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ABSTRACT

Profiling gametes of an individual enables the con-
struction of personalised haplotypes and meiotic
crossover landscapes, now achievable at larger scale
than ever through the availability of high-throughput
single-cell sequencing technologies. However, high-
throughput single-gamete data commonly have low
depth of coverage per gamete, which challenges
existing gamete-based haplotype phasing methods.
In addition, haplotyping a large number of single
gametes from high-throughput single-cell DNA se-
quencing data and constructing meiotic crossover
profiles using existing methods requires intensive
processing. Here, we introduce efficient software
tools for the essential tasks of generating person-
alised haplotypes and calling crossovers in gametes
from single-gamete DNA sequencing data (sgco-
caller), and constructing, visualising, and compar-
ing individualised crossover landscapes from sin-
gle gametes (comapr). With additional data pre-
possessing, the tools can also be applied to bulk-
sequenced samples. We demonstrate that sgcocaller
is able to generate impeccable phasing results for
high-coverage datasets, on which it is more accu-
rate and stable than existing methods, and also per-
forms well on low-coverage single-gamete sequenc-
ing datasets for which current methods fail. Our tools
achieve highly accurate results with user-friendly in-
stallation, comprehensive documentation, efficient
computation times and minimal memory usage.

INTRODUCTION

Meiosis is a process required during sexual reproduction
that generates gametes––egg or sperm cells––that contain
half of the chromosomes of the parent cell (1). Chromo-
some segregation and meiotic crossovers create abundant
genetic diversity in the offspring. Meiotic crossovers are also
required for accurate chromosome segregation (1), and re-
duced crossover rates are linked to increased risk for tri-
somy 21 (2,3) and infertility (4,5). Past studies have shown
that meiotic crossover rates and distributions vary greatly
among species, sexes and even individuals (6–11). Variation
in genetic factors, such as PRDM9, changes the distribu-
tion of crossover hotspots in human and mouse (6,8,12,13).
Crossover-regulating genes also limit overall crossover rates
(14–16). Populations of different demographic backgrounds
show differences in recombination landscapes, for example
hotspot locations differ in African-American genetic maps
compared with those from Europeans and West Africans
(17,18). It has also been shown that meiotic crossovers vary
among sexes and crossover hotspots can be sex-specific
(7,10,19).

Single-cell DNA sequencing of gametes collected from
an individual can be used to construct personalised mei-
otic crossover distributions (9,11). The scalability of mod-
ern single-cell assays, especially droplet-based platforms,
has made it possible to profile thousands of sperm cells
per individual in one experiment (9). Assaying gametes
from females is substantially more challenging at scale, but
nevertheless technological developments will make large-
scale single-gamete sequencing more common across sexes
and organisms. The standard pre-processing pipeline of
a single-cell DNA sequencing dataset generates a BAM
(BinaryAlignment/Map) file that contains the mapped and
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cell-barcoded DNA reads from all single cells. Haplotyp-
ing these single-cell genomes with existing tools requires
the steps of demultiplexing the single-cell reads according
to their cell barcodes into thousands of intermediate files
before applying haplotyping methods (20). While process-
ing can be parallelised across cells, there are many opportu-
nities to improve upon the use of methods developed for
bulk DNA-seq data when analysing single-cell DNA-seq
data by avoiding multiple reading and writing of millions
of sequence reads. Even more importantly, there are sub-
stantial opportunities to improve on the accuracy of exist-
ing methods for haplotype reconstruction and genetic map
construction from single-gamete data. Single-gamete DNA
sequencing data usually have low depth of coverage across
the genome per gamete, especially when generated using
high-throughput droplet-based single-cell sequencing pro-
tocols. However with a group of gametes sequenced, the sin-
gle nucleotide polymorphism (SNP) linkage in the gametes
offers enough information for constructing chromosome-
level phased haplotypes of the individual.

Therefore, we here introduce sgcocaller, an efficient
command-line toolkit to directly process the large single-
cell DNA-sequencing alignment files produced by the cur-
rent standard pre-processing pipelines for personalised hap-
lotype construction and single-gamete crossover identifi-
cation. sgcocaller is also applicable to individual gametes
sequenced by bulk DNA sequencing methods with mini-
mal dataset pre-processing. We also introduce an associated
Bioconductor/R package, comapr, for the construction, vi-
sualisation, and statistical analysis of crossover landscapes.
Working in the Bioconductor ecosystem enables comapr to
integrate seamlessly with other commonly used packages
specialised in analysing biological datasets. Our new tools
offer substantial improvements in accuracy of haplotype re-
construction from single-gamete sequencing data as well as
greatly enhanced computational efficiency. With these tools,
an easy-to-apply and end-to-end workflow for personalised
haplotype assembly and comparative crossover map analy-
sis has been made possible.

MATERIALS AND METHODS

Overview of sgcocaller and comapr

We have implemented a toolset for processing large-scale
single-cell DNA sequence data from gametes with modules
to construct the personalised haplotypes of the individual
and to call crossovers for individual gametes. The toolset
consists of two components, sgcocaller and comapr (see
Data Availability), for complementary tasks. These pack-
ages have been implemented using appropriate program-
ming languages (Nim and R) and released in multiple re-
lease formats to suit the expected use-case scenarios (Fig-
ure 1).

sgcocaller: single-gamete crossover caller. To suit the re-
quirements of processing large alignment files contain-
ing DNA sequence read data for hundreds or thousands
of individual gametes, sgcocaller has been designed as
a command-line tool (CLT) implemented using the pro-
gramming language Nim (〈0:italic 〉https://nim-lang.org/
〈/0:italic〉). The software imports the hts-nim library (22)

for fast processing of large DNA alignment files and vari-
ant calling files. It also imports the Rmath library (in pro-
gramming language C from the R-project (R Core Team,
2021)) to use the well-defined distribution functions. To in-
terface with the C-based library, a wrapper package (in
Nim) was created and implemented as the distributions
package that is openly accessible (see Data Availability). In
crossover-calling scenarios with known phased haplotypes
such as F1 hybrid samples generated by crossing known
reference strains of species, and cases in which the haplo-
types of donors are provided in an input VCF file, sgco-
caller xo––the crossover calling module––can be applied
directly. It requires three input files to call crossovers: the
mapped BAM file with cell-barcoded DNA reads from all
gametes, the VCF file of phased heterozygous SNP (het-
SNP) markers and the list of cell barcodes (Figure 1A).
When the phased haplotype information is not available
from external sources, sgcocaller also offers a phasing mod-
ule, sgcocaller phase, that is based on the SNP linkage data
inherent in read data from the individual gametes to pro-
duce the personalised whole-chromosome haplotypes. To
call crossovers using outputs of sgcocaller phase, sgcocaller
sxo is recommended as it uses the intermediate files gen-
erated by sgcocaller phase including the phased haplotypes
and the allele specific read count matrices as inputs, which
avoids double handling of BAM/VCF files (Figure 1B).
Our tool is engineered to operate directly on the output of
common single-cell data processing pipelines such as Cell-
Ranger, STARSolo (23) and similar. With minimal pre-
processing, sgcocaller can also work with bulk-sequencing
samples as demonstrated in the application example with
the mouse single-sperm dataset (see Application of sgco-
caller and comapr to public datasets).

comapr: crossover analysis for construction of genetic dis-
tance maps in R. The second software component,
comapr, serves as a post-processing tool that includes func-
tions for finding crossover positions, quantifying crossover
rates across groups, and conducting comparative analyses
after the sequences of haplotypes are inferred by sgcocaller
xo (or sgcocaller sxo) for each chromosome in gametes. It
is implemented as an open-source Bioconductor/R pack-
age, which offers easy integration with other packages in
Bioconductor for analysis of biological data and statistical
testing. comapr includes functions to directly parse output
files generated by sgcocaller xo or sgcocaller sxo with tun-
able parameters to systematically filter out potential false
positive crossover calls and create structured data objects
to represent the crossover information across all cells (Fig-
ure 1C). comapr provides quality checking functions and
visualisations to understand the features of the underlying
dataset and for choosing sensible filtering thresholds. It en-
ables convenient plotting of summary plots such as num-
ber of crossovers per sample group, converting crossover
rates to genetic distances in units of centiMorgans, and
plotting genetic distances over chromosomes or the whole
genome (see Application of sgcocaller and comapr to public
datasets). comapr integrates with the genomic visualisation
package Gviz (24) and easily generates alternative allele fre-
quency plots with crossover intervals highlighted or with ge-
nomic feature tracks overlaid on top of identified crossover

https://nim-lang.org/
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Figure 1. Overview of sgcocaller and comapr workflow including file and data flows of sgcocaller and comapr, as well as example plots generated by
comapr. (A) sgcocaller takes the aligned DNA reads from all gametes, the list of hetSNPs (phased or unphased) and the cell barcode list and produces the
single-gamete haplotype sequence in sparse matrix. (B) The diagram shows the main function of sgcocaller which is to resolve single gametes’ haplotypes
from DNA reads using phased hetSNPs obtained from external sources (left) or from applying sgcocaller phase (right) by the two demonstrated workflows.
(C) Output files from sgcocaller can be further processed and analysed by comapr, which identifies the crossover locations and filters false crossovers. It
adopts the RangedSummarizedExperiment as the main data structure to enable seamless integration with existing Bioconductor packages. (D) Alternative
allele frequencies plot for binned windows with crossover regions highlighted (vertical bar) from one selected gamete cell. (E) The mean crossovers per
chromosome with error bars using crossovers called from the mouse sperm cells with the sgcocaller-comapr workflow. (both plots used the mouse sperm
dataset (21)).
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tracks (Figure 1D, E). To facilitate easy statistical signifi-
cance testing for comparisons of crossover rates in gamete
groups, such as gametes collected from individuals with dif-
ferent genetic backgrounds or from different experimental
groups, comapr implements two re-sampling based meth-
ods, bootstrapping and permutation testing.

sgcocaller phase and sgcocaller swphase

Detecting crossovers in the gametes’ genomes requires the
haplotypes of the individual’s genome. When the individ-
ual’s haplotypes are not available from other sources, sgco-
caller offers a module sgcocaller phase that is able to pro-
duce the phased hetSNPs from unphased hetSNPs using the
available single-gamete data (Figure 1A). sgcocaller phase
uses SNP markers’ co-appearance information across all
gametes to generate the chromosome-scale haplotype of the
individual from single-gamete data, an idea that has also
been applied in a previous study (25) (Figure 2A). Cells in
the context of this manuscript are haploid gametes unless
otherwise specified.

To increase the algorithm’s efficiency and fully utilise
the known biological mechanisms of meiosis and meiotic
crossovers, when phasing each chromosome the phasing al-
gorithm in sgcocaller phase first finds a template cell (a cell
putatively has not inherited crossovers with respect to the
chromosome) and uses the cell’s genotype sequence along
the chromosome as the template haplotype for the chromo-
some (Figure 2A; see Supplementary Methods). With re-
spect to each chromosome, genotype sequences of paired
cells are compared to find a pair of cells with the same geno-
type sequences. Such cells are candidates for template cells
(see Supplementary Methods). Our approach next fills in
the missing SNPs in the template haplotype using SNP link-
age information from other gametes to increase the com-
pleteness of the phased haplotypes. The inference of miss-
ing SNPs is based on the fact that meiotic crossovers are low
frequency events across chromosomes and crossover posi-
tions are sparse. The SNP linkages in small chromosome
regions across all haploid gametes are therefore reliable for
reconstructing the donor’s haplotypes (see Supplementary
Methods).

To avoid relying on finding ideal template cells, which
may not exist for certain gamete populations, for generat-
ing corrected phased haplotypes, we have included a switch
error correction module sgcocaller swphase. When an ideal
template cell is not used for phasing in the previous step,
the chosen template cell may have crossovers leading to
switching errors in the inferred haplotype. swphase produces
switch scores (inspired by the block splitting function in
HapCUT2 (26)) for a selected list of SNPs with a higher
risk of having switch errors and identifies the switch posi-
tions to generate the corrected haplotype (Figure 2B; see
Supplementary Methods).

The two modules (phase and swphase) can be applied in
one step by calling autophase which runs phase and swphase
subsequently. In application scenarios where ideal template
cells are expected, users can choose to run phase only and
save computational time. sgcocaller phase also generates
auxiliary files for conveniently plotting diagnostic plots that
help to inspect the quality of the inferred haplotypes and

check for switch errors (Figure 2C). Since crossovers are
low frequency events at each site across the gametes, switch
errors in the inferred haplotypes can be identified by in-
specting the diagnostic plot. When the plotted genotype se-
quences of all cells show existence of crossovers at the same
position, it indicates a ‘crossover’ or switch error has oc-
curred in the inferred haplotype (Figure 2C, D).

sgcocaller xo and sgcocaller sxo

The crossover calling module sgcocaller xo infers the hap-
lotype states in the haploid genomes of gametes. Two hap-
lotypes (represented by the list of red or blue alleles on
each chromosome in Figure 1B) can be found in the diploid
genomes of individuals and the gametes from the indi-
vidual inherit a combination of the two haplotypes (Fig-
ure 1B). Gametes have haploid genomes, therefore theoret-
ically there is only one type of allele that can be observed at
each SNP position in each gamete. However, due to techni-
cal noise such as mapping artefacts, there can be a substan-
tial number of SNP sites with two types of alleles found but
with biased ratio towards the true allele type in the genome.
To suppress the potential noise in the dataset, sgcocaller xo
implements a two-state hidden Markov model (HMM) and
adopts binomial distributions for modelling the emission
probabilities of the observed allele read counts (Figure 2E;
see Supplementary Methods).

With this HMM, the commonly used dynamic program-
ming method, the Viterbi algorithm (27), is implemented
in sgcocaller xo to solve for the most probable hidden state
sequence for each chromosome in each cell. Since the two
hidden states in the HMM represent the haplotype origins
of DNA segments (represented by allele types of a list of
SNPs) in the gametes’ genomes, the transition from one
state to another in the hidden state sequence between two
SNP markers corresponds to a crossover detected. As cur-
rently designed, sgcocaller is intended to work on data of
gametes collected from diploid individuals. The sgcocaller
sxo module supplements the crossover calling module sgco-
caller xo. It runs the same core function as sgcocaller xo but
uses the generated outputs (i.e., allele count matrices and
the phased haplotypes) from sgcocaller phase instead of the
original BAM and VCF files, thus eliminating unnecessary
double handling of large DNA sequencing data.

In addition to applying the HMM to the allele counts and
using the Viterbi algorithm for inferring the hidden state se-
quences, we also included calculation of a crossover confi-
dence score, which is the log-likelihood ratio of the Viterbi
state segment. The log-likelihood ratio of a segment is de-
rived by finding the difference between the log-likelihood of
the segment given the inferred state and the log-likelihood
of the segment given the altered state (log-likelihood of the
first path given the data minus the log-likelihood of the sec-
ond path; Figure 2F; see Supplementary Methods).

Scope of sgcocaller

Although sgcocaller has been optimised to work on bar-
coded large-scale single-cell DNA sequencing data with
outputs in formats of sparse matrices, it can also––with sim-
ple preparation––be applied to sequencing reads from one
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Figure 2. sgcocaller phase and sgcocaller swphase generate personalised haplotypes from single-gamete data. (A) Genotype matrix of an example of five
gametes regarding the list of the hetSNPs with the chosen template cell highlighted. Template cell’s genotype sequence is used as the backbone for generating
the inferred personal haplotype. (B) (Top) Cell genotypes along the list of SNPs were plotted and colored by which haplotypes they were matched with
(the inferred template haplotype or its complimentary haplotype). (Bottom) Switch scores were calculated and plotted for SNPs in the inferred haplotype
sequence, which were based on the genotypes of the flanking SNPs across all cells. The switch error position was found as the identified peak in switch
scores (the black line). (C, D) Genotype sequences of ten cells were plotted and colored by whether the SNP’s genotype matching the inferred template
haplotype or its complimentary haplotype for the case when there was a switch error in the inferred haplotype with the error position indicated by the
black vertical line (C), and when there were no switch errors (D). Plots in b,c,d were generated using the apricot gametes dataset (20). (E) Diagram of the
two-state (REF and ALT) hidden Markov model implemented in sgcocaller xo. The two possible alleles at each hetSNP site can be referred as REF or
ALT arbitrarily. Binomial distributions have been adopted for modelling the relationship of observed allele counts and the underlying haplotype states of
hetSNPs. The transition probability between two states (ptrans, the distribution parameters (e.g., 0.1, 0.9) are configurable options when running sgcocaller
xo (see Sgcocaller xo and sgcocaller sxo). (F) Diagram of the Viterbi state segment with the inferred hidden states (output from sgcocaller xo) and the
altered hidden states (artificially generated by reversing the inferred states of the SNPs in the underlying segment). Segments are colored by their states.
Dots represent the SNPs forming the segments.
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cell or bulk DNA sequencing samples for which the cell
barcodes are not available. We released open-access tools
for preparing the single-gamete DNA sequencing datasets
generated using bulk-like protocols (individual sequenc-
ing libraries that generated separate sets of reads for ga-
metes) and provided examples of applying sgcocaller on
such datasets (21,28) (see Application of sgcocaller and
comapr to public datasets).

comapr: implementation

Data structure. The ‘RangedSummarizedExperiment’
class defined in the Bioconductor R package ‘Summarized-
Experiment’ (Morgan et al. 2020) is used as the main data
structure in comapr for storing the SNP interval regions
and the number of called crossovers per cell (Figure 1C).
The data slot ‘rowRanges’ is used for storing the SNP
intervals, whereas the cell-level information is stored in
the ‘colData’ slot. Using ‘RangedSummarizedExperiment’
also enables comapr to conveniently integrate with the
various genomic coordinate plotting functions in the Gviz
package (29).

Resampling-based functions for testing differences in
crossover profiles. To test for differences in the number
of crossovers between any two groups of cells, we have
implemented re-sampling methods in comapr, specifically
permutation and bootstrapping tests (30–32). The two
resampling-based functions in comapr are able to either
calculate empirical P-values (permutation testing) or
bootstrap confidence intervals for the estimate of the group
differences (see Supplementary Methods).

Pre-processing public datasets

Mouse sperm dataset. Raw fastq files of 217 mouse sperm
cells were available from accession GSE125326 in the Gene
Expression Omnibus (21), and fastq files of 194 mouse
sperm cells were downloaded. The downloading process
of the rest 23 cells failed and they were not analysed. We
applied fastp-v0.20.1 (33) on the raw reads for fil-
tering out low quality reads and adapter trimming, be-
fore applying minimap2-2.7 x64-linux (34) for align-
ing the reads to the mouse reference genome mm10. The
mapped reads were further processed by GATK MarkDu-
plicates and GATK AddOrReplaceReadGroup from
the GATK-v4.2 pipeline (35). Read sorting and indexing
were performed using samtools-v1.10 (36,37). A cus-
tomised open-access tool appendCB (see AVAILABILITY
OF DATA AND MATERIALS) was applied to add bar-
code sequences to each sperm’s DNA reads with tag CB us-
ing its SRR sequence. The DNA reads in each sperm sam-
ple were sub-sampled to retain half of the reads and merged
into one barcode-tagged large BAM file that was analysed
in this study as the mouse sperm dataset. The merging and
indexing of BAM files were achieved using samtools-
v1.10 (36).

We followed the main steps described in the original
study for finding heterozygous SNPs in the mouse donor’s
genome (21). We first called variants de novo on the bulk
sperm sample ‘SRR8454653’ (sequenced DNA reads of

pooled multiple sperm) using GATK-HaplotypeCaller.
Only the hetSNPs with mapping quality score larger
than 50, and depth of coverage within the range of 10–80
were kept (MQ > 50 and DP > 10 and DP < 80).
Since the mouse donor was an F1 hybrid (C57BL/6J X
CAST/EiJ), the list of reference hetSNPs was downloaded
(CAST EiJ.mgp.v5.snps.dbSNP142.vcf.gz and
C57BL 6NJ.mgp.v5.snps.dbSNP142.vcf.gz)
from the Mouse Genome Project (38). The called
variants in sample SRR8454653 were further fil-
tered to only keep the positions which were
called as homozygous alternative (GT==1/1) in
CAST EiJ.mgp.v5.snps.dbSNP142.vcf.gz
and not overlapping with variants in
C57BL 6NJ.mgp.v5.snps.dbSNP142.vcf.gz.
Scripts are publicly available (see Data Availability).

Mouse sperm low coverage dataset. To generate a mouse
sperm dataset that mimics the coverage level of a typi-
cal single-gamete DNA sequencing dataset (e.g., apricot
gamete dataset), the DNA reads from the merged mouse
sperm BAM file (as described before in section Mouse
sperm dataset) were sub-sampled usingsamtools-v1.10
(36) to a fraction of 0.15 to yield the further low coverage
mouse sperm dataset (msperm low-coverage).

10X scCNV apricot gametes. Two experiments were
conducted to sequence the apricot gametes in the original
published study (20). The pre-aligned BAM files (of two
experiments) were downloaded from European Nucleotide
Archive (ENA) under accession number ‘PRJEB37669’.
The downloaded pre-aligned BAM files were converted
to fastq reads with samtools-v1.10 (36). To keep
the cell barcode information for each DNA read in the
converted fastq files, the cell barcode sequence was ap-
pended to each fastq read’s sequence name. Reads in
fastq files were then mapped to the published haploid
genome ‘Currot’ using minimap2-2.7 x64-linux
(34). The identification of hetSNP markers was per-
formed by running bcftools-v1.10 on the pooled
DNA reads from the two experiments. The identified
hetSNPs were filtered using the same command as from
the original study(20) (QUAL > 200 & FORMAT/DP <
280 & FORMAT/DP > 120 & FORMAT/GT=='0/1'
& (FORMAT/AD[0:1])/(FORMAT/DP) > 0.38 &
(FORMAT/AD[0:1])/(FORMAT/DP) < 0.62). These
filtering settings mean we only kept the SNPs with quality
score larger than 200, total depth of allele coverage smaller
than 180, genotypes as heterozygous, and the alternative
allele frequency is in the range of 0.38-0.62. Gametes
from the two experiments were merged in the analysis and
gametes with barcode collisions were removed. Barcodes
from 367 gametes were kept. Scripts are publicly available
(see Data Availability).

Human sperm dataset. Raw fastq files of 11 sperm cells
from a human individual were downloaded from the NCBI
Sequence Read Archive (SRA) with SRR accessions pro-
vided in the original study (28). Like the the processing
steps for mouse sperm dataset, we used fastp-v0.20.1
(33) on the raw reads for quality controlling fastq reads.
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minimap2-2.7 x64-linux (34) was run for aligning the
reads to the human reference genome hg19. MarkDupli-
cates and AddOrReplaceReadGroup from the GATK-
v4.2 pipeline (35) were applied. Finally, the BAM files of
individual sperm cells were merged after adding CB tag by
appendCB (see Data Availability).

Phasing 10X scCNV apricot gametes

To test the phasing performance of sgcocaller, the 367 ga-
metes from the apricot dataset (20) were used for generat-
ing the phased haplotype for the apricot sample. The haplo-
types generated by sgcocaller were compared with the pub-
lished assembly ‘Currot’ (see Supplementary Methods).

Calling crossovers

We applied sgcocaller and comapr on public datasets to
demonstrate the application of the software tools (see Ap-
plication of sgcocaller and comapr to public datasets). The
application examples cover different use-case scenarios: (i)
a mouse sperm dataset (21) for which the haplotypes of the
donors were known and (ii) the apricot gamete dataset with
haplotypes of the donor inferred by sgcocaller phase be-
fore calling crossovers using sgcocaller xo. For the apricot
dataset, crossover results when using the phased hetSNPs
obtained from the published study (20) were also generated
using sgcocaller xo to compare the differences in crossover
calling results between using the haplotypes inferred by sg-
cocaller phase and the known haplotypes from the original
study (see Supplementary Methods).

Crossover results were obtained by further processing the
output files from sgcocaller xo and sgcocaller sxo (see Sup-
plementary Methods) on different datasets using functions
from comapr including cell filtering, false positive crossover
filtering and genetic distances calculation and visualisation
(see Supplementary Methods and public code repositories
Data Availability).

Phasing performance comparison

Performance of sgcocaller phase|swphase was compared to
Hapi (39) on the human sperm dataset (28), the apricot
gametes generated by the 10X scCNV protocol (20), the
mouse sperm dataset (21) and the mouse sperm dataset
with low read coverage (see Results: sgcocaller advances
performance and efficiency). Exact options and parame-
ters for running the two methods on the testing datasets
are included in the Supplementary Methods. For each set
of gametes from each dataset, 10 dataset repeats were con-
structed by leaving out 10% of the gametes except for the
11 human sperm cells where 11 dataset repeats were con-
structed. For the human sperm dataset, the list of unphased
hetSNPs and phased results (used as ground truth) were
downloaded from the supplementary dataset shared in the
published study (28). For the apricot dataset, the haploid
genome assembly ‘Currot’ published previously was used
as the haplotype ground truth. The known haplotypes of
the known mouse founder strains were used as the ground
truth for the mouse sperm (and mouse sperm low coverage)
datasets.

RESULTS

sgcocaller generates highly accurate phasing results

We applied sgcocaller phase (for generating haplotypes) and
sgcocaller swphase (for identifying and correcting switch er-
rors in the inferred haplotypes) on an apricot pollen dataset
generated (see Materials and Methods) with the 10X sc-
CNV protocol (a droplet-based single-cell DNA sequenc-
ing protocol) (20). Although sgcocaller swphase can be run
selectively and only for cases when switch errors are identi-
fied in the inferred haplotype by sgcocaller phase, we applied
both modules on all chromosomes. We refer to the final
phasing results as generated by sgcocaller phase although
sgcocaller swphase has been applied (see Supplementary
Methods). The phasing results of sgcocaller phase demon-
strate very high concordance with the haplotypes from the
published assembly from the same study (Figure 3A, B).
To evaluate performance of the phasing module in sgco-
caller, the phasing accuracy was calculated using the frac-
tion of concordant hetSNPs between the haplotype inferred
from sgcocaller phase and the published haplotype. The het-
SNPs were grouped into bins with 100 consecutive SNPs in
each bin. The proportion of SNPs matching the published
haplotype in 100-SNP bins concentrated at 1.0 across eight
chromosomes indicating high phasing accuracy across the
genome (Figure 3A and Supplementary Figure S1). We de-
fined the haplotype contradictory alleles as the alleles in
the haplotype sequence (e.g., columns in i, Supplementary
Figure S2) supported by fewer DNA reads in each 1000-
SNP bin in each gamete, and summarised the haplotype
contradictory allele read frequencies (CAF) in 1,000-SNP
bins across gametes. With this approach, we found that us-
ing the haplotypes generated by sgcocaller phase|sgcocaller
swphase resulted in more bins with CAF valued at zero than
using the published haplotype (Figure 3B, C). These results
suggest sgcocaller phase|sgcocaller swphase generated hap-
lotypes that are more concordant with the single-gamete
read data than the published assembly. We note that these
results do not directly imply the haplotypes by sgcocaller
are more accurate than the published assembly but rather
simply that the haplotypes inferred by sgcocaller match the
observed single-gamete data better. However, there might
be errors in SNP calling in the single gametes due to tech-
nical issues (e.g. base calling errors, mapping artefacts) and
the low depth of read coverage at each SNP.

Application of sgcocaller and comapr to public datasets

Bulk DNA sequencing dataset of single mouse sperm cells.
We applied sgcocaller and comapr to haplotype sperm
cells from a published DNA sequencing dataset of individ-
ual mouse sperm cells collected from an F1 hybrid mouse
(C57BL/6J X CAST/EiJ) (21). The raw sequencing dataset
was downloaded from GEO (Gene Expression Omnibus)
with accession GSE125326 (see Supplementary Methods)
and the workflow with detailed steps for pre-processing the
raw reads and the execution of sgcocaller|comapr is publicly
available (see Data Availability). We demonstrate and pro-
vide reproducible code for running the functions to gener-
ate plots of the number of crossovers per sperm cell (Fig-
ure 4A), genetic distances in the chosen size of chromosome
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Figure 3. Comparisons between haplotype inferred by sgcocaller phase versus the published haplotype using the apricot dataset (20). (A) Proportion of
SNPs agreeing with the published haplotype in 100-SNP bins across eight chromosomes from the using the apricot dataset (20). The number of phased
SNPs (n phased) by sgcocaller phase and phasing accuracies (accuracy) were printed on top of each panel. Smoothed curves were fitted by using ‘loess’
method (40) from R (R Core Team, 2021). (B) The histogram of haplotype contradictory allele read frequencies (CAFs) for bins of 1000 SNPs were plotted
from all chromosomes colored by results using the haplotype generated by sgcocaller phase (CAF-sgcocaller) or the published haplotype (CAF-published).
More bins with CAF valued at zero when using the haplotype by sgcocaller phase suggested that the haplotype from sgcocaller phase was more concordant
with the single-gamete data. (C) The two alternative read frequencies (CAF-sgcocaller and CAF-published) for each bin were plotted in scatter plot with
CAF-sgcocaller on the x axis and CAF-published on the y axis. Hexagons were plotted overlaying the scatter plot with color scale indicating counts of bins
covered by the hexagon area. Fitted curve that aligned with the diagonal line was plotted using the method ‘gam’ (41) from ggplot2 ((40);R Core Team,
2021). Alternative allele in these plots are always the alleles with fewer read counts in each bin.
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Figure 4. Application of sgcocaller and comapr on mouse sperm dataset (21). comapr enables easy plotting of crossover summary statistics. (A) The
distribution of crossover counts per sperm (n = 173 sperm cells). (B) The genetic distances (in centiMorgans, which were derived from observed crossover
rates by applying the mapping function Kosambi (42) with implemented function in comapr) plotted for every 10 megabase bin along chromosome 1. It
has shown a low to zero crossover rate around the centromere region (125M). (C) The frequency of crossover counts for four chromosome are plotted
for all sperm cells. (D, E) The cumulative genetic distances are plotted for chromosome 1 and cumulatively whole genome for the two randomly assigned
mouse sperm groups. (F) The binned (10 Mb) genetic distances plot along chromosome 1 for the two sperm groups. (G) The bootstrapping distribution of
the difference in total genetic distance between the two groups with two vertical lines indicating the lower bound and the upper bound of 95% confidence
interval. (H) Permutation results of difference in total genetic distance between two sperm cell groups with observed group difference indicated by the
vertical line and p-value labelled on the top.

bins along chromosomes (Figure 4B), and the number of
crossovers (COs) identified per chromosome (Figure 4C) in
the public repository (see Data Availability).

To demonstrate the functions in comapr that test for dif-
ferences in groups of cells, such as cells from different in-
dividuals, we divided the sperm cells into two groups ran-
domly. The crossover counts and crossover rates of each
group are calculated over the SNP intervals via function
countCOs and genetic distances are derived by the cal-
GeneticDist function that applies a user-selected map-
ping function such as the Kosambi mapping function (42).
Comparative plots can be generated for the two groups in-
cluding genetic distance plots for binned intervals along the

chromosome and the cumulative genetic distances along a
chromosome or whole genome (Figure 4D–F). Resampling-
based testing functions, bootstrapping and permutation,
have been called to assess the group differences statistically
(Figure 4G, H). The bootstrapping testing was conducted
via bootstrapDist function. The bootstrap 95% confi-
dence interval of the group differences was calculated. The
interval included zero, indicating that there was not enough
evidence to support a difference in mean crossover num-
bers between the two groups at a significance level of 0.05,
which was expected because the group labels of sperm cells
were randomly assigned (Figure 4G). The permutation test-
ing via permuteDist returned the same conclusion with
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a permutation P-value >0.05 (Figure 4G, H and see Mate-
rials and Methods).

The crossovers called by sgcocaller|comapr (with a mean
number of crossovers of 12 per sperm across autosomes)
were highly consistent with the crossovers called from the
original paper. There were 7 cells (4%) that were called with
a different number of crossovers compared to the original
paper (Figure 5A). We also compared the genetic distances
calculated when using the estimated crossover rates by sg-
cocaller xo and the published study (21) in 10 Mb intervals,
and it showed perfect alignment between the two methods
(Figure 5B and Supplementary Figure S3).

10X scCNV apricot gametes. We next applied sgcocaller
and comapr on the 10X scCNV apricot pollen dataset (20)
after pre-processing (see Materials and Methods; Supple-
mentary Methods) for crossover calling and compared the
called crossovers by our toolset with the published results.

Comparing with the crossover profile constructed from
the original study, sgcocaller and comapr have generated
a highly concordant crossover profile for the analysed ga-
metes (Figure 5C–E, Figures S3 and S4). The number of
crossovers identified per gamete (n = 333 gametes) was
consistent with the published number of crossovers for
these gametes by using both the published haplotype (sg.xo
KnownHaps) and the sgcocaller phase| swphase generated
haplotype (sg.sxo SgHaps) (Figure 5C). Few chromosomes
(2% by sg.xo KnownHaps; 3% by sg.sxo SgHaps) of the
2664 chromosomes studied here exhibited differences in
crossover counts (Figure 5D). Out of the chromosomes that
were called with different numbers of crossovers, 56% of
them were called with fewer crossovers by sg.xo Known-
Haps and 68% with fewer crossovers by sg.sxo SgHaps.
Therefore, the discrepancy of results from the two methods
resulted predominantly from sgcocaller being more conser-
vative and calling fewer crossovers. Inspecting the crossover
profile by chromosome regions has also demonstrated con-
sistent genetic distances across the whole genome (Fig-
ure 5E).

It is worth noting that not all cells available in the pub-
lished study were analysed and included in the applica-
tion results of sgcocaller due to the cell filtering step in-
cluded in comapr which filtered out cells with excessive
numbers of crossovers called and cells with poor SNP cov-
erage. Chromosomes with excessive numbers of crossovers
called are likely due to library preparation artefacts or ab-
normal chromosome segregation that results in implausibly
many heterozygous SNPs in single gametes (Supplementary
Figure S5). comapr offers a systematic way of filtering out
these cases and can be applied to all gametes. We provide
guidelines in false crossover filtering from analysing differ-
ent datasets (see Supplementary Methods and Supplemen-
tary Figure S6).

Simulated datasets with increased crossovers

To test the performance of calling crossovers from gametes
with increased crossovers comparing to the apricot and
mouse sperm gametes, we simulated 100 cells each with 6
manually inserted crossovers spanning a 5M genomic re-
gion (see Supplementary Methods). We phased the het-

SNPs in the 5M region and called crossovers for the 100
cells using sgcocaller. Only 95 hetSNPs (out of 21k het-
SNPs) were phased incorrectly and all six crossovers were
discovered for the 100 cells (Supplementary Figure S7).

sgcocaller advances performance and efficiency

Many studies apply hidden Markov model based ap-
proaches for haplotype construction and crossover identi-
fication using sequencing or genotyping datasets (9,21,43–
46). The majority of them, however, used customised or in-
house scripts for crossover calling (9,21,43). Only a hand-
ful of them published reusable software tools or pipelines
(39,45), but none of them apply in the same scenarios as
sgcocaller and comapr, which work directly on large-scale
single-cell DNA sequencing datasets. The Hapi method,
implemented in an R package, was proposed to construct
chromosome-scale haplotypes using data from a small num-
ber of single gametes (39). Given a genotype matrix as
input, it has functionalities overlapping with sgcocaller
phase (39). We therefore compared the phasing performance
of Hapi and sgcocaller phase|swphase on a total of four
datasets: the individually sequenced mouse sperm cells (21),
the 11 human sperm cells (the same dataset used in the per-
formance evaluation of Hapi in the original paper (28,39),
the apricot gamete dataset generated by the 10X scCNV
protocol (20), and lastly the low-coverage mouse sperm
dataset that is more comparable to a contemporary droplet-
based single-gamete DNA sequencing dataset (Figure 6E)
(see Supplementary Methods). To measure uncertainty in
method performance, we constructed dataset replicates by
dividing the original sets of gametes into ten portions and
each time leaving out one portion (10%) of the gametes.
Since there were only 11 cells in total in the human sperm
cell dataset, 11 dataset replicates were constructed (n =
10 cells each). Ten distinct datasets were constructed from
the apricot gametes (n = 330 or 331 gametes each), mouse
sperm dataset (n = 174 or 175 sperm cells), and the low cov-
erage mouse sperm dataset (n = 174 or 175 sperm cells).
We ran Hapi and sgcocaller phase|swphase on these con-
structed datasets. The phasing accuracy, measured by calcu-
lating the fraction of SNPs agreeing with the ground-truth
haplotype sequence, and the number of phased SNPs by
each approach were compared (Figure 6A–D).

On the lower coverage datasets, (the apricot gamete
dataset and the low-coverage mouse sperm dataset), the ad-
vantage of sgcocaller phase|swphase is readily apparent with
far more SNPs phased and much higher accuracy. sgco-
caller phase|swphase generated haplotypes that were concor-
dant with the published haploid genome assembly with low-
est accuracy across all chromosomes in all dataset repeats
of 97.6% for the apricot dataset. All chromosomes were
phased with accuracy above 99.99% for the low-coverage
mouse sperm datasets by sgcocaller phase|swphase (Fig-
ure 6A, B). We also validated that autophase, which runs
sgcocaller swphase automatically after sgcocaller phase, can
produce the same output as sgcocaller phase|swphase (Sup-
plementary Figure S8). In contrast, Hapi delivered me-
dian accuracy below 75% for the apricot datasets and only
50% accuracy (equivalent to random guessing) for the low-
coverage mouse sperm datasets. Hapi’s poor accuracy on
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Figure 5. Comparisons between number of crossovers called from sgcocaller versus from the published study. (A) The number of crossovers (COs) called
per sperm by sgcocaller (x-axis) versus by the original paper (y-axis) are plotted; points were jittered and colored and shaped by the differences in number
of crossovers by the two methods. (B) The genetic distances in 10 Mb chromosome bins were calculated and plotted along the chromosomes from using
either crossover rates estimated from sgcocaller xo with the known haplotypes or the obtained published results of the mouse sperm dataset (21). (C)
The distribution of the number of crossovers called per apricot gamete (n = 333 apricot gametes) from the published study (20) (COs Published), calling
sgcocaller xo using the published haplotype (sg.xo KnownHaps) and calling sgcocaller sxo with sgcocaller phase generated haplotype (sg.sxo SgHaps). (D)
The frequency of the difference in crossover counts with published crossover results per chromosome by sgcocaller using either the published haplotype
(CO Difference KnownHaps) or using sgcocaller phase generated haplotype (CO Difference SgHaps). (E) The genetic distances in every 2 Mb chromosome
bin were calculated using crossover rates estimated from three approaches that showed high concordance along regions of the genome.

these datasets makes its results unusable for downstream ap-
plications like crossover calling.

On the high coverage datasets (the mouse sperm dataset
and the human sperm dataset), sgcocaller phase|swphase
achieved equivalent or greater haplotype completeness in
terms of the number of phased SNPs compared to Hapi
(Figure 6C, D). sgcocaller phase|swphase achieved near per-
fect accuracy for all sperm combinations (all above 0.99),

whereas Hapi repeatedly generated unusable phasing re-
sults (accuracy <0.6) for chromosome 12, 14, 17, 18 for
the mouse sperm datasets (Figure 6C). Hapi did not per-
form stably for the 11 human sperm datasets, but sgcocaller
phase|swphase always generated phasing results with accu-
racy >97% across all chromosomes in all human sperm
combinations. (Figure 6D). Hapi also failed for four chro-
mosome runs that triggered errors (out of 242 chromosomes
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Figure 6. Phasing module performance comparison with existing method. The phasing performance of sgcocaller and Hapi were compared on the con-
structed dataset repeats from four different datasets, msperm low-coverage, apricot (20), msperm (21), and hsperm (28) (Supplementary Table S1). (A) The
number of phased SNPs and phasing accuracy from running two methods (sgcocaller and Hapi) on 10 constructed datasets from using the msperm low-
coverage sperm cells were compared (10 dataset repeats, each with 174 or 175 cells). msperm low-coverage dataset was generated by downsampling DNA
reads from msperm dataset. (B) Same as (A) but for the constructed 10 apricot gamete datasets (each dataset with n = 330 or 331 gametes). Hapi failed
when executing for two chromosomes and did not return values (2 out of 10 × 8 = 80 in total), which were not included in the plot. (C, D) The number
of phased SNPs and phasing accuracy from running two methods on the 11 constructed datasets using 11 human sperm cells (hsperm) , and on the 10
constructed datasets using mouse sperm cells were plotted in boxplots. For human sperm dataset, Hapi failed to return values for four chromosomes (out
of 11 × 22 = 242 in total), which were not included in the plots. (E) The characteristics of the four datasets were compared by comparing the SNP coverage
rate and cell coverage rate using the first chromosome in each dataset. (F, G) The running time and memory usage by the two methods for phasing each
chromosome using the constructed 10 datasets from the mouse sperm dataset (21) were compared. Time was reported in format of hour:minute:seconds,
and memory was measured in units of mega bytes (MB). Measurements were reported by the ‘benchmark’ function from Snakemake (47).
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tested across all datasets), which were excluded from the
comparison.

We compared the differences among the four datasets,
which showed that the human sperm sequencing dataset
and the mouse sperm sequencing data have much higher
SNP coverage per cell and cell coverage per SNP compared
to the apricot dataset (Figure 6E). The low coverage mouse
sperm dataset has coverage distributions that are more com-
parable to the apricot dataset.

In summary, sgcocaller phase|swphase outperforms Hapi
on both high coverage data and low coverage data with sg-
cocaller phase|swphase more dominant in the low coverage
datasets.

Computational efficiency. We compared the computa-
tional efficiency of the two methods (sgcocaller and Hapi)
on the large mouse sperm dataset and measured the running
time as well as memory usage on each of the ten dataset re-
peats. The running time required by sgcocaller phase plus
sgcocaller swphase was only 11–38% of the total time taken
by Hapi (comparing the median running time of each chro-
mosome). Considering sgcocaller phase timing results in-
cludes an extra step of parsing the DNA read file (BAM
file) and variant file (VCF file), sgcocaller phase is even more
advantageous in terms of speed than these results indicate.
Examining diagnostic plots generated from sgcocaller phase
can help with identifying switch errors so that sgcocaller sw-
phase can be run selectively. Nevertheless, swphase was ap-
plied to all chromosomes and the total running times were
still many-fold shorter than Hapi. In terms of memory us-
age, since sgcocaller phase and sgcocaller swphase were run
consecutively, the process that used larger memory was re-
garded as the memory used by sgcocaller. From comparing
the reported max rss (the maximum amount of memory oc-
cupied by a process at any time that is held in main memory
(RAM)) by Snakemake (47), sgcocaller required only 30–
50% of the memory required by Hapi (Figure 6F, G).

Scalability of sgcocaller

We tested the scalability of different modules in sgcocaller
with input files of varying sizes including different num-
bers of cells, numbers of DNA reads per cell, and numbers
of hetSNPs available. We ran each module and recorded
the computational usages by each module on the simulated
datasets (See Supplementary Methods and Supplementary
Figure S9A, B). Across all simulated datasets, all programs
can be finished in 6 hours using less than 5GB of mem-
ory excluding sgcocaller sxo. We observed substantial im-
provement of processing speed of sgcocaller sxo over sgco-
caller xo but sgcocaller sxo also required much more mem-
ory for larger datasets. Therefore, we would recommend
using sgcocaller xo with the generated phased VCF from
sgcocaller instead of running sgcocaller sxo when process-
ing large datasets (when analysing >1500 cells with >400k
SNPs) and memory is not sufficient.

To characterise the current scale of single-gamete se-
quencing datasets, we obtained the DNA sequences of
sperm cells from donor 1 in a large-scale study (9). We se-
lected the top 3000 cell barcodes with the largest number of
DNA reads. We counted the number of hetSNPs and mean

number of DNA reads per cell for each chromosome after
pre-processing (see Supplementary Methods, and Supple-
mentary Figure S9C). Lastly we applied sgcocaller phase,
swphase and sxo on these sperm cells and measured the run-
ning times and memory usages of each program (Supple-
mentary Figure S9D, E). Each program was executed with
three repeats and the computational usages were recorded
using the benchmark function in Snakemake (47). For all
the chromosomes tested, each module was finished in under
2 hours with maximum memory usage under 2.5 Gb (Sup-
plementary Figure S9D, E). In conclusion, sgcocaller can
handle current and larger-scale single-gamete datasets.

DISCUSSION

We have introduced a toolkit that consists of a command-
line tool and a Bioconductor/R package for processing
large-scale single-gamete DNA read datasets for individu-
alised haplotype construction, crossover identification, and
crossover landscape analysis. Personal haplotype construc-
tion is important in population genetics and clinical ge-
netics for interpreting rare and disease-implicated variants
(48,49). Genomes of haploid gametes provide information
of ‘long-range’ haplotype blocks of the diploid donors and
can be revealed via standard short-read sequencing. Single-
gamete data generated using low-depth short-read sequenc-
ing are sufficient for reconstructing the two personal haplo-
types by aggregating linkage information in a group of ga-
metes.

Existing read-based haplotype construction methods
have also been applied on single-gamete sequencing
datasets. For example, HapCUT2 (26) was applied on hu-
man sperm datasets for generating individualised haplo-
types (9). However, applying HapCUT2 to single-gamete
datasets requires extra pre-processing of the aligned DNA
reads from gametes for generating the single gamete geno-
types, from which a specially formatted fragment file can
be constructed (see Supplementary Methods). However, sg-
cocaller reduces these extensive processing steps and wraps
them into one (two) module(s) specifically designed for
phasing single-gamete datasets with better phasing perfor-
mance than HapCUT2 (Supplementary Figure S10).

Taking advantage of SNP linkage information in single-
gamete data, sgcocaller phase is able to construct personal
haplotypes with standard short-read sequencing methods
to near perfect accuracy. Comparisons with other phasing
methods demonstrate that sgcocaller phase offers better per-
formance on single-cell sequenced gametes in terms of accu-
racy and efficiency. Crucially, haplotypes constructed with
sgcocaller phase solely from single-gamete sequencing data
are sufficiently accurate to support highly accurate down-
stream crossover calling with sgcocaller’s crossover calling
methods. sgcocaller achieves highly accurate phasing results
in settings where competitors fail to generate usable haplo-
types for crossover calling. The outputs of sgcocaller can be
conveniently imported into R with the comapr package for
sophisticated crossover landscape visualisation and analy-
sis.

The list of hetSNPs can be identified from the pooled
DNA reads from all gametes as we demonstrated. The list
of hetSNPs can also come from other sources such as whole
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genome DNA sequencing of the sample. Applying stringent
filtering is helpful for obtaining the list of higher quality het-
SNP markers. For example, filtering of hetSNPs to remove
SNPs in genome regions that may cause problems in align-
ment and genotyping (e.g. centromeres, highly repetitive re-
gions, paralogous regions) is also beneficial when running
sgcocaller phase and crossover calling.

Our gamete-based haplotype phasing model has limita-
tions. The model uses the hetSNP linkage information in
the gametes and assumes the nearby hetSNPs are close
and crossovers rarely break the linkages among them. For
cases where the density of hetSNPs is low, but evenly dis-
tributed along the chromosome region, the phasing model
can still produce correctly phased haplotypes with reduced
completeness (the number of phased hetSNPs is low; Sup-
plementary Figure S11C). However, it is more problem-
atic when phasing individuals which have large regions of
homozygosity, e.g., F1 samples from two closely related
parental strains. The hetSNPs located near the large regions
of homozygosity may have been assorted to gametes inde-
pendently and may presumably violate the linkage assump-
tion. Thus, the phasing model may fail and could poten-
tially generate phased haplotypes with switch errors. Since
the power to detect crossovers is closely related to the num-
ber of hetSNPs, access only to sparse hetSNPs reduces
the ability to detect crossovers and the resolution of the
crossovers detected (Supplementary Figure S11A, B).

Due to the current design of the methods, sgco-
caller|comapr are limited to the analysis of gametes from
diploid organisms. Currently, sgcocaller only supports us-
ing multiple threads for decompressing the input BAM file
and recommends users to run each chromosome in parallel
to reduce computational time. Future work in the develop-
ment of sgcocaller might include updating the program to
include the multi-threading feature by chromosomes inter-
nally and supporting analyses for polyploid organisms.

The application demonstrations of sgcocaller|comapr on
public datasets show that sgcocaller|comapr are able to pro-
duce stable and higher accuracy results than other methods
with greater convenience and computational efficiency for
large datasets. Although sgcocaller|comapr are optimised to
work with cell-barcoded DNA reads, we also demonstrated
and showed examples of how our tools can be applied on
bulk-sequenced individual gametes. Using the modern pro-
gramming language Nim and building on top of C-based
libraries, sgcocaller processes the large genomic datasets ef-
ficiently. The multiple release formats of sgcocaller enable it
to be more accessible to the community.

We demonstrated the application of our models to
datasets generated using the 10X single-cell CNV proto-
cols. Datasets generated using protocols such as single-cell
ATAC-seq offer a promising alternative approach and we
predict that our models will work well on such datasets.
However, different technologies generate datasets with dif-
ferent genome coverages and single-cell ATAC-seq datasets
are likely to have less genome coverage than datasets pro-
duced with the single-cell CNV method. Therefore, the
number of crossovers detected from single-cell ATAC-seq
datasets is likely to be slightly lower. We are less optimistic
on single sperm datasets generated using 10X single-cell
RNA-seq methods for crossover identification due to the

possible transcript sharing among gametes via cytoplasmic
bridges (50). Although the sharing of transcripts may be
biased towards the underlying haplotypes of the gamete,
which may be used for inferring haplotypes of the gametes’
genomes for crossover identification (50), the low depth of
coverage in 10X single-cell RNA-seq data makes it chal-
lenging. In settings that are not subject to transcript sharing
among individual gametes, we expect our methods to per-
form well on single-cell RNA-seq data.

Advances in single-cell DNA sequencing technologies
that generate larger-scale and higher-quality datasets en-
able exciting opportunities for research using person-
alised meiotic crossover landscapes (11). Abnormal meiotic
crossovers are often associated with infertility (5). There-
fore, characterising individual meiotic crossover profiles
and studying crossovers as a phenotype using single-cell
techniques has application in reproduction clinics. Funda-
mental mechanisms and factors affecting meiotic crossovers
remain active research topics. Using single-gamete meth-
ods for generating and comparing crossover profiles of indi-
viduals with different conditions has many advantages over
traditional approaches that require recruiting large sample
sizes (11). Our software serves as a complete toolkit for the
first step of studies to inspect the single gamete data of an
individual for understanding individual-level variations in
meiotic crossovers.

CONCLUSION

Available in multiple release formats (nimble package, static
binary, docker image, bioconda package), sgcocaller fills the
gap of a highly accurate and efficient tool with simple in-
stallation for constructing personalised haplotypes and call-
ing crossovers in single gametes from single-cell and bulk
DNA sequenced gametes. The availability of the companion
Bioconductor/R package comapr enables the downstream
statistical analysis of crossovers in the cells and among indi-
viduals, integrating well with existing R packages for vari-
ous visualisation and exploratory analysis tasks. In concert,
these packages represent a comprehensive, user-friendly
toolkit for the construction and analysis of personalised
crossover landscapes from single-gamete sequencing data.

DATA AVAILABILITY

Source code of the latest version of sgcocaller is publicly
available at a GitLab repository and comapr at a GitHub
repository under a MIT license. comapr is also available as
a Bioconductor package. The datasets used in this study are
public datasets with raw sequencing data downloaded from
GEO with accession GSE125326 and ENA with project ID
PRJEB37669. The analysis steps including pre-processing
and scripts for generating the figures are openly accessible at
GitLab repositories and workflowr (51) web pages demon-
strating the full workflow of applying sgcocaller|comapr
are available. The source code and analysis repositories in-
cluded in this study are listed below:

• sgcocaller: https://gitlab.svi.edu.au/biocellgen-public/
sgcocaller

• comapr: https://github.com/ruqianl/comapr and https://
bioconductor.org/packages/comapr

https://gitlab.svi.edu.au/biocellgen-public/sgcocaller
https://github.com/ruqianl/comapr
https://bioconductor.org/packages/comapr
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• mouse sperm data analysis: https://gitlab.svi.edu.
au/biocellgen-public/hinch-single-sperm-DNA-seq-
processing

• apricot gamete analysis: https://gitlab.svi.edu.au/
biocellgen-public/calling-crossover-from-single-gamete-
sequencing-of-apricot

• appendCB: https://github.com/ruqianl/appendCB
• distributions: https://github.com/ruqianl/distributions
• web page report of analyses on msperm dataset:

https://biocellgen-public.svi.edu.au/hinch-single-sperm-
DNA-seq-processing/Crossover-identification-with-
sscocaller-and-comapr.html

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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