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ABSTRACT

Massively parallel reporter assay (MPRA) is a high-
throughput method that enables the study of the
regulatory activities of tens of thousands of DNA
oligonucleotides in a single experiment. While MPRA
experiments have grown in popularity, their small
sample sizes compared to the scale of the hu-
man genome limits our understanding of the regu-
latory effects they detect. To address this, we de-
velop a deep learning model, MpraNet, to distin-
guish potential MPRA targets from the background
genome. This model achieves high discriminative
performance (AUROC = 0.85) at differentiating MPRA
positives from a set of control variants that mimic
the background genome when applied to the lym-
phoblastoid cell line. We observe that existing func-
tional scores represent very distinct functional ef-
fects, and most of them fail to characterize the reg-
ulatory effect that MPRA detects. Using MpraNet, we
predict potential MPRA functional variants across
the genome and identify the distributions of MPRA ef-
fect relative to other characteristics of genetic varia-
tion, including allele frequency, alternative functional
annotations specified by FAVOR, and phenome-wide
associations. We also observed that the predicted
MPRA positives are not uniformly distributed across
the genome; instead, they are clumped together in
active regions comprising 9.95% of the genome and
inactive regions comprising 89.07% of the genome.
Furthermore, we propose our model as a screen to
filter MPRA experiment candidates at genome-wide
scale, enabling future experiments to be more cost-
efficient by increasing precision relative to that ob-
served from previous MPRAs.

INTRODUCTION

The decreasing costs and increasing throughput of genomic
technologies have propelled the comprehensive character-
ization of the human genome and identified millions of
single-nucleotide variants (SNVs) (1). While the functional
effect of variants located in coding regions can be inter-
preted using our knowledge of the genetic code, the ma-
jority of identified SNVs are situated in non-coding re-
gions, and their behavior is less understood (2). Functional
non-coding variants located in regulatory elements such as
promoters or enhancers may affect binding of transcrip-
tion factors, while other variants may affect local chromatin
structure (3). Non-coding variants have been shown to con-
tribute to disorders such as various cancers (4) and are fre-
quently identified upstream of disease-associated genes (5).

The massively parallel reporter assay (MPRA) allows for
high-throughput experimental identification and validation
of functional effect in non-coding regions, enabling direct
testing of the potential regulatory roles of specific SNVs.
Although these experiments can test at the scale of tens of
thousands of variants (6), the number identified with signif-
icant functional effect is generally in the hundreds, resulting
in low precision and cost-effectiveness. As a result, MPRAs
usually serve as functional validation of a relatively small
set of predefined candidate variants identified by genome-
wide association studies (GWAS) or quantitative trait loci
(QTL). This prevents a comprehensive understanding of
the non-coding variants with detected functional effect un-
der MPRA experiments. Important characterizations that
would be of interest include correlations of various epige-
netic annotations associated with MPRA functional hits
and the location of functional non-coding SNVs such as in
enhancer regions of specific gene classes. In addition, the
density of functional variants as a function of chromosome
position and distribution outside known eQTL regions are
still unknown.

Previous studies have developed annotations to predict
various forms of functional effect. For example, the Com-
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bined Annotation Dependent Deletion (CADD) method
integrates multiple annotations into a score that priori-
tizes variants based on estimated deleterious effect and is
trained using a combination of evolutionary conserved and
de novo variants (7). The Functional Inference of Regu-
lators of Expression (FIRE) scores SNVs on their poten-
tial regulatory effect on nearby genes by distinguishing cis-
eQTL from non-eQTL variants (8). Databases such as reg-
Base and Eigen have aggregated multiple such functional
scores as input for computing meta-scores (8,9). Further-
more, the Roadmap database contains 25-bp resolution bio-
chemical annotations over a variety of cell and tissue types,
including transcription factor binding, chromatin accessi-
bility and modifications, and DNA methylation, which may
help identify functional effect in non-coding variants (10).
As opposed to predicting the functional consequences of
non-coding variants in general, our aim is instead to char-
acterize the variants and effects detected by MPRA experi-
ments for a specific cell line.

In our work, we evaluate existing functional predictions
using two of the largest published MPRA datasets (No-
vaseq (11) and Tewhey (6)) for the identification of causal
variants underneath a large number of eQTL and GWAS
loci. We observe that existing functional scores represent
very distinct functional effects, and most of them fail to
characterize the regulatory effect that MPRA detects. To
address this, we design a deep learning model to distin-
guish MPRA-detected functional variants from the back-
ground genome. The background genome variants are care-
fully controlled with respect to allele frequency and proxim-
ity to transcription sites in order to isolate MPRA specific
effect. Our model, denoted as MpraNet, incorporates lo-
cal epigenetic annotations across a range of tissues as well
as site-specific functional scores from previous studies. We
find that a joined convolutional neural network (CNN) and
fully connected network (FCN) architecture shows high dis-
criminative performance (AUROC = 0.85).

Using this model, we predict potential MPRA functional
variants across the genome and identify the distributions
of MPRA effect relative to other characteristics of genetic
variation, including allele frequency, alternative functional
annotations specified by FAVOR, and phenome-wide asso-
ciations. We leverage MpraNet to characterize the genome
by contrasting a group of significantly positive MPRA
variants with a randomly derived background set. MPRA
scores for this background set are made possible due to the
genome-wide scale of the model which permits inspection
of under-studied SNVs such as non-coding and rare vari-
ants. Furthermore, we examine the distribution of MpraNet
scores genome-wide and discover both MPRA dense and
sparse 1kb regions significantly distinct from that of a ran-
dom uniform spread.

We further show that using our score as a candidate
screen for new MPRA experiments can improve cost-
efficiency by increasing the number of discovered positives
relative to the candidate pool size. MpraNet’s genomic pre-
cision at finding future positive MPRA candidate SNVs is
estimated to surpass that observed in novaSeq and Tewhey,
as well as outperform other functional scores. Results after
incremental increases to the training set size suggest that
the inclusion of future MPRA experiment data will con-

tinue to improve AUROC and AUPR performance. These
outcomes allow for the possibility of using model-assisted
MPRA experiments along with model retraining to enable
high-precision regulatory variant detection at a genome-
wide scale.

MATERIALS AND METHODS

Train and test partitions

We obtain confirmed MPRA positives from the Tewhey (6)
and novaSeq (11) MPRA experiments and reserve 20% of
the positives as the validation set. The two MPRA experi-
ments were assessed over the GM12878 lymphoblastoid cell
line (LCL). Within the training and validation datasets we
match each positive with control SNPs (assumed negatives)
from the gnomAD database at a 1:10 ratio. Importantly,
since MpraNet predictions are ultimately calculated after
a rank-based approach over the whole genome, they are ro-
bust to this arbitrarily defined ratio. The control variants
are matched by allele frequency percentile to address the
MPRA candidates often coming from known high allele-
frequency sites. Similarly, they are also controlled by prox-
imity to transcription sites to account for the fact that no-
vaSeq and Tewhey selected cis-eQTL candidate variants.
Further details on the matching procedure are given in the
Methods section.

Feature extraction

For each candidate SNV we extracted site-specific func-
tional annotations and scores. The annotations comprise
eight epigenetic markers including Roadmap histone mod-
ification and methylation from 127 different cell and tis-
sue types. The functional scores were obtained from the
Eigen and RegBase databases and include multiple pre-
viously published methods for predicting various regula-
tory and functional effects (8,9). Finally, in addition to
on-site epigenetic annotations, we collected LCL-specific
Roadmap annotations from a 1000 bp window on either
side of each SNV to incorporate local sequential epige-
netic information. Previous work has shown that prediction
performance can be improved by leveraging annotations
in nearby base pairs, as was shown for ‘valley scores’ that
characterize the local minima of activating histone mod-
ifications (H3K4me1, H3K4me3, H3K9ac and H3K27ac)
(12,13). We use all these features as inputs for MpraNet, a
deep learning model to predict whether a given candidate
SNV is MPRA positive.

Model architecture

The method combines a feed-forward neural network
(FNN) to learn non-linear functions of site-specific func-
tional scores with a convolutional neural network (CNN) to
model Roadmap epigenetic annotations in the local neigh-
borhood of each SNV (Figure 1). The structure of our
model can be interpreted as an ensemble combining tissue-
specific local annotations with previously developed scores.
The resulting prediction scores are then calibrated as a
Phred score based on their genome-wide percentile rank in
order to increase interpretability. Details on our model and
the training procedure are given in the Methods section.
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Figure 1. MpraNet Architecture. The MpraNet model takes as input at-site functional annotations and scores as well as neighboring epigenetic annotations.
The neighboring annotations are processed by 1D convolutional layers while at-site scores are processed by fully connected layers. The outputs from these
networks are concatenated and passed into the final fully connected layers for classification. The model is run across the genome to produce genome-wide
scores, which can be used to prioritize variants for future MPRA. Validated variants can be added to the MpraNet training set to further improve model
performance.

RESULTS

MpraNet distinguishes MPRA-positive variants from back-
ground genome whereas most existing functional scores rep-
resent other functional effects

We evaluate our method on the validation set using AU-
ROC (area under receiver operating characteristic curve)
and AUPR (area under precision-recall curve) metrics,
shown in Figure 2. As benchmarks we compare against the
44 functional scores available from Eigen and RegBase (me-
dian AUROC 0.58, AUPR 0.15), from which we present
the seven best-performing scores: GenoCanyon, FunSeq2,
FitCons2, FIRE, CADD, LIN-SIGHT and FATHMM-
MKL. The remaining functional scores are reported in Sup-
plemental Table S1. Because AUROC and AUPR com-
pare different quantities that are important for assessing
classification performance (in particular, sensitivity, speci-
ficity, and positive predictive value), a strong method should
perform well in both metrics. We observe that MpraNet
outperforms the other functional scores in both AUROC
(0.85) and AUPR (0.43). For comparison, one of the best-
performing benchmarks (FIRE) achieves 0.75 AUROC and
0.20 AUPR. Other scores achieve lower performance, in-
dicating that they measure other forms of functional ef-
fects that do not overlap with MPRA effect. For example,
the CADD, FitCons2 and LINSIGHT scores estimate var-
ious forms of conservation or selection pressure, which may
not be strongly associated with assayable regulatory effect.
In other cases, FATHMM-MKL uses variants associated
with heritable diseases as the target effect, while the Geno-
Canyon score is unsupervised and may thus reflect a differ-
ent combination of variant functions.

The AUROC curve (Figure 2A) shows greater separation
between MpraNet and the other methods in minimizing the
false positive rate at more selective thresholds. This suggests
that MpraNet has greater precision, which is confirmed by

the AUPR curve (Figure 2B). In contrast, the FIRE score
has strong overall performance in ranking MPRA candi-
dates, as seen by high AUROC, but significantly lower pre-
cision than MpraNet among its top ranked candidates. On
the other hand, GenoCanyon and FunSeq2 have better pre-
cision among their top rankings than FIRE, but they ulti-
mately rank many non-functional variants above functional
variants, resulting in worse precision at higher recall levels
(Figure 2B).

The AUROC and AUPR show large variation among the
top benchmarks, indicating that the annotations may be
sensitive to different types of functional effects. To assess the
overlap between scores, we take a random sample of SNVs
from genomic background and MPRA positives and embed
them in two-dimensional space using the t-SNE algorithm,
using functional scores and tissue-specific annotations as
features. The highest scores, defined by >0.97 quantile, for
the seven benchmarks are shown on Figure 2C. The high
scores for MpraNet and locations of the MPRA positives
are mapped onto the same embedding (Figure 2D).

The high-scoring variants for the functional benchmarks
tend to cluster in disjoint regions, although some parts show
overlaps. MPRA positives also tend to occur in the re-
gions where FIRE is enriched; however, most benchmarks
miss regions of MPRA positives or falsely identify regions
without MPRA positives. On the other hand, CADD and
FATHMM-MKL scores show concentrations in a region
with few positives. The MpraNet scores better track the
embedding regions where positives are located, suggesting
that MPRA functional effect occurs in a set of variants
that partially overlap but are not well-predicted by other
scores. Since these other benchmarks are input features for
the MpraNet model, this indicates that their characteristics
can be combined in a deep learning model to better predict
MPRA functional effect. These results reflect the central
aim of MpraNet, and validate the subsequent downstream
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Figure 2. Comparison with existing functional scores. (A, B) The performance of our model compared with other functional scores over the validation set
(20% of confirmed variants matched with background at 1:10 ratio), as measured by area under the ROC curve (A) And area under precision-recall curve
(B). (C, D) The MPRA positive variants from the validation set are embedded along with background using the t-SNE algorithm. (C) We highlight the top
3 percentiles of previously existing functional scores, showing they inhabit different regions of embedding space. (D) We show the location of confirmed
MPRA positive variants and the top 3 percentile of our MpraNet score.

characterizations of MPRA-specific effect in later sections.
However, we reference some additional experiments with
our model below to provide additional context to the re-
sults.

We consider the full list of candidates observed in no-
vaSeq and Tewhey to create an alternative validation set
(described further in Methods). Composed of only MPRA
positive and negative samples, this validation set contains
variants that were all selected by the same sampling scheme
implicating cis-eQTLs in the same region. Due to the simi-
larity of variants and the fact that some negatives may con-
tain enriched weaker signals that are currently not pass-
ing the significance level due to insufficient power, we ex-
pect MpraNet to have a lower discriminative performance
which is observed in both AUROC (0.85–0.69) and AUPR

(0.43–0.26) in Supplemental Figure S1. However, MpraNet
still marginally outperforms other functional scores. For
comparison, the best-performing benchmark GenoCanyon
achieves 0.66 AUROC and 0.31 AUPR. Although we are
more interested in discriminating the background genome
than the positive and negative MPRA samples, this test is a
valuable control that further indicates MpraNet is captur-
ing MPRA-specific effect.

We also examine an alternate training procedure that
instead leverages the MPRA negative samples from no-
vaSeq and Tewhey as training negatives. Since the negative
samples were candidate functional variants (eQTLs and/or
GWAS hits) in the same region, we hypothesize that a model
trained exclusively on MPRA candidates will be inadequate
to characterize variants genome-wide. We report the re-
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sults when implementing this alternate training procedure
(labeled MpraNet (+/–) and described further in Meth-
ods) in Supplemental Figure S2. We observe that both AU-
ROC (0.85–0.72) and AUPR (0.43–0.33) are reduced when
discriminating the background genome with this alterna-
tive training procedure. This indicates that the controlled
background set is providing valuable information related to
MPRA effect and lends itself to our aim of characterizing
MpraNet positives genome-wide. In summary, MpraNet
successfully discriminates MPRA-positives from the back-
ground genome and captures MPRA-specific effect better
than other functional metrics.

Genome-wide characterization of MPRA

Here we use the MpraNet predicted scores as a proxy for the
distribution of real MPRA signals to identify the distribu-
tions of MPRA effect relative to other characteristics of ge-
netic variation, including functional annotations, allele fre-
quency, and phenome-wide associations. In an effort to dis-
tinguish high MPRA signals from the background genome,
we define MpraNet positive variants as being in the top 95th
percentile of scores genome-wide.

Regulatory activities and other functional annotations.
First, we assess how MPRA signals are distributed rel-
ative to other regulatory signals. To do so, we use reg-
ulatory annotations specified by FAVOR (10), an open-
access web portal that assembles individual variant func-
tional annotation data including the following categories:
Variant Category, Epigenetics, Conservation, Transcription
Factors, Chromatin States, Local Nucleotide Diversity, Mu-
tation Density, Mappability and Proximity-To-TSS-TES.
For the following analyses, we randomly select 800 vari-
ants that are in the top 95th percentile of MpraNet scores
as the proxy MPRA signals, referred to as MpraNet posi-
tives, and 15 000 randomly selected variants from the back-
ground genome (of which ∼5% are expected to be pos-
itive). In each group, there is a proportionally equal set
of variants from each chromosome. The FAVOR annota-
tions of these two groups are compared with: (i) two-sample
independent t-tests where equal population variances are
assumed for quantitative annotations and (ii) chi-square
tests of independence of variables for qualitative annota-
tions. Significance thresholds are established after Bonfer-
roni correction for the number of tests performed within a
graphic.

Promoter and enhancer regions are widely accepted to be
integral in the DNA binding of transcription factors and
regulation of gene expression (14). Enhancer mediated acti-
vation of gene expression is mediated by chromatin looping
bringing enhancers close to promoters (14). We thus expect
to find that MPRA signals are considerably higher in these
regions. GeneHancer (15), SuperHancer (14), and CAGE
(16) are databases of human enhancer and promoter loca-
tions. Variant scores in these categories are binary depend-
ing on a variant’s presence within a documented promoter
or enhancer. Figure 3a reveals that MpraNet positives are
indeed significantly more likely to be found in these regions,
with all associated P-values < 1.0e–22 after chi-square tests.
This initial result confirms the validity of this nature of anal-

ysis and sets the stage for the inspection of other annota-
tions with less certain expectations.

We assess the distribution of positives within differ-
ent types of genomic regions between the positive and
background sets in Figure 3B. A chi-square test reveals
that the distributions are significantly different from each
other (P-value < 1.0e–30), with positives underrepresented
in intergenic regions and over-represented in all others.
This result is consistent with literature expectations about
the location of regulatory activity (17). Intergenic regions
reside further from transcription relevant sites than in-
trons, upstream/downstream regions, UTRs and exons
(17). Human intergenic prevalence is believed to be ∼50%
(18) and intronic prevalence is believed to be ∼35% (19).
These numbers are close to the observed proportions
in the background genome of 43.2% and 36.3% respec-
tively, further emphasizing the significance of MpraNet
positives residing in 16.1% intergenic and 60.1% intronic
areas.

These analyses are extended further using the same vari-
ants as above to various quantitative functional scores spec-
ified by FAVOR. We compare the FAVOR functional scores
between the proxy MPRA signals and background genome
using two-sample independent t-tests. We present solely the
P-values for brevity’s sake in Figure 3C. Integrative anno-
tation categories are bolded and summarize their subcat-
egories to the right. For example, the integrative category
Proximity-To-TSS-TES is followed by its defining cate-
gories: minimum distance to a transcription start site (TSS)
and minimum distance to a transcription end site (TES).
These subcategories along with the major category have sig-
nificantly different scores between positives and the back-
ground genome. This corroborates literature expectations
considering the TSS’s importance in regulating RNAPII
(20) and TES’s importance in maintaining the transcrip-
tional machinery(20).

The Transcription Factor major category measures over-
lap with documented transcription factor sites, and un-
derstandably these annotation categories all present higher
scores of overlap in MpraNet positives. Transcription fac-
tor mediated regulation of expression is one of the pri-
mary mechanism by which MPRA experiments aim to as-
sess functionality (21).

MpraNet has a strong relationship with the Epigenetic
major category and chromatin states subcategories (no as-
sociated major category). The Epigenetic summary category
shows a significant effect along with the vast majority of
its subcategories. Epigenetic factors, including chromatin
states, confer heritable changes to DNA and are known to
effect gene expression (3,22). These results are thus unsur-
prising, but warrant further research into the apparent dif-
ferences between different epigenetic markers and MPRA
signal. For example, the repressive marks (H3K9me3 and
H3K27me3) have exceedingly significant P-values. Both the
DNA methylation (H3K27ac and H3K4me1) and modi-
fications known to be added as a consequence of tran-
scription (H3K36me3 and H3K79me2) types of epigenetic
markers have one category with a much larger degree of sig-
nificance than the other. The presence of chromatin state
structures (such as cHmm E14 and CHmm e3) that are sep-
arated by MpraNet positive variants is expected but the rea-



Nucleic Acids Research, 2022, Vol. 50, No. 20 11447

A

B

C

D

E

F

Figure 3. Genome-wide characterization of MPRA. (A) The prevalence of MpraNet defined positive and background variants are compared for promoter
and enhancer regions. (B) The distribution of regulatory regions in which MpraNet positives and the background genome are located is compared. (C)
The functional annotation scores of MpraNet positive and background variants are compared. (D, E) The mean MpraNet phred score of common and
rare variants are compared and then the allele frequencies of MpraNet positives and the background genome are compared. (F) MpraNet performance is
measured between the top hits of a PheWAS and a background set.
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son for varying degrees of significance amongst other chro-
matin organizations warrants further inspection.

Interestingly, the Conservation annotations are not con-
trasted heavily by MpraNet positives and the background
genome. Conservation has been used as a proxy for regu-
latory importance in other tools such as CADD (23) and
presents a reasonable candidate for MpraNet association.
This result may be due to conservation being more impor-
tant in the context of regulatory coding variants, whereas
MPRAs are specialized for non-coding regions (21). This
finding warrants further research concerning the effect of
conservation on MPRA related regulatory importance.

Local Nucleotide Diversity has a strong relationship with
MpraNet score and each of its subcategories are signifi-
cant. This result is corroborated by previous work which
has shown that nucleotide diversity is far higher in inter-
genic regions and more conserved in gene bodies (24). In
fact, nucleotide diversity sharply declines in regulatory rich
regions such as 250 bp upstream regions as well as the 3’
UTR (24). It is thus expected that MpraNet should differ-
entiate between regions of higher and lower nucleotide di-
versity.

Mappability is a category which does not have a strong re-
lationship with MpraNet score. Mappability tends to vary
significantly between different genes, and thus does not
present an overall indicator of functionality (25). There is
little evidence to suggest that mappability is correlated with
regulatory activity in other studies.

Interestingly, we also find that the Mutation Density ma-
jor category is significantly distinguished by MpraNet pos-
itives from the background genome, even though this is not
a very interpretable category in this context. This effect is
not as dominant as any of the other significant major cate-
gories. Mutation density generally characterizes how often
mutations are found within a given range of DNA (26). One
of the more likely explanations for this significance is the
fact that mutation rates are often determined by chromatin
structure, as was shown for cancer genomes (26). Chromatin
organization was previously shown to have an MpraNet ef-
fect. Should mutation density’s relationship to chromatin
structure explain its relationship with MpraNet scores, this
might explain why the P-values are less significant consid-
ering that this is an indirect connection.

We further contrast the same set of random background
variants with 1285 novaSeq defined positives (same variants
as used during model training). The novaSeq (11) MPRA
acts as a ground-truth for MpraNet and we expect simi-
lar findings. Replicating Figure 3A and B is not feasible
due to the lack of novaSeq positives within different reg-
ulatory regions, but the equivalent to Figure 3C (Supple-
mentary Figure S3) shows similar results when comparing
functional annotation scores of positive and random back-
ground variants. The similarity between MpraNet positives
genome-wide and novaSeq positives further suggests that
MpraNet is an accurate MPRA proxy signal.

Allele frequency. Most previous MPRA experiments have
focused on GWAS-identified common variants (minor al-
lele frequency, MAF≥0.01). Rare variants (MAF < 0.01)
are believed to be more harmful than common ones but
they were understudied by functional experiments (27). For

most traits, genetic association studies have shown an in-
verse relationship between the variant’s effect size and its
MAF. This relationship is more pronounced for traits most
strongly influenced by natural selection, compared with
quantitative phenotypes or late-onset diseases. Here we use
MpraNet scores to assess the overall difference in regula-
tory importance between rare and common variants with a
new randomly chosen sample of 40k variants (equally dis-
tributed amongst each chromosome). We obtained the allele
frequency of each variable from the Genome Aggregation
Database (gnomAD) (28).

Unlike the effect on disease phenotypes, Figure 3d reveals
that common (mean ∼ 4.2) and rare (mean ∼ 4.3) vari-
ants do not have a significantly different MpraNet score
(P-value > 0.05). Moreover, MpraNet positive and back-
ground variants do not have significantly different allele fre-
quencies (P-value > 0.05). This is consistent with our anal-
ysis of existing functional scores, where the scores that rep-
resent conservation or selection pressure (e.g. CADD, Fit-
Cons2 and LINSIGHT) are not predictive of functional
effect characterized by MPRAs. Moreover, the conserva-
tion scores in FAVOR are not significantly associated with
MpraNet score in the previous section. The similarity in
behavior between conservation and allele frequency is un-
surprising given the intrinsic relationship between these two
metrics.

Association with disease phenotypes. We evaluate if pre-
dicted MPRA positives are more likely to be associated with
disease phenotypes in PheWAS and GWAS. To this end, we
assess whether significant variants identified by association
studies also have higher MpraNet scores. The UK-BioBank
(29) is a large biomedical database from which 20k PheWAS
generated top hits are retrieved. Top hits are defined as hav-
ing a P-value < 10−6 from the PheWAS, of which only the
top 2000 for every phenotype are considered. In this case, we
select a background set that is percentile matched based on
allele frequency and retrieved randomly from each chromo-
some. Each top hit thus has a corresponding random back-
ground variant. Figure 3F separates top hit variants based
on their implicated disease major category and compares
the MpraNet scores of these top hits vs. the random back-
ground set.

Overall, the top hits have a significantly higher mean
MpraNet score (mean = 7.00) than allele frequency
matched background variants (mean = 6.34) with a P-
value < 1e–10 after a t-test. Figure 3F shows the P-values
after t-tests for the MpraNet scores of each disease cate-
gory against their specific background set. Variants impli-
cated in the circulatory system tend to have the most regula-
tory importance as defined by our screen, however, each dis-
ease category assigns a higher regulatory importance to top
hits than the background. This version of MpraNet is spe-
cific to the lymphoblastoid cell line (LCL) which may affect
which phenotypic categories stand out. This may explain
why the Circulatory system is distinguished by MpraNet
score but the General Symptoms category is not. LCLs are
created by modifying peripheral blood lymphocytes (PBL)
and are often used as their surrogates for medical discovery
(30), which explains why their functional behaviors would
be strongly linked.
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Distribution of MPRA positives. We aim to evaluate how
MPRA positives are distributed across the genome. We
hypothesize that MpraNet positives are clumped together
due to the presence of regulatory rich and void regions. A
large region in Chromosome 1 spanning base pair 70 Mb
to 80 Mb according to the GRCh37 reference is chosen as
a demonstration. We measure the proportion of MpraNet
positives within non-overlapping 1 kb regions to identify es-
pecially dense MPRA locations. Figure 4A reveals the con-
tinuous set of MpraNet scores in the demonstration region.
The y-axis defines different smoothing widths applied to
these scores. The presence of high and low density MPRA
signal regions can be seen and already it is apparent that
MpraNet scores are not evenly distributed.

In order to quantify this result, we consider the
same demonstration region except we divide it into non-
overlapping and continuous 1kb regions absent of smooth-
ing; in total this results in 10 000 1kb regions. In each of
these regions, the MpraNet positive proportion is calculated
by counting the number of MpraNet positives (defined as
being in the top 95th percentile genome-wide) and divid-
ing by 1000. Figure 4b presents the frequencies of MpraNet
positive proportions. Among the 10 000 1kb regions, ∼84%
contain exactly 0 MpraNet positives and ∼0.48% are 100%
positive. The mean MpraNet positive proportion across all
1 kb regions is ∼5% (by the MpraNet positive definition)
representing a sum of 50 positives. A clear indication that
MPRA signal is clumped together is that when one finds a
single positive variant, the mean positive proportion in the
surrounding 1 kb region jumps up to 30.20% (3020 posi-
tives).

We contrast MpraNet with a Uniform distribution in
which positives are defined in the same manner – by scor-
ing in the 95th percentile. With a uniform distribution of
scores, 95% of 1kb regions contain MpraNet positive rates
within 3.7% and 6.4%. Defining any MpraNet positive pro-
portion outside of this range to be an outlier, 89.07% of
MpraNet regions are significantly negative––called inactive
regions––while 9.98% are significantly positive––called ac-
tive regions. We thus find that 99.05% of 1kb regions are ei-
ther inactive or active. Kolmogorov-Smirnov test for good-
ness of fit confirms that the two distributions are signifi-
cantly different with a P-value < 1e–100. We propose that
finding the MpraNet positive proportion in 1 kb regions can
help the scientific community locate areas of high and low
MPRA signal. Queries of this nature can also be localized
to genes/areas of interest for researchers. Moreover, active
and inactive MPRA regions of different sizes can be found
by changing the bp width parameter.

Incremental learning for designing future MPRA experi-
ments

While the current MpraNet scores can be used to assist
MPRA experiments to increase precision, future MPRA
outputs can also be used to further improve the perfor-
mance of the deep learning model. We explore the improve-
ment of classification performance when additional MPRA
functional variants are added to the training set. In the
starting experiment, only 1000 labeled variants are available
(100 MPRA positives matched with background at 1:10 ra-

tio). Subsequently, to simulate data becoming available as
MPRA experiments are performed, we add 50 MPRA pos-
itive variants matched with background at each iteration,
ending when all currently available MPRA positives have
been added (corresponding to our actual training set). To
assess the effect of different data distributions, at first we
only add positives from the Tewhey et al. experiment and
then the novaSeq experiment. The validation performance
at each iteration (Figure 5A) suggests that our method
steadily improves as more data becomes available though at
a slower rate than in the initial stages. This simulation indi-
cates the potential of leveraging MPRA and deep learning
in a feedback loop to accelerate the discovery of functional
variants.

MpraNet can be applied across the genome to score
variants using available functional predictors, identifying
high-scoring variants as experimental candidates for fu-
ture MPRA studies. The original output score for a vari-
ant ranges from 0 to 1, and we convert it to a Phred score
as described in the method section. Then we select a clas-
sification threshold above which the variant is predicted as
functional. For any given threshold we estimate the recall
(the fraction of total functional candidates discovered) of
the method and the percent of variants marked functional
based on the validation set. We repeat this for each bench-
mark. For a new candidate variant pool, we can then com-
pute the fraction of top-scoring variants that need to be
experimentally assayed in order to detect a certain percent
of the true functional variants. As shown in Figure 5B, for
any desired recall, MpraNet requires validation of far fewer
variants than any other method. Equivalently, at any given
experiment size, MpraNet detects a much higher propor-
tion of true MPRA functional variants compared to other
methods.

Given a budget to experimentally validate a fixed number
of variants, we can further estimate the precision (fraction
of tested variants that are functional) of using MpraNet as
a candidate screen for MPRA. This uses the estimated recall
based on the fraction of top-scoring variants tested (Figure
5B) and also requires making an assumption of the underly-
ing prevalence of MPRA functional SNVs. Specifically, we
estimate the precision (or proportion of variants selected for
validation that are functional) of our approach using Bayes’
rule:

P (+ | predict+) = P (predict + |+) ∗ P (+)
P (predict +)

where P (+|predict +) is genomic precision; P (predict + |+) is
the recall (sensitivity) of our method as estimated from the
validation set, P (+) is the (unknown) prevalence of MPRA
positive variants across the genome, and P (predict +) is the
probability that a given non-coding variant is selected for
MPRA. Since our score is continuous, a threshold is chosen
based on the number of positive variants desired, thus fixing
P (predict +).

We illustrate the resulting precision in Figure 5c at three
possible levels of prevalence (0.005, 0.01, 0.02). To give
intuition, we assume that the candidate pool of variants
are the 9.2 million SNVs from the 1000 Genomes Project
and convert the top tested percentile to the correspond-
ing number of tested variants (e.g. in the pink bars, testing



11450 Nucleic Acids Research, 2022, Vol. 50, No. 20

Figure 4. Distribution of MpraNet positives. (A) Smoothed MpraNet scores with varying smoothing widths in the Chromosome 1 demonstration region
spanning location 70–80 MB in the GrCH37 reference genome. (B) The proportion of MpraNet positive variants in non-overlapping and consecutive 1 kb
regions from the demonstration region. Density of MpraNet positives is measured against a uniformly random sequence of scores bearing the same mean.
Inactive and active 1kb regions are defined as being outside the uniform distribution’s 2.5th percentile and 97.5th percentile scores respectively.

100 000 SNVs is equivalent to testing the top 100 000/9.2
mil = 0.011 percentile). For comparison, the precision of
the existing MPRA experiments are indicated with lines:
Tewhey et al. with 0.030 (678/22 803) and novaSeq with
0.057 (1684/29 685). We see that for any reasonable preva-
lence and similar experiment size, MpraNet detects func-
tional variants at much higher precision. The increased ra-
tio of positive to assayed variants translates into more cost-
effective experiments.

DISCUSSION

This work shows that our unique feature space compris-
ing epigenetic and functional markers, combined with deep
learning techniques, can distinguish MPRA-positive SNPs
better than any alternative method in the lymphoblastoid
cell line. We expect the scientific community to benefit from

the insights gained from characterizing MpraNet positives
across the genome, as well as the model’s efficacy at pri-
oritizing causal variants for increased precision of future
MPRA experiments. The proposed version of MpraNet
represents a precursor for future models interested in differ-
ent cell lines, functional assays, and allelic effects. Moreover,
we expect to find that feature spaces similar to our own will
be able to characterize other complex genetic traits such as
those observed in association studies. It is of great interest
to extend the proposed version of MpraNet to the study of
different cell lines, allelic effects observed in MPRA, and
trans-eQTL ground-truth positives.

Prior work has developed annotations aimed at assess-
ing functional effect, using a wide variety of approaches,
but our results show that they do not transfer well to dis-
tinguishing MPRA function from background. Another re-
lated work, GenoNet, was trained to classify MPRA posi-
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Figure 5. Incremental learning for designing future MPRA experiments. (A, B) MpraNet performance on the validation set increases with the training set
size, with MPRA positives and background fixed at a 1:10 ratio. This suggests incorporation of results from future MPRA experiments can further improve
MpraNet. (C) MpraNet gives a continuous score from 0 to 1. Choosing a threshold to select top scoring variants gives varying recall on the validation set. In
comparison with other benchmark scores, MpraNet achieves higher recall at any threshold. (D) For any fixed threshold and corresponding recall, MpraNet
precision is estimated using Bayes’ rule, assuming a value of MPRA function prevalence. Here we estimate precision for four thresholds corresponding to
testing the 25 000 to 100000 top scoring variants from the 1000 Genomes Project. For example 100 000 (pink) corresponds to the top 0.011 percentile.

tive from MPRA negative candidates. Because MPRA can-
didates are generally from common variant areas (or eQTL
regions) and contain many close variants in linkage disequi-
librium, the insignificant variants from MPRA are not gen-
erally representative of the genomic background. Such prior
methods underperform as a genome-scale screening tool as
shown in our results. MpraNet achieves an AUROC and
AUPR of 0.85 and 0.43, respectively, surpassing all other

functional metrics at predicting MPRA specific functional
effect.

MpraNet’s validation performance will translate to im-
proved cost-efficiency and design of future MPRA experi-
ments. We show that MpraNet’s genomic precision exceeds
that of Tewhey and novaSeq, as well as other functional
scores (Figure 5). This will increase the number of MPRA
positive variants found within a set of candidate SNVs. By
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incrementally supplying more of our dataset to MpraNet,
we see continual increases in AUROC and AUPR perfor-
mance. This suggests that retraining MpraNet after use with
future MPRAs will aid the model.

The success of our model permits a variety of analy-
ses concerning functionality on a genome-wide scale. Us-
ing MpraNet scores confers several advantages to learning
about genomic regulation such as: a genome-wide and con-
tinuous set of scores, access to non-coding and rare vari-
ants, and access to a set of random control SNVs that aren’t
normally present in MPRA experiments. Through the se-
lection of positive MpraNet variants in the top 95th per-
centile of scores genome-wide, we were able to contrast the
background genome with respects to (i) promoter and en-
hancer prevalence, (ii) intergenic and intronic prevalence
(amongst other types of regulatory regions) and (iii) several
integration annotation categories specified by FAVOR: Epi-
genetic, Transcription Factor, Proximity-To-TSS-TES, Mu-
tation Density, Local Nucleotide Diversity and Chromatin
States. MpraNet score was also shown to significantly differ
between PheWAS generated top hits and the background
genome. However, allele frequency did not show a MpraNet
dependent effect, and neither did the integrative Conser-
vation or Mappability categories specified by FAVOR. We
also examined the distribution of MpraNet positives and
found that positives exist in significantly active or inactive
1kb clusters. We hope that researchers continue to expand
on these analyses to characterize functional variants in the
genome. We propose that MpraNet can serve to not only in-
crease the precision of future MPRAs but also as a tool to
undercover underlying mechanisms behind expression reg-
ulation.

Although MpraNet has shown success at replicating
MPRA results based on model validation, as well as cor-
roborating common findings relating to functional regula-
tion, there are several limitations imposed by the restricted
selection criteria observed in novaSeq and Tewhey. Both
assays strictly observe cis-eQTLs and are biased towards
variants identified by association studies. With a larger fea-
ture space, and a larger number of MPRA experiments
with which to derive ground truth positives, MpraNet can
be further improved by the incremental learning approach.
These MPRAs test allelic and expression effects in the lym-
phoblastoid cell line contributing to a cell-line and site-
specific functional effect. We refrain from including fur-
ther MPRA or STARR-seq based datasets that don’t meet
these criteria to prioritize the downstream characterization
of MPRA signal genome-wide. The motivation for this in-
clusion strategy stems from our findings that the prediction
of functional effects is sensitive to the training data (Figure
2) and previous work has shown that MPRA predictions are
not transferable across cell lines (31). We especially consider
the extension of MpraNet to non-site specific effects such as
the allelic effects studied within the lymphoblastoid cell line
in Griesemer et al. (32) and Kalita et al. (33). With a poor
discriminative performance at distinguishing sites contain-
ing at least one significant allelic effect (AUROC of 0.57 and
0.56 respectively), preliminary results suggest that the effect
captured by MpraNet is too specific for this generalization.
It is of great interest to extend MpraNet to other cell types
as MPRA labels become increasingly available, and further

explore how the proposed methods can be applied to allelic
effects.

MATERIALS AND METHODS

MPRA datasets

MPRA positives. We used positive labeled variants from
the GM12878 lymphoblastoid cell line (LCL), as identified
by two experiments. First, Tewhey et al. identified 842 em-
Vars out of 32 373 variants in 3642 eQTLs and control re-
gions in LCLs. After excluding the emVars that cannot be
mapped to a genomic location using the Ensemble database
and without available functional scores, we define the re-
maining 678 emVars out of 22 803 as positive variants.

The second set of positives comes from the novaSeq
(11) MPRA which aimed to analyze the distribution of
causal variants within eQTL and GWAS loci, with a can-
didate pool of 32 144 variants in the lymphoblastoid cell
line (LCL). After excluding variants without available func-
tional scores, we define the 544 out of 29 685 variants with
both expression effect and allelic effect q-value <0.01 as
positive variants. Combining the MPRA experiments re-
sults in 1222 total positive variants.

Background variants. Each MPRA positive variant was
matched with background variants, which are assumed to
be negative labels for training a classification model. We
noted that MPRA candidates tend to have high allele fre-
quencies since they are generally selected from common
variant pools. This can cause a confounding effect when
matched with background variants from the genome since
random coordinates are usually of low allele frequency.
Therefore, we match each positive variant with background
SNVs from the gnomAD database by allele frequency at a
1:10 ratio, reflecting the low prevalence of functional vari-
ants suggested by existing MPRA experiments. Background
SNVs are also matched with respect to proximity to tran-
scription sites to control for this potential confounding ef-
fect. This process has an inherent error rate because MPRA
functional variants may be randomly selected as the back-
ground. However, the low MPRA discovery rates suggests
that this occurs with very low probability.

In order to match on allele frequency, the distribution of
allele frequencies of the positive set is recorded and the per-
centile boundaries are calculated. A matching variant must
have an allele frequency in the same percentile boundary
as the positive it is matched against. A similar procedure
is conducted for the proximity to transcription sites metric.
This value is extracted from the Phred adjusted Proximity-
To-TSS-TES score derived from the Favor (10) database. We
use quintile matching to account for the fact that there is
low variation of Proximity-To-TSS-TES within the positive
candidates and with consideration for the difficulty of find-
ing control variants that are jointly matched between these
two effects.

Features. For each variant, 44 functional genomic scores
from regBase and Eigen were obtained as predictive fea-
tures. When available, both raw and PHRED scaled ver-
sions of the scores are included. In addition, epigenetic an-
notations from the Roadmap Epigenomics Project were ex-
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tracted for each variant in the MPRA datasets, to produce
1016 more features for each non-coding site. The features
correspond to eight epigenetic markers assessed in 127 dif-
ferent cells and tissues, including DNase I hypersensitivity
and histone methylations. The epigenetic annotations are
continuous non-negative values representing P-value scores
for each epigenetic marker. In the event of multiplicate en-
tries for a SNV representing allelic variation, scores are av-
eraged across alleles. In addition to the variant-specific an-
notations described above, we extracted neighboring anno-
tations for the LCL tissue from 1000 bp in both directions
for each variant. Since Roadmap is provided at 25bp resolu-
tion, this results in a sequence of 81 annotations (including
the variant at the center) for each of eight markers.

Functional prediction scores have previously been pub-
lished for tasks such as predicting regulatory function.
These scores were obtained from the regBase database.
These are aggregated across the whole genome, and in
addition, three additional meta-predictors are developed
with XGBoost using the scores as features. We incorpo-
rated these meta-predictors as features as well. We also ob-
tained Eigen scores containing non-tissue-specific annota-
tions over the genome, including coding and non-coding
variants. Like regBase, a number of different models are
compiled and aggregated, and they add their own meta-
predictors using the models as features. However, instead
of using a supervised method, they model each predictor as
conditionally independent given true variant function and
apply spectral partitioning.

Alternate validation set comprising only novaSeq and Tewhey
candidates. While our primary task is in discriminating
MPRA positive variants from their matched backgrounds,
we consider an additional validation set where MPRA can-
didates which do not meet the significance thresholds in the
novaSeq and Tewhey experiments are used as the negatives
instead. To reduce the chance of including false negatives,
we sample from candidates which have adjusted P-value
above 0.5. As before we keep a 1:10 ratio of positives to neg-
atives.

Alternate training set comprising only novaSeq and Tewhey
candidates. Using the same procedure as above, we also
construct an alternative training set by matching positives
with MPRA negative candidates. We train a model on this
dataset following the same procedure as described in the
next section. This model serves to evaluate whether a model
that uses the negative candidates is able to generalize at the
genomic level. We refer to this model as MpraNet (+/–) and
our original primary model as MpraNet (+/bg).

MpraNet model training

Model. Our method aims to distinguish potential MPRA
positive variants from genomic background for the LCL
(E116) cell line. We model the functional status of a SNV
location as a function of (i) E116 annotations at the SNV
and around the SNV in a 1000 base-pair window in each
direction, (ii) non-E116-specific annotations at the SNV lo-
cation, and 3) other functional scores at the SNV location.

Our model architecture uses convolutional layers on the
E116 annotations. Non-LCL annotations and other func-
tional scores are incorporated using a fully connected layer.

Roadmap annotations are at 25 base-pair resolution, giv-
ing a sequence of length 81 for eight different annota-
tions. Treating this data as a one-dimensional sequence with
eight channels, our CNN architecture consists of two one-
dimensional convolutional layers with leaky ReLU activa-
tion functions: the first with 32 kernels of width 4, padding
1 and the second with 32 kernels of width 5. Each convo-
lutional layer is followed by an average pooling layer with
width 2. Meanwhile the at-site annotations and scores are
passed through a fully connected layer with 400 neurons.
These outputs are concatenated and passed through a fully
connected layer with 256 neurons which is finally fed into a
sigmoid classification node. Each fully connected layer uses
a sigmoid activation function.

Training. We randomly select 20% MPRA positives and
their matched controls as the holdout test data. The remain-
ing data is used for training. The model F(x) was optimized
to minimize the binary cross-entropy loss with L2 regular-
ization. The model was trained for 30 epochs at batch size
128 using the Adam optimizer with learning rate 1e-4, with
L2 regularization set at 5e-4. These hyperparameters were
tuned using 5-fold cross-validation over the training data.

PHRED MpraNet score. Throughout this report,
MpraNet scores are transformed in order to increase
interpretability. First, raw scores are mapped to a percentile
rank resulting in a uniform distribution between 0 and
1. For example, a variant with score 0.95 has a higher
score than 95% of variants. Then, they are transformed
according to the following equation:

f (x) = −10 ∗ log10 (1 − x)

For classification applications, we can determine a
threshold above which variants are predicted positive. The
percentile transform is monotone so thresholds can be con-
verted appropriately without impacting classification per-
formance.

Github

The code supporting our experiments is available at https:
//github.com/fl16180/MpraScreen.

Online Resources
FAVOR annotations: http://favor.genohub.org/
Allele Frequency Scores from gnomAD: https://gnomad.

broadinstitute.org/
UK-BioBank summary statistics: https://pheweb.org/

UKB-SAIGE/top hits
UCSC Genome Browser: https://genome.ucsc.edu/
novaSeq MPRA: https://github.com/nsabell/mpra-v2

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

https://github.com/fl16180/MpraScreen
http://favor.genohub.org/
https://gnomad.broadinstitute.org/
https://pheweb.org/UKB-SAIGE/top_hits
https://genome.ucsc.edu/
https://github.com/nsabell/mpra-v2
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkac990#supplementary-data
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