaced the medium with a 150 uM NaAsO2-added
medium and immediately took them to the microscope to
monitor SG formation. We took SG live imaging by a PCO-
Edge sCMOS camera controlled by VisView installed on a
VisiScope Confocal Cell Explorer system (Yokogawa spin-
ning disk scanning unit; CSU-W1) and an inverted Olym-
pus microscope (60× oil objective; excitation wavelength:
GFP: 488 nm). We analyzed SG and cell areas using sur-
face features in Imaris software 9.5.1.

Cell lysis and western-blotting. We seeded 500K stable
G3BP1-GFP expressing U2OS cells in 6-well plates in trip-
licates for the experiment. We incubated the cells with
varying concentrations of cPDS for 24 h or of QUMA-1
for 3 h. In parallel, as a control, we exposed the cells to
400 uM sodium arsenate stress for 30 min without small
rG4-binding molecules immediately before lysis for west-
ern blot (WB) analysis. The cells were lysed in RIPA buffer
supplemented with cOmplete Protease Inhibitor Cocktail
(Roche; 4693116001) and PhosSTOP (Roche; 4906837001),
and incubated for 10 min on ice with vortexing each for
2 min. Then, the samples were cleared by centrifugation
at 14 000 × g for 5 min at 4 ◦C, and the supernatant was
transferred to new Eppendorf tubes. We quantified the pro-
tein concentrations with Protein Assay Dye Reagent (Bio-
Rad; 500-0006), and we resolved the protein at 50 �g of to-
tal protein per well by 10% SDS–PAGE at 100 for 10 min
and at 120 V for the rest time up to 80 min. After gel elec-
trophoresis, we transferred the proteins to nitrocellulose
membranes (Whatmann; 10401383) at 250 mA for 70 min.
We blocked the membranes for 1 h at room temperature
with 3% bovine albumin fraction V (MPBio; 160069) in
PBS containing 0.05% Tween-20 (PBST) and then we in-
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cubated the membranes with primary antibodies for p-
eIF2alpha (Santa Cruz Biotechnologie; sc-101670s), and
Lamin A/C (Santa Cruz Biotechnologies; sc-20681) as con-
trol overnight at 4 ◦C with rocking in antibody solution (5%
albumin, 0.02% sodium azide and five drops of phenol red
in 0.05% PBST). Following primary antibody incubation,
we washed the membranes three times for 5 min at room
temperature with 0.05% PBST and they were incubated
for 1h at room temperature with horseradish peroxidase-
conjugated species-specific secondary antibodies. Then, we
washed them three times for 5 min each in 0.05% PBST at
room temperature and we visualized them using EZ-ECL
Chemiluminescence (Biological Industries, 20500-120) by
ImageQuant LAS 4000 (GE Healthcare Life Sciences). We
performed densitometric analysis using FiJi software (NIH)
and representative bands are presented. For WB analysis
after EMSA we used an antibody against human G3BP1
(Santa Cruz Biotechnologies; sc-365338).

Statistical analysis. We performed statistics with Prism
software 9.3.1 or with R (version 4.0.5) (42) apart from
the hypergeometric tests of the intersections between SG-
transcriptome and rG4 datasets, which were calculated on-
line: http://nemates.org/MA/progs/overlap stats.html. We
used geom density function of the ggplot2 package in R to
analyze overlapping binned data of the SG-transcriptome
and rG4 datasets. We used unpaired t-test or Mann-
Whithney test for pairwise comparisons. We used Pearson’s
Chi-squared test with Yates’ continuity correction for the
pairwise comparison of rG4-positive sequences fraction un-
der stress and basal conditions. We analyzed multiple-group
comparisons using one-way ANOVA with Bonferroni cor-
rection. For analysis of live-imaging experiments, we used
repeated-measures two-way ANOVA test. We tested the
normal distribution of the data (by histograms) and used
the Levene test to compare variances between the treat-
ments within the data. Statistical tests were considered sig-
nificant if P-values or FDR corrected q-values ≤0.05. We
show data as means ± SEM or SD or plotted using box-
plots as noted in the text.

Figures’ design. We placed and organized all the figures
by using Illustrator software. We generated all the plots by
Prism software. We generated Figure 1A and Figure 6C by
BioRender.com. The all raw gels for EMSA and WB ex-
periments are found at Zenodo website (https://zenodo.org/
record/7225796#.Y1AX7nZByUk).

RESULTS

rG4detector improves rG4 stability prediction compared to
existing methods

We first trained and validated rG4detector (schematic archi-
tecture in Figure 1A) on the rG4-seq dataset from human
transcripts (4) and compared rG4detector performance on
a held-out subset of the data to G4Hunter (28), G4NN (8)
and cGcC-scoring (27). To evaluate all methods in RSR-
ratio prediction, we calculated the Pearson correlation co-
efficient of predicted and measured RSR-ratio scores on the
held-out data. The Pearson correlation is an appropriate

metric for skewed distributions, such as RSR-ratio scores
where most values are centered around 0.5 (as this met-
ric is based on capturing the variance in the data; Sup-
plementary Figure S1B). The performance of rG4detector
(r = 0.81; Supplementary Figure S2A) was superior to
G4Hunter (r = 0.45), G4NN (r = 0.37) and cGcC-scoring
(r = 0.51) (Figure 1B). Similarly, improved rG4 prediction
performance was obtained on the mouse (34) and plant
transcriptomes (35), albeit with worse prediction perfor-
mance of all methods compared to the human transcrip-
tome (Supplementary Figure S2B).

rG4detector outperforms existing methods in rG4 detection

Next, we assessed the ability of rG4detector to identify
rG4FSs in discrete transcripts. To this end, we retrieved all
transcripts from the held-out test set (chromosome 1) con-
taining an rG4 detected by rG4-seq. For each transcript,
we calculated the Gaussian-weighted average of predictions
for each nucleic-acid position in an 80nt-long window. The
precision–recall curves confirm that the prediction perfor-
mance of rG4detector is superior to G4Hunter, G4NN, and
cGcC-scoring with an improvement in precision consistent
over almost all recall values (area under the precision–recall
curve (AUPR) of 0.42 versus 0.38, 0.28, and 0.19, respec-
tively; Figure 1C).

We further used the area under the receiver oper-
ating characteristic curve (AUROC) metric to evaluate
rG4detector classification performance in a binary rG4
classification task based on the G4RNA dataset (43). We
padded all sequences with their genomic flanks, and pre-
dicted all overlapping windows of 80nt. we assigned the
maximum value to be the final sequence prediction. We
found rG4detector AUROC to be better (0.75) than existing
methods (0.65, 0.63, and 0.73 for G4Hunter, G4NN, and
cGcC-scoring, respectively; Figure 1D).

G4-folding principles learned by rG4detector

To validate that rG4detector learned meaningful bio-
chemical principles, we defined canonical rG4FSs as
GGGN1–12GGGN1–12GGGN1–12GGG (N for any inter-
vening nucleotide with loop lengths between 1–12nt). We
found that increased loop lengths decrease the predicted
RSR-ratio score (Figure 2A). The most substantial decrease
was observed for the third loop, at the 3’ end, while the least
substantial effect was observed for the first loop, at the 5’
end. This inverse association between loop length and rG4
stability is reassuring since it was previously observed in a
low-throughput assay (36). In addition, we predicted mul-
tiple combinations of loop lengths as was previously ex-
perimentally tested in (36). rG4detector predicted the se-
quence’s stability with high Spearman correlation of 0.93
(Figure 2B).

We next examined the effect of G-tract length on rG4
stability. By varying the G-tract length between 1 and 4
over multiple loop lengths, we observed an increase in rG4
stability predictions with G4-tract length (Supplementary
Figure S3A). This observation is in agreement with previ-
ous studies, which confirmed that rG4s with three or four

http://nemates.org/MA/progs/overlap_stats.html
https://zenodo.org/record/7225796#.Y1AX7nZByUk
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Figure 1. rG4detector accurately predicts rG4s in various datasets and tasks. (A) A diagram depicting rG4detector’s convolutional neural network archi-
tecture. The RNA sequence is first one-hot encoded and then processed by a one-dimensional multi-convolutional layer. The outputs of each kernel go
through a max-pooling layer. All max-pooling outputs are concatenated and passed into a fully connected layer followed by a single output neuron, which
outputs the network RSR-ratio prediction. (B) Prediction performance gauged by Pearson correlation for rG4 propensity by rG4detector and G4Hunter
(28), G4NN (8), and cGcC-scoring (27) on a human rG4 dataset (4). (C) Precision–recall curves of rG4detector, G4Hunter, G4NN and cGcC-scoring for
rG4 detection on human transcripts. Area under the curve (AUC) value is indicated. (D) Receiver operating characteristic (ROC) curves of rG4detector,
G4Hunter, G4NN, and cGcC-scoring in binary classification over the G4RNA dataset.

G-quartets are more stable than those with only two G-
quartets (44,45). For longer G-tract length, we observed
variable trends in rG4 stability predictions depending on the
loop length. Shorter loops led to a decrease in rG4 stability
prediction with G-tract length, while longer loops led to an
increase. We speculate that this observation is due to the fact
that increasing the G-tracts length in sequences with longer
loops increases the number of potential combinations of G-
quartets compared to sequences with shorter loops. To con-
clude, rG4detector learned the known rG4 stability depen-
dency on G-tract length up to length 4, and discovered novel
dependencies for longer G-tracts.

Lastly, we used a mutation map and sequence logo to vi-
sualize the key features identified by rG4detector in a given
sequence. The attribution scores indicate that rG4detector
assigns high importance to G-rich sequences (Figure 2C).
According to the model, the relevant guanines reside in con-
tinuous stretches, while cytosines, especially in the loops
within the rG4FSs, are disfavored for rG4 propensity. The
highest attribution scores are assigned to G in the 3’ end of
the sequence hinting on a possible edge effect in the data
(Supplementary Figure S3B).

rG4detector reveals increased enrichment of potential rG4-
containing sequences bound by G3BP1 under stress

To demonstrate the value of rG4detector, we used it to
generate new biological hypotheses. G3BP1, a central pro-
tein in the stress response (46,47), has been recently identi-
fied as an rG4-binding protein (24,25). Therefore, we hy-
pothesized that G3BP1 displays stress-dependent prefer-
ence towards binding of rG4s. We tested this hypothesis on
a G3BP1-bound RNA data from an enhanced crosslink-
ing and immuno-precipitation (eCLIP) study of Markmiller
et al. (48). We discovered a significantly higher percentage
of G-rich sequences under stress conditions relative to basal
(non-stressed) conditions (G%: 36.84 versus 32.81, GG%:
10.49 versus 8.73 and GGG%: 3.33 versus 2.44, respec-
tively; Figure 3A and Supplementary data S1, Tables S4
and S5). Then, for each G3BP1-bound RNA sequence, we
retrieved the sub-sequence with the maximum rG4detector
score over all 80nt-long sub-sequences. We tested if there
is a length effect to rule out that longer sequences were
biased toward higher predictions due to more predictions
per sequence. Indeed, a slightly longer average length of
G3BP1-bound RNAs under basal conditions was observed
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Figure 2. rG4detector identifies key sequence features to predict rG4 propensity. (A) Loop length inversely correlates with rG4detector prediction on
canonical rG4 (GGGNGGGNGGGNGGG) sequences with variable loop lengths. (B) rG4detector prediction correlates with experimentally tested ther-
modynamic stability of rG4s with variable loop lengths. (C) Heatmap of rG4detector sensitivity to mutations and the corresponding attribution logo,
which visualizes nucleotide importance to the model’s prediction for the sequence r(AGG)5.

(Figure 3B and Supplementary data S1, Tables S4 and S5).
However, the predicted propensity of RNAs to form rG4s
was higher under stress compared to basal conditions (Fig-
ure 3C and Supplementary data S1, Table S6). Notably,
rG4detector identifies a unique behavior (as average rG4
prediction scores) for G3BP1-bound RNAs under stress
versus basal conditions, which was overlooked by existing
prediction methods (Figure 3D and Supplementary data
S1, Table S7). Altogether, rG4detector uncovered that un-
der stress G3BP1 binds RNAs that are more likely to form
rG4 structures.

To further understand the difference in rG4FS preva-
lence between the two conditions, we binned G3BP1-bound
RNAs into three categories of ‘low’ (0–1), ‘moderate’ (1–
2) and ‘high’ (2+) predicted RSR-ratio scores. Intriguingly,
‘moderate’ and ‘high’ bins are more prevalent under stress
conditions compared to basal conditions (relative differ-
ence of 1.33 and 1.95 folds, respectively), supporting that
G3BP1-bound RNAs under stress are more likely to form
rG4 structures (Figure 3E and Supplementary data S1,
Table S6). Finally, we classified G3BP1-bound RNAs as
rG4FSs and non-rG4FSs based on a calculated threshold
(threshold of 1.56; Supplementary Figure S4). We revealed
a higher percentage of rG4FSs under stress conditions com-
pared to basal conditions (15% compared to 9%; Figure 3F
and Supplementary data S1, Table S6). Consistently, similar
analyses on and comparisons between basal and stress con-

ditions with non-overlapping G3BP1-bound RNAs, which
were uniquely found in either stress or basal conditions, pro-
vided similar results (Supplementary Figure S5 and Supple-
mentary data S1, Tables S8–S11). Together, rG4detector re-
vealed a broad and stress-sensitive binding of rG4FSs by
G3BP1.

G3BP1 binds to its endogenous binding motif r(AGG)5 in a
competitive manner

By using MEME analysis (49) to study G3BP1-bound
RNAs (48), we found that r(AGG)5 is the most prob-
able motif for the sequences (with only slight dif-
ferences between the conditions: AGGAGGAGG AG-
GAGGTGGGG, E-value = 1.3e–536 (basal) or GGAG-
GAGGAGGTGGATGAGG, E-value = 8.4e–131 (stress);
Figure 4A). This observation is in line with a recent re-
port (25), but it also implies that r(AGG)5 RNA is prone to
fold into an rG4 structure, which was not directly tested so
far.

We demonstrated that r(AGG)5 RNA is folding into a
parallel rG4 structure in vitro by a CD assay and by measur-
ing TDS profiles (Supplementary Figure S6) of the sequence
with KCl or LiCl buffer or without addition of cations.
Next, via an EMSA, we demonstrated in vitro that a hu-
man G3BP1 recombinant protein (hG3BP1) is able to bind
to the rG4-r(AGG)5 but negligibly binds to its ‘mutated’
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version (r(ACG)5), which does not form an rG4 structure
(Figure 4B and Supplementary Figures S7A and S8). To
substantiate the evidence that hG3BP1 binds rG4s, we val-
idated through EMSA experiments that hG3BP1 binds to
additional hG3BP1-bound rG4FSs, which were previously
reported by others: rOG0, rNRAS, and rBCL2 (24,25)
(Figure 4C and Supplementary Figures S7B–D). Therefore,
hG3BP1 is an rG4-binding protein with preference for bind-
ing rG4-(AGG)5 motifs.

The rG4-binding molecules QUMA-1 (50) and car-
boxy pyridostatin (cPDS) (51) are competitive binders of
rG4 sequences (52). We sought to test if QUMA-1 or
cPDS can compete with the binding of G3BP1 to rG4-
r(AGG)5. We performed EMSA experiments of r(AGG)5
and hG3BP1 without or with QUMA-1 or cPDS. The bind-
ing of QUMA1 or cPDS to the rG4 inhibited hG3BP1
binding to rG4-(AGG)5 (Figure 4B, D–E). The competition
by cPDS delays the rG4-r(AGG)5 electrophoresis although
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the migration of hG3BP1 was not affected (Figure 4B and
Supplementary Figure S8). To substantiate the evidence for
cPDS-dependent competition, we further performed titra-
tions with different cPDS concentrations, which resulted in
progresive reduction in the amount of hG3BP1-bound rG4-
(AGG)5 (Figure 4E). The effect of cPDS on the hG3BP1-
rG4 complex abundance is consistent with data about rG4-
OG0 (Supplementary Figure S9) and supports the interpre-
tation that cPDS competes for available rG4-(AGG)5. The
different rG4 sequestration patterns observed can be ex-
plained by different molecular size of cPDS (706.71 g/mol)
and QUMA-1 (628.17 g/mol) or potential aggregation of
cPDS with rG4s that may inhibited its migration through
the elephoetic field.

To exclude the possibility that QUMA-1 or cPDS interact
with hG3BP1 directly, or affect the protein’s electrophore-
sis, we performed additional EMSA experiments. Incubat-
ing QUMA-1 or cPDS with rG4-r(AGG)5 alone, without
hG3BP1, resulted in a band mobility similar to the one
which includes hG3BP1 (Figure 4B, Supplementary Fig-
ure S8). Furthermore, the hG3BP1 band migrates to the
same level through the gel suggesting that it is not retarded
by biding to QUMA-1 or to cPDS (Supplementary Figure
S8). These results demonstrate that cPDS and QUMA-1
bind to the rG4 independently of hG3BP1 and do not in-
fluence hG3BP1’s gel mobility. We conclude that small rG4-
binding molecules sequester rG4s. By doing so, they affect
rG4 availability and binding to G3BP1 and perhaps other
rG4BPs.

SGs are colocalized with endogenous rG4s that regulate their
formation

Because of the impact of rG4 ligands on G3BP1 in vitro,
we hypothesized that small rG4-binding molecules might
impact G3BP1-dependent SG formation. To better un-
derstand rG4 roles in SG biology, we visualized endoge-
nous rG4s in U2OS cells using the biotinylated small rG4-
binding molecule BioTASQ (5,53). Under basal (no-stress)
conditions, the BioTASQ and G3BP1-GFP signals were
dispersed. However, BioTASQ fluorescence was enhanced
within cytoplasmic condensation compared to surrounding
cytoplasmic signal under a variety of stress conditions (Fig-
ure 5A and Supplementary Figure S10A). We verified that
these cytoplasmic condensates are genuine SGs by the ex-
pression of a G3BP1-GFP reporter that enabled straight-
forward rG4/G3BP1 colocalization. This observation was
confirmed by similar experiments performed with QUMA-
1 (Supplementary Figure S10B). Hence, endogenous rG4s
are enriched in SGs regardless of the stress type.

To evaluate the prevalence of rG4-containing transcripts
in the SG-transcriptome, we next compared reported rG4-
containing transcripts (4,5) and SG-associated transcripts
(54). We found that rG4-containing transcripts from both
G4RP-seq (5) and rG4-seq (4) datasets are significantly en-
riched in SGs, compared to transcripts that were not asso-
ciated with SGs (460 or 546 mRNAs, respectively, among
1693 SG transcripts, Figure 5B). Although the enrichment
over the rG4-seq dataset in the SG transcriptome is statisti-
cally significant, we also found that the enrichment is length
dependent. The observed bias for longer transcript length

(>1400nt) is reasonable because SG transcriptome is asso-
ciated with longer transcripts (54). Furthermore, the degree
of association varies with transcript length, but the maxi-
mum is not at the longest transcripts suggesting that other,
unknown, parameters come into play (Figure 5C). Rank-
ing of SG-associated transcripts (54) according to their re-
ported RTS score (4), indicated higher rG4 potential rela-
tive to transcripts that were not associated with SGs (Figure
5D). Finally, to investigate endogenous rG4 roles in SG for-
mation, we incubated U2OS cells with small rG4-binding
molecules, cPDS (51) or QUMA-1 (50). Live-cell imaging
revealed that SG formation was hindered by the presence
of small rG4-binding molecules (in concentrations of 10 uM
for 24 h or 1 uM for 3 h, respectively. Figure 6A, B). As indi-
cated by our in vitro experiments (Figure 4C, D), this prob-
ably reflects sequestration of rG4s from SGs. Importantly,
none of the small rG4-binding molecules we used induced
phosphorylation of eIF2 alpha, indicating that they do not
affect the cellular stress response at the concentrations we
used (Supplementary Figure S11). Altogether, we conclude
that rG4s are enriched in SGs and regulate SG formation
(Figure 6C).

DISCUSSION

Over the past years, a series of computational methods have
been developed to assess the transcriptome-wide prevalence
of rG4FSs (7). A significant leap has been recently taken
with the introduction of machine-learning-based models,
but this emerging trend needed to be strengthened upon
training on NGS-based high-throughput datasets, which
are now available.

Here, we developed a new machine-learning model
named rG4detector, which is based on a convolutional neu-
ral network and is trained on rG4-seq data. rG4detector
displays improved performance relative to existing rG4
predictors and can predict rG4 stability. In addition, as
rG4detector model input is the RNA sequence one-hot-
encoded matrix, no feature engineering is required, and as
a result biased assumptions on rG4 formation factors are
minimized.

Although rG4detector outperforms existing methods in
predicting RTS measurements in three different species, the
correlation of rG4detector predictions on the mouse and
plant transcriptomes were substantially lower than in the
human transcriptome (Figure 1B and Supplementary Fig-
ure S2). We assume that this is due to the use of differ-
ent calculations for RTS experimental scores. Extracting the
RSR-ratio scores from the raw data of the mouse and plant
experiments will provide a more accurate comparison be-
tween rG4detector predictions and the RTS measurements
of these different datasets.

However, rG4detector is not bias-free. A primary exam-
ple is the higher sensitivity for positions near the 3’ end
of rG4FSs compared to the 5’ end, which is likely a re-
sult of the RTS sites that occur at the 3’ end of the se-
quences (due to the processivity of the enzyme). Conse-
quently, RSR-ratio predictions are biased toward the 3’ end.
This issue may be addressed by training rG4detector on
a combination of rG4-seq with newer datasets, which are
produced by alternative NGS-based approaches, such as
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Figure 5. Enrichment of endogenous rG4s in stress granules. (A) Confocal micrographs of bioTASQ-detected rG4 enrichment in stress granules of U2OS
cells under a variety of stressors. rG4 (Cy3, red), SGs (G3BP1-GFP, green), nuclei (DAPI, blue). ×63 lens. Scale bar: 10 um. Inset scale bar: 2 um.
Intensity profiles for colocalization analysis between SGs (GFP; green) and rG4s (BioTASQ; red) were quantified for representative granule(s) in each of
the stress conditions using the FiJi software. (B) Venn diagrams of rG4-containing transcripts (Kwok et al. 2016; 2664 transcripts (4) or Yang et al. 2018;
2060 transcripts (5)), intersected with 1693 SG-enriched transcripts (Khong et al. 2017 (54)). 460 or 546 transcripts are shared significantly more than is
expected at random (hypergeometric test, given 12 300, 11 944 and 15 340 sequenced RNAs, respectively). (C) Bar plot of overlap between SG-enriched and
rG4-containing transcripts based on rG4-seq data in discrete transcript length bins. Overlapping SG-enriched transcripts with rG4-containing transcripts
(red), rG4-containing transcripts, which are not enriched in SG (orange), and SG transcripts, which do not contain rG4s (blue). We removed less than 0.1%
of the data to improve figure clarity. (D) The distribution of reverse transcriptase stalling (RTS) values (measured from rG4-seq data) of stress granule-
associated transcripts (blue), or transcripts that are not associated with stress granules (pink), normalized using kernel density estimation statistics in R.
Data for analysis in (C, D) from Khong et al. 2017 (54) and Kwok et al. 2016 (4).
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Figure 6. rG4 availability regulates stress granule formation. Live imaging and quantification of SG formation by assessing G3BP1-GFP in U2OS cells
incubated with (A) 1 uM QUMA-1 for 3 h or (B) 10 uM cPDS for 24 h prior to stress induction (150 uM of sodium arsenate). SG area/cell area normalized
to DMSO treatment. Four sites per well, 3–4 wells per condition. *** P < 0.001, **** P < 0.0001, two-way ANOVA repeated measure. (C) A model for
the regulatory role of rG4s in SG formation. rG4-G3BP1 interactions promote SG formation, while limited rG4 availability diminishes SG condensation.

DMS-seq over the human transcriptome (10) that would di-
minish the 3’-end biases. In addition, training rG4detector
on upcoming high-throughput datasets, such as rG4-seq
2.0 (55), can improve prediction performance. Moreover,
rG4detector paves the way to future deep-learning mod-
els for predicting complex types of RNA structures, includ-
ing intermolecular and DNA/RNA hybrid G4s, which cur-
rently remain unexplored.

By applying rG4detector to eCLIP data of G3BP1-bound
RNAs under stress versus basal conditions, which demon-
strated a dynamic emergence of sequences bound to G3BP1
between the conditions (48), we unexpectedly found that
G3BP1-bound RNAs contain more potential rG4s under
stress compared to basal conditions. This suggests that
under stress G3BP1 binds RNAs that are more likely to
form rG4 structures. Nevertheless, MEME analysis found
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a highly similar binding motif of G3BP1, r(AGG)5, under
both basal and stress conditions. We reason that the dif-
ferences in G3BP1 binding preferences are too subtle for
MEME to detect and thus are not reflected in the most
probable binding motif. From a molecular and biochemical
perspective, it is likely that the linear consensus sequence re-
mains similar, but more RNAs are prone to form rG4 struc-
tures under stress compared to a basal condition as recently
observed by a preprint from the Ivanov lab (10).

We confirmed rG4-G3BP1 interaction in vitro, including
with its endogenous binding motif r(AGG)5, demonstrating
that endogenous rG4s are enriched in SGs and that RBP-
rG4 interactions are necessary for SG formation. Our re-
sults along with others’ (10) contribute to the emerging fo-
cus on rG4 and stress biology. rG4s might potentially pro-
mote SG formation via anchoring RBPs and through inter-
and intra-molecular RNA–RNA interactions (56–60). In
this context, past studies suggested that G3BP1 displays
preference to unfolded double-stranded RNAs (61,62), but
our results and others’ (25) show that G3BP1 elicits high
affinity for rG4 motifs. A way to reconcile these conclusions
was proposed recently by suggesting that unstructured and
structured RNAs serve different functions in condensations
(63).

The G3BP1-binding motif r(AGG)5 is not a common
and conventional sequence for forming rG4s (4) suggesting
that there is room for additional structural and biochemical
studies of non-canonical rG4s. As rG4s are also known to
be involved with regulation of paraspeckles (64), research
about rG4s in biomolecular condensates may be an emerg-
ing field of interest. Finally, rG4-prediction methods, such
as our novel rG4detector, can pave the way to robust un-
biased research about rG4 regulation and further advance
this field.
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