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ABSTRACT

Understanding the function of non-coding ge-
nomic sequence variants represents a challenge for
biomedicine. Many diseases are products of gene-
by-environment interactions with complex mecha-
nisms. This study addresses these themes by mech-
anistic characterization of non-coding variants that
influence gene expression only after drug or hor-
mone exposure. Using glucocorticoid signaling as
a model system, we integrated genomic, transcrip-
tomic, and epigenomic approaches to unravel mech-
anisms by which variant function could be revealed
by hormones or drugs. Specifically, we identified cis-
regulatory elements and 3D interactions underlying
ligand-dependent associations between variants and
gene expression. One-quarter of the glucocorticoid-
modulated variants that we identified had already
been associated with clinical phenotypes. However,
their affected genes were ‘unmasked’ only after glu-
cocorticoid exposure and often with function rele-
vant to the disease phenotypes. These diseases in-
volved glucocorticoids as risk factors or therapeu-
tic agents and included autoimmunity, metabolic and
mood disorders, osteoporosis and cancer. For exam-
ple, we identified a novel breast cancer risk gene,
MAST4, with expression that was repressed by glu-

cocorticoids in cells carrying the risk genotype, re-
pression that correlated with MAST4 expression in
breast cancer and treatment outcomes. These ob-
servations provide a mechanistic framework for un-
derstanding non-coding genetic variant-chemical en-
vironment interactions and their role in disease risk
and drug response.

INTRODUCTION

Many genetic sequence variants associated with human dis-
ease have been discovered, but the task of understanding the
function of those variants remains challenging since most of
them map to non-coding regions of the genome (1,2). One
approach to address this challenge has been to associate
these variants with gene expression, identifying so-called
expression quantitative trait loci (eQTLs). Large-scale stud-
ies such as the Genotype-Tissue Expression (GTEx) Project
have significantly improved our understanding of steady-
state eQTLs across different tissues (3). However, it is in-
creasingly understood that eQTLs can be dynamic – that
is, sequence variants become associated with variation in
gene expression only after specific environmental stimu-
lus (4). For example, variants which appear to be ‘silent’
at baseline become functional after pathogen invasion (5).
Our group (6–8) and others (9,10) have observed a series
of uniquely ‘pharmacologic’ eQTLs, hereafter referred to
as ‘pharmacogenomic (PGx)-eQTLs’, for which eQTL be-
havior is elicited or significantly amplified in the presence
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of a drug or hormone. These dynamic eQTLs not only ex-
plain novel functions of non-coding variants but also pro-
vide valuable insight into molecular mechanisms underlying
gene-by-environment interactions, interactions which could
play important roles in complex disease pathophysiology
(11).

While dynamic eQTLs have been identified in several
conditions, the mechanisms by which the impact of ge-
netic variants on gene expression is ‘unmasked’ by envi-
ronmental stimuli remain largely unknown. This study was
designed to interrogate mechanistically the interaction be-
tween non-coding genetic variants and glucocorticoids, im-
portant agents used to treat a wide range of disease but
at times causing serious side-effects (8,12–17), and their
role in disease risk by integrating a series of pharmacoge-
nomic and pharmacoepigenomic datasets. Specifically, our
study design (Figure 1A) began with the identification of
PGx-eQTLs using genome-wide single-nucleotide polymor-
phisms (SNPs), and RNA-seq and GR-targeted ChIP-seq
before and after exposure to glucocorticoids in immor-
talized human lymphoblastoid cell lines (LCLs) of differ-
ing genomic backgrounds. To validate drug-dependent ef-
fects, we treated these cells with cortisol, a GR agonist,
and the drug CORT108297 (C297), a selective GR mod-
ulator which, in our studies, displayed antagonist proper-
ties when administered with cortisol and partial agonist
activity by itself. Cortisol and its sister compounds are
used routinely in the clinic to treat immunity-related dis-
eases (13,18,19), while C297 is a selective GR modulator
currently being tested for the treatment of post-traumatic
stress disorder (trial NCT04452500) and Alzheimer’s dis-
ease (trial NCT04601038). We then applied a series of epige-
nomic techniques including integrative chromatin state pre-
diction (ChromHMM), a massively parallel reporter gene
assay (STARR-seq) +/− drugs, and 3D chromatin con-
formation capture targeting cis-regulatory elements bound
by the active enhancer- and promoter-associated histone
mark acetylated histone H3 lysine 27 (H3K27ac HiChIP)
+/− drugs. The integration of these datasets made it pos-
sible for us to determine underlying mechanism(s) and
to generate additional evidence for associations underly-
ing the observed PGx-eQTLs. Finally, we could then iden-
tify which of the discovered PGx-eQTLs might help to ex-
plain disease risk mechanisms by overlapping our SNPs
with significant signals from publicly available genome-
wide and phenome-wide association studies (GWAS and
PheWAS).

MATERIALS AND METHODS

Generation of SNP data

287 lymphoblastoid cell lines (LCLs) were obtained from
the Coriell Institute. DNA from these 287 LCLs was geno-
typed with the Affymetrix Human SNP Array 6.0 at the
Coriell Institute, and with the Illumina HumanHap550K
and HumanExon510S-Duo Bead Chips in our laboratory.
The genotype data were deposited in the National Center
for Biotechnology Information Gene Expression Omnibus
(GEO accession: GSE23120) (20).

Cell culture and drug conditions

LCLs were cultured in RPMI 1640 supplemented with
15% FBS and 1% penicillin/streptomycin. A549 (ATCC®)
cells were cultured in F12-K supplemented with 10% FBS
and 1% penicillin/streptomycin. MCF-7 (ATCC®) cells
were cultured in EMEM supplemented with 10% FBS
and 1% penicillin/streptomycin. HCC1954 (ATCC®) cells
were cultured in RMPI 1640 supplemented with 10% FBS
and 1% penicillin/streptomycin. Cell culture conditions for
these cell lines were 37◦C and 5% CO2. MDA-MB-231
(ATCC®) cells were cultured in L-15 supplemented with
10% FBS. Cell culture condition for MDA-MB-231 were
37◦C without CO2.

Before glucocorticoid treatment experiments, all cells
were grown in 5% charcoal-stripped media for 48 h. Drug
conditions and dosages were as follow: (i) Vehicle (dimethyl
sulfoxide (DMSO) 0.1% and ethanol 0.1%), (ii) hydrocor-
tisone 100nM (Sigma Aldrich, dissolved in ethanol) plus
DMSO 0.1%, (iii) CORT108297 100nM (C297, Achem-
Block, dissolved in DMSO) plus ethanol 0.1%, (iv) hydro-
cortisone 100 nM plus C297 100 nM (hydrocortisone is the
name for the hormone cortisol when supplied as a medi-
cation). Physiologically relevant dosages (<1000 nM) and
time points were optimized based on strongest induction
of mRNA expression of GR-responsive canonical genes
FKBP5 and TSC22D3 before saturation point.

RNA-sequencing experiments

Thirty steroid-starved LCLs with similar expression of GR
selected from the 300-LCL panel (Supplementary Table
S1) were subjected to the four drug exposure conditions
in serum-free media for 9 h. After treatment, cells were
pelleted, and total RNA was extracted with the RNAeasy
Mini Kit per manufacturer’s instruction (Qiagen). DNase
on-column treatment was performed with the DNase I set
(Zymo). RNA integrity number for all samples was 10.
RNA-seq libraries were prepared with the TruSeq RNA
Library Prep Kit v2 (Illumina). Paired-end sequencing
2 × 100 bp was conducted on an Illumina HiSeq 4000 with a
sequencing depth of ∼25 million paired-end reads per sam-
ple. Raw RNA sequencing reads were aligned to the human
genome GRCh37 (hg19) using STAR (21). Raw counts were
generated with the Python package ‘HTseq’ (22) and nor-
malized using conditional quantile normalization method
(CQN). Only genes that passed normalized counts of 32 in
at least 15 cell lines and one drug condition were retained.
Downstream differential expression analysis was conducted
with the R package ‘EdgeR’ (23) using a quasi-likelihood
model.

Glucocorticoid-targeted chromatin immunoprecipitation
(ChIP)-sequencing experiment

Steroid-starved GM17261 cells were subjected to the
four drug exposure conditions in serum-free media for
1 h. Twenty million cells for each condition were then
cross-linked with 1% methanol-free formaldehyde (Thermo
Fisher) for 10 min at room temperature. The reaction was
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Figure 1. Conceptual framework for the study. (A) Experimental design used in this study. ChromHMM is a software used to annotate chromatin states from
epigenomic data. STARR-seq stands for self-transcribing active regulatory region sequencing. Cortisol is a GR agonist, C297 is a GR modulator which acts
as an antagonist when administered together with cortisol and a partial agonist by itself. (B) Heatmap of differentially expressed genes (FDR < 0.05) after
four treatment conditions across 30 LCLs showing drug-dependent patterns of gene regulation. Rows represent individual cell lines, and columns represent
individual genes. (C) GR-targeted ChIP peak intensity after normalization to input across the 4 treatment conditions used shows drug-dependent patterns
similar to those of RNA-seq. (D) Overlap of GR-targeted ChIP-peaks across 4 treatment conditions shows that C297 also acts as a partial agonist since the
majority of C297-induced GR peaks overlapped with cortisol-induced peaks. (E) The distribution of GR-targeted ChIP peaks shows major enrichment in
intronic and intergenic regions. (F) The top three de novo motifs identified by HOMER for GR-targeted ChIP-seq peaks after cortisol or C297 treatment
demonstrates peak specificity for GR.
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then stopped with 125 mM glycine for 5 min at room tem-
perature and the pellets were frozen at −80◦C prior to
extraction. Chromatin preparation for ChIP-seq was per-
formed as described by Zhong et al. (24). A cocktail of an-
tibodies against the glucocorticoid receptor was added to
chromatin input for immunoprecipitation: 2 �g of ab3579
(Abcam, lot GR3222141-5, discontinued) and 0.49 �g of
12041S (Cell Signaling Technology, lot 3) per 20 million
cells. A separate set of ChIP-seq assays to validate repro-
ducible peaks was conducted with 10 �L of 12041S (Cell
Signaling Technology, lot 3) per 20 million cells. Please refer
to Supplementary Methods for step-by-step details of the
protocol. After library preparation, paired-end sequencing
2 × 50 bp was performed on an Illumina HiSeq 4000 with
sequencing depth of ∼12.5 million paired-end reads per
sample. Raw sequencing reads were processed and analyzed
using the HiChIP pipeline (25) to obtain integrative ge-
nomics viewer files and a list of peaks (FDR < 0.01). Over-
lapped peaks between two datasets were evaluated with the
R package The ChIPpeakAnno (26), and the correlation of
scores for overlapped peaks was evaluated with Pearson cor-
relation.

Massively parallel reporter assay (STARR-seq) experiments

For step-by-step details, please refer to Supplementary
Methods.

Human STARR-seq-ORI vector was obtained from Ad-
dgene (plasmid #99296). For inserts, we amplified all identi-
fied PGx-eQTL peaks extended by ±500 bp using genomic
DNA extracted from the 30 LCLs (Supplementary Table
S1) (for primers sequences and specific PCR conditions, re-
fer to Supplementary Data 4). We included in the library
a GR-induced peak within a strong enhancer region near
the promoter of FKBP5, extended by ±500 bp, as a pos-
itive control. Assembled DNA products were then chemi-
cally transformed into NEB® 5-alpha competent E. coli,
expanded and harvested. Plasmids were extracted with the
HiSpeed Plasmid Maxi Kit (Qiagen). The quality of the in-
serted DNA loci (input library) was checked by amplifica-
tion of the loci using universal primers, which were then se-
quenced on a Hiseq4000 (Illumina) with 150-bp paired-end
sequencing.

LCLs and A549 were maintained at viability of > 90%
before transfection. For LCLs, a total of 600 ug plasmids
were transfected into 240 million cells. For A549, a total of
450 ug plasmids were transfected into 225 million cells. Af-
ter electroporation, cells were treated with drugs (hydrocor-
tisone, C297 or vehicle) in 5% CS media for 9 h. Total RNA
was then harvested with the RNA Maxiprep kit per manu-
facturer’s instructions (Qiagen).

Messenger RNA was isolated using the Dynabeads Oligo
(dT)25 (Invitrogen), followed by TURBO™ DNase diges-
tion. We then conducted first-strand cDNA synthesis with
the SuperScript III Reverse Transcript kit (Invitrogen) us-
ing a reporter transcript-specific primer and no more than
500ng mRNA per reaction. cDNA pool was then treated
with RNAseA and purified with AMPure XP beads (Beck-
man). We then conducted junction PCR, the products of
which were purified, sheared, adapter-ligated with NEB-

Next® Ultra™ DNA Library Prep Kit, and sequenced on
an Illumina Hiseq 4000 with pair-end mode 2 × 150 bp.

Adapter sequences and reads aligned to universal plas-
mid sequences were trimmed out, and the trimmed reads
were then aligned to GRCh37 (hg19) with BWA (27) mem
using default parameters. Only reads with MAPQ ≥30
were kept for further analyses. Samtools (28) were used
to convert sam files to bam files and to sort the bam
files. Read counts for all SNPs sequenced within each
PGx locus were then called with bcftools mpileup. Read
counts of loci expression were called with the Python Pack-
age ‘HTseq’ (22). Read counts for each sample were then
normalized by library size and were log (CPM) trans-
formed. Indels, multi-allelic variants, and variants with
counts less than 20 were removed. All differential anal-
yses were conducted with the R package ‘EdgeR’ (23).
For SNP-dependent loci analysis, the difference between
the proportions of alternative alleles in vehicle- and drug-
treated samples were evaluated using two-tailed Fisher’s ex-
act test. Statistical significance was defined as FDR < 0.05,
and % alternative allele difference (Altdrug/Totaldrug –
Altvehicle/Totalvehicle) > 10%. Visualization of STARR-
seq data was conducted with the ‘EnhancedVolcano’
R package.

Chromatin conformation capture of enhancer–
enhancer/promoter interactions surrounding H3K27ac
mark (HiChIP)

Publicly available data (baseline). H3K27ac HiChIP data
in GM12878 were downloaded from Mumbach et al. (29)
and analyzed with the MAPS pipeline (30) using default pa-
rameters and known H3K27ac ChIP-seq peaks from EN-
CODE as anchors. All loops were called at 5kb bin size and
were defined as having at least one end overlapping with
a H3K27ac peak. PGx-eQTL SNPs were then overlapped
with loop data to identify which SNP loci had H3K27ac-
loop contact with eQTL genes using the R package ‘Ge-
nomicRanges’ (31). H3K27ac HiChIP data in MDA-MB-
231 cells were downloaded from Cho et al., 2018 (32) and
analyzed with the MAPS pipeline (29) using similar default
parameters and H3K27ac ChIP-seq peaks were called di-
rectly from HiChIP sequencing.

Data generated in this study (before and after drug treat-
ment). Steroid-starved GM17261 cells was subjected to
vehicle (0.01% EtOH) and 100 nM of cortisol in serum-free
media for 9 h. After treatment, a portion of the cells was
collected for RNA extraction and qRT-PCR to validate the
effect of drug treatment on gene expression. Fifteen million
cells per condition were fixed by 2% methanol-stabilized
formaldehyde (Fisher Scientific) at room temperature for 10
min. The reaction was then stopped with 125 mM glycine
for 5 min at room temperature. Cell pellets were snap-frozen
in liquid nitrogen and sent to Arima Genomics (San Diego,
CA, USA) for H3K27ac HiChIP library preparation. Af-
ter passing quality control by shallow sequencing, the li-
braries were sequenced on an Illumina NovaSeq, yielding
500–800M pair-end reads per sample. HiChIP data were an-
alyzed using the MAPS pipeline (30) using default param-
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eters. Loops were called with a bin size of 5 kb, maximum
loop distance of 2000 kb, and false discovery rate (FDR)
of <0.01. Valid interacting pairs were defined as having
at least one end overlapping with an H3K27ac peak. Two
downstream analyses were conducted: (i) to identify loops
before and after drug treatment which connected cortisol-
dependent DEGs and cortisol ChIP-seq, (ii) to identify
loops before and after drug treatment which connected PGx
SNPs and eQTL genes directly or through a common con-
tact using the R package ‘GenomicRanges’ (31) and bed-
tools (33). All genes were extended for 2000 bp at the 5′ end
(using Ensembl hg19 gene annotation) to include promoter
regions.

Pharmacogenomic-eQTL analysis

The number of SNP-gene pairs included in the eQTL analy-
sis was narrowed down to leverage statistical power. Specif-
ically, 1.3 million genotyped SNPs were filtered based on
Hardy-Weinberg Equilibrium (P > 0.001), genotyping call
rates of more than 95%, and a minor allelic frequency of
0.18 to retain the probability of at least 1 cell line with
the minor allelic genotype, resulting in 808 875 SNPs. We
then identified SNPs within cis distances of ±200 kb from
genes, resulting in 433 272 SNPs. RNA-seq raw reads were
normalized using conditional quantile normalization. All
genes that mapped to sex chromosomes were excluded. Only
genes with raw counts of ≥32 in at least one treatment and
half of the LCLs were considered for eQTL analysis. All
treatment conditions were normalized to vehicle by geno-
types to remove genotype effects at baseline and to adjust
for cell line-dependent factors such as sex and age. Analy-
sis of eQTLs for normalized expression of drug/vehicle ex-
pression was conducted with the R package ‘Matrix eQTL’
(34) using ANOVA model. Identified P-values of SNP-
gene pairs after drug treatment were then compared with
those obtained from analysis of 174 LCLs at baseline in
the GTEx database with a significance cutoff of 0.05. PGx-
eQTLs were also evaluated to determine whether the asso-
ciations were lost after the antagonist treatment, demon-
strating drug-dependent properties. SNPs in tight linkage
disequilibrium (LD) (r2 > 0.4 and 0.8) with the identified
PGx SNPs were investigated with regard to their potential
to create/disrupt a known GR binding motif using the Hap-
loReg v4.0 database. For significant SNP-gene pairs, we also
conducted analyses of all SNPs within 200 kb cis distance
to compare the statistical significance of SNPs outside and
inside GR binding sites, the results of which were plotted
using the R package ‘Circlize’ (35). For selected examples
depicted in the manuscript, post-hoc ANOVA Tukey’s test
was used to evaluate significance for differences between ho-
mozygous wildtype and variant genotypes with GraphPad
Prism 8.0.

PGx-eQTL SNPs were then overlapped with those doc-
umented in GWAS Catalog, UKBiobank data, or FinGen
study data to identify SNPs that have been associated with
a clinical phenotype and whether the phenotype might fit
with current knowledge about GR function. The P-values
cutoff for GWAS and PheWAS were the same as those de-
fined by the databases.

ChromHMM analysis

Epigenomic datasets on GM12878 (LCL, Caucasian) were
downloaded from the ENCODE project (36,37) for the fol-
lowing epigenetic marks/regulators: H3K4me1, H3K4me3,
H3K27ac, H3K9me3, H3K27me3, H3K36me3, H3K4me2,
H3K9ac, H4K20me1, H3K79me2, POLR2A, H2AFZ,
DNase hypersensitive sites, CTCF, and EP300 (38) (see Sup-
plemetary Data S3 for samples ID). BAM files of the LCL
epigenetic marks/regulators, together with the BAM files
of GR ChIP-seq after cortisol and C297 treatment, were bi-
narized and segmented into 15, 18 or 25 chromatin states
with default parameters using ChromHMM (39). The 25-
state value was adopted for its ability to capture as many
states as possible without redundancy. These states were
then annotated based on combinatorial and spatial pat-
terns of chromatin marks (40). Genomic coordinates of
the chromatin states were converted from GRCh38/hg38 to
GRCh19/hg19 using UCSC liftOver. Enrichment of PGx-
eQTL SNPs in each of the 25 states was then analyzed using
bedtools (33).

Functional validation of selected disease-associated PGx-
eQTL experiments

Luciferase reporter gene assays. To validate selected
STARR-seq signals with clinical significance, we conducted
luciferase reporter gene assays using the STARR-seq lu-
ciferase validation vector (Addgene #9927). The plasmid
was digested with restriction enzymes BamHI-HF® (Cat#:
R3136S, NEB) and SspI-HF® (Cat#: R3132S, NEB). We
used Gibson Assembly cloning approach, the conditions
of which were similar to those described for STARR-seq
experiments, to create luciferase constructs. Before being
cloned in the plasmid, the PGx loci were created by PCR
amplification of the genomic DNA from LCLs with known
genotypes for the SNP of interest. Primers were designed
with NEBuilder Assembly Tool 2.0 and NEBcutter v3.0.
Please refer to Supplementary Data S4 for specific primer
sequences of each locus. After confirmation of the genotype
by Sanger sequencing, reporter gene constructs containing
wildtype or variant SNP genotypes were transfected into
cells. A pRL-TK vector that expresses Renilla luciferase
(Cat#: E2241, Promega) was co-transfected as an inter-
nal control. For LCLs, 200ng of Renilla plasmid was co-
transfected with 800ng of Luciferase construct into 1 mil-
lion cells using the Lonza SF Cell Line 4D-Nucleofector™
X Kit L (Cat#: V4XC-2012, Lonza). For MDA-MB-231
breast cancer cells, 100 ng of Renilla plasmid was co-
transfected with 400ng of Luciferase construct into 0.5 mil-
lion cells using the TransfeX™ Transfection Reagent (Cat#:
ACS-4005, ATCC). After 24 h of glucocorticoid treatment,
the cells were lysed, and luciferase activity was determined
using the Dual-Luciferase® Reporter Assay System kit
(Cat#: E2241, Promega). For every condition, three biolog-
ical replicates were included. Statistical significance across
genotype groups was determined with student’s two-tailed
t-test using GraphPad Prism.

Glucocorticoid-targeted ChIP-qPCR. For step-by-step de-
tails, please refer to Supplementary Methods.
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To test GR activity for the rs1697139-MAST4 PGx-
eQTL locus in a triple negative breast cancer cell line,
MDA-MB-231 cells were steroid-starved for 48 h and sub-
jected to vehicle and 100nM dexamethasone treatment
for 1.5 h (dexamethasone instead of cortisol was used
to avoid cortisol effect on the mineralocorticoid receptor
since, unlike LCLs, MDA-MB-231 expressed the miner-
alocorticoid receptor at reasonable levels). To test SNP-
dependent GR activity for rs12834655-RUNX1 PGx-eQTL
locus, GM17215 (rs12834655 genotype AA) and GM17293
(rs12834655 genotype GG) cells were steroid starved for 48
h and subjected to vehicle and 100nM cortisol treatment for
1.5 h. Chromatin preparation was conducted similarly to
that during ChIP-seq experiment. Each qPCR reaction was
then conducted with the Power SYBR™ Green PCR Master
Mix (Thermo Fisher, Cat# 4367659) in triplicates. The Ct
numbers of ChIP DNA were then normalized to Ct num-
bers of input DNA, and then normalized to Ct numbers
of IgG. Data graphs were plotted using Prism (GraphPad
Software). Statistical comparisons between genotypes were
made using two-tailed Student’s t-test.

qRT-PCR of MAST4 in breast cancer cell lines after glu-
cocorticoids treatment. To test the effect of GR signaling
on MAST4, a gene that was a PGx-eQTL with the breast-
cancer-associated rs1697139 SNP locus, 3 cell lines with rea-
sonable expression of GR (41) and MAST4 representing
three common subtypes of breast cancer were subjected to
treatment with 100nM Dexamethasone (Sigma, water sol-
uble) for 2hrs, 6hrs, and 24hrs. Total RNA was extracted
with Direct-zol RNA Miniprep (Zymo, Cat# R2052) per
the manufacturer’s instructions. mRNA levels for MAST4,
GADPH, and FKBP5 were determined by qRT-PCR using
the Power SYBR™ Green RNA-to-CT™ 1-Step Kit (Ap-
plied Biosystems Inc.). 100ng of total RNA was used for
each reaction. Because MDA-MB-231 showed the most
dramatic repression of MAST4 after dexamethasone ex-
posure, a dose-dependent 6-hour treatment with dexam-
ethasone at 0nM, 1nM, 10nM, and 100nM was conducted
on MDA-MB-231 cells, followed by qRT-PCR to con-
firm the drug effect. qRT-PCR was run with three tech-
nical replicates. Analysis of qRT-PCR was conducted us-
ing the 2−��CT method. Data graphs were then plotted
using Prism (GraphPad Software). Statistical comparisons
between genotypes were made using two-tailed Student’s t-
test.

CRISPR-Cas9 experiments targeting enhancer region in
breast cancer cell line. Guide RNAs (gRNAs) were de-
signed to cut 1–2 kb surrounding the SNP region with the
CRISPR Targets Track on UCSC Genome Browser. Those
gRNAs needed to pass a specificity score of 70, and an effi-
ciency score of 80%. Sequence of single gRNA sg1 was GC
GATCCAATCTCACAGGGG (77 specificity score, 94%
efficiency) and of sg2 was GTTTAAACCAACTAGACC
CC (90 specificity score, 84% efficiency). Both sg1 and sg2
were synthesized by the Integrated DNA Technology (IDT)
and were then assembled in vitro with tracrRNA and Cas9
Nuclease (Cat#: 1081058, IDT) separately to form the ri-
bonucleoprotein (RNP) complex according to the manu-
facturer’s instruction. Delivery of the Alt-R CRISPR-Cas9

RNP complex into MDA-MB-231 cells was conducted with
the SE Cell Line 4D-Nucleofector Kit X (Cat# V4XC-1032,
Lonza) according to the manufacturer’s instruction in com-
bination with the Alt-R® Cas9 Electroporation Enhancer
(Cat#: 1075915, IDT). The result of CRISPR/Cas9 edit-
ing was evaluated with PCR and gel electrophoresis. Specif-
ically, cells were lysed with the DNAzol® Direct (DN 131,
Molecular Research Center) and the lysates were directly
used as PCR templates. The sequences of primers for ampli-
fication of the edited sites were TGTTGTCAGGGCCTTT
GAGA (forward) and CGTCACCAGGATAGCAAGCT
(reverse). The PCR was conducted with the KAPA HiFi
HotStart ReadyMix PCR Kit (Cat#: KK2601, Roche) and
the condition for PCR was as follow: 95◦C for 3 min, fol-
lowed by 25 cycles of 98◦C for 20 s, 65◦C for 1.5 min, and
72◦C for 60 s. PCR product was visualized in 1.0% agarose
gel after electrophoresis. The expected size of PCR prod-
ucts was 1921bp for wildtype genotype and 862bp for KO
genotype. After conducting experiments with edited bulk
cells, we proceeded to select for single colonies of homozy-
gous KO. Please see Supplementary Methods for details.
Out of a total of 192 colonies were screened, two colonies
were homozygous KO. KO colonies were expanded and re-
genotyped before drug treatment experiment. Treatment ex-
periments were conducted similarly as described above, with
100 nM of dexamethasone for 6 h.

MAST4 expression in patient tumor samples. To assess
MAST4 expression in tumor samples from different sub-
types of breast cancer as compared to normal tissue,
data were downloaded from The Cancer Genome Atlas
(TCGA). Two-tailed unpaired Student’s t-test was used to
compare MAST4 expression between normal and cancer
tissues. To assess MAST4 expression and its relationship
to relapse free survival (RFS) of breast cancer patients of
all subtypes who underwent endocrine or chemotherapy,
Kaplan-Meier plots were generated using KM plotter (42)
and its associated breast cancer database (43). To address
the concern that the association of MAST4 expression with
lower RFS was driven by its most significant repression in
TNBC, which usually had a worse survival rate that other
subtypes, Kaplan–Meier plots were also stratified by sub-
type, and MAST4 low expression was predictive of lower
RFS in other subtypes just as was the case with TNBC.

RESULTS

Genome-wide discovery of glucocorticoid-modulated PGx-
eQTLs in human LCLs

A total of 120 transcriptomic profiles were obtained under
four drug conditions––cortisol, C297, both together and
vehicle control for 30 LCLs (Supplementary Table S1), as
well as genome-wide GR-binding profiles under the same
drug exposure conditions for a randomly selected LCL.
The global changes of these profiles were characterized to
ensure that the responses were glucocorticoid-specific. Be-
cause LCLs do not express or express only a very low level
of mineralocorticoid receptor (3), another endogenous re-
ceptor to which cortisol can bind, the treatment effects
that we observed were GR-specific. We found that corti-
sol regulated the expression of 1361 genes across these 30
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cells (FDR < 0.05) including GR canonical genes such as
FKBP5 and TSC22D3, whereas only 26 genes remained dif-
ferentially expressed when C297 was added in combination
with cortisol. Furthermore, C297 also acted as a partial ag-
onist since, when tested alone, it upregulated a group of
GR-target genes but to a lesser extent than cortisol, genes
that included FKBP5 and TSC22D3 (see Figure 1B for a vi-
sualization of drug-dependent transcriptomic patterns and
Supplementary Data 1 for a complete list of differentially
expressed genes).

Similar drug-dependent patterns were observed in the
GR-targeted ChIP-seq assays. Specifically, cortisol induced
1365 peaks and C297 induced 436 peaks at a 0.01 FDR
threshold. These values were reduced to 200 peaks when the
two drugs antagonized each other (Figure 1C, D). Approx-
imately 85% of the C297-peaks overlapped with cortisol-
peaks, suggesting that C297 is a partial agonist, as shown
in the RNA-seq data (Figure 1D). In terms of distribu-
tion, GR peaks induced by either drug mapped predom-
inately within intergenic and intronic regions, consistent
with previous knowledge of GR function (44) (Figure 1E).
We also demonstrated that these peaks were of high speci-
ficity, since de novo motif analysis showed that the peaks
for both cortisol and C297 were most highly enriched in
GR binding motifs (P = 10−231 for Cortisol, P = 10−84

for C297) (Figure 1F). To evaluate peak reproducibility, we
conducted an independent replication of the GR-targeted
ChIP-seq using different GR antibodies. We observed a
similar number of peaks and achieved a high reproducible
rate of 70% replicated peaks at a stringent FDR thresh-
old of 0.01 (see Supplementary Figure S1a). There was
a strong correlation of peak score between the replicates
for the reproducible ChIP-seq peaks (see Supplementary
Figure S1c). We also observed a strong drug-dependent
peak pattern similar to that observed in the original dataset
(see Supplementary Figure S1b). After demonstrating that
glucocorticoids displayed robust effects on RNA-seq and
ChIP-seq, we set out to identify drug exposure-dependent
eQTLs.

To account for the limited power for eQTL analysis, we
narrowed the number of SNP-gene pairs by first select-
ing only cis-SNPs and genes that passed stringent qual-
ity control criteria (see Methods). We then selected SNPs
that mapped within or near (±500 bp) GR binding sites
by overlapping SNPs with the GR-targeted ChIP-seq data
to focus on those most likely to interfere directly with GR
signaling, acknowledging that relevant SNPs with differ-
ent possible mechanisms of action (e.g. SNPs within bind-
ing sites for downstream transcription factors regulated by
GR) would be missed. As a result, a total of 1838 SNP-
gene pairs for cortisol and 572 for C297 were included in
the eQTL analysis. We identified 102 cortisol-dependent
and 32 C297-dependent cis PGx-eQTL SNP-gene pairs, of
which 5 were shared between the 2 conditions (Figure 2A,
B, E, Supplementary Figure S2), the majority of which lost
their cortisol-dependent eQTL status when exposed to cor-
tisol and C297, an antagonist, thus demonstrating, in a
compelling fashion, the drug-dependent properties of this
type of eQTL (Figure 2E). Furthermore, these PGx-eQTLs
were not significant baseline eQTLs based on data from 174
LCLs deposited in the GTEx database (Figure 2C-D). We

observed that the SNPs themselves either mapped within
known GR binding motifs, were in tight linkage disequilib-
rium with SNPs within GR motifs, or were distant from GR
motifs (Figure 2F; see Supplementary Data 2 for details for
each SNP). However, in all cases, they could still influence
GR-dependent transcriptional activity, as later confirmed
by massively parallel reporter gene assay.

Glucocorticoid-modulated PGx-eQTLs most often mapped
to enhancers with looping properties

Using ChromHMM, a software that models chromatin
signatures with a multivariate Hidden Markov Model to
annotate the putative regulatory function of the noncod-
ing genome using epigenomic information (39), we inte-
grated 15 LCL epigenomic datasets from the Encyclope-
dia of DNA Elements (ENCODE) portal (36) with our
GR-targeted ChIP-seq data (see Supplementary Data 3
for information on datasets). The 25-predicted chromatin
states obtained were then annotated based on combina-
torial and spatial patterns of chromatin marks (40) (Fig-
ure 3A, Supplementary Figure S3, Supplementary Table
S2). These states could be categorized into four broad cat-
egories: (i) Promoter, (ii) Enhancer, (iii) Transcribed and
(iv) Repressive/Repetitive/Unknown. Overlapping of GR-
dependent PGx-eQTLs with these chromatin states demon-
strated that PGx-eQTLs were enriched in a variety of
states but predominantly in enhancers, with the primary
site of enrichment being long-range enhancers that dis-
played promoter-looping properties (Figure 3B, C, Supple-
mentary Table S3; see Supplementary Data 2 for details on
each SNP). Specifically, 81% of cortisol-modulated PGx-
eQTLs mapped to enhancer-related states and 41% mapped
to enhancers with predicted looping properties. For C297-
modulated PGx-eQTLs, 68% mapped to enhancer-related
states and 65% mapped to enhancers with predicted loop-
ing properties.

Allele-dependent and drug-dependent properties of enhancer
PGx-eQTLs were replicated across cell lines

Because the majority of the PGx-eQTL SNPs that we had
identified mapped to enhancer regions, we next performed
STARR-seq, a massively parallel reporter gene assay that
can capture enhancer activity in a high-throughput fash-
ion (45), to verify the effect of these SNPs and drugs on
transcriptional activity associated with the identified PGx-
eQTLs (see Figure 4A for a diagram of the experimental
workflow). We first cloned PCR-generated PGx-eQTL lo-
cus fragments from the pool of genomic DNA from our 30
LCLs into the human STARR-seq vector. Those fragments
covered the GR binding peaks (±500 bp) that contained the
identified PGx-eQTL SNPs. We included a glucocorticoid-
induced GR peak in the library that mapped to a strong en-
hancer region near the FKBP5 promoter as a positive con-
trol (Supplementary Figure S4a). We then transfected the
STARR-seq libraries into LCLs and A549 cells, a lung can-
cer cell line in which GR genomic regulation has been stud-
ied extensively (44), exposed the cells to cortisol or C297,
extracted mRNA and enriched the targeted sequences by
RT-PCR. As expected, the transcribed products showed a
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Figure 2. Discovery of GR-modulated PGx-eQTLs in human LCLs. (A, B) Circos plots depicting the GR-dependent PGx-eQTLs identified in 30 LCLs
with results for (A) cortisol (CORT) and (B) the partial agonist (C297). The three outermost circles represent relative gene expression values (drug/vehicle)
for each genotype, with each column depicting a PGx SNP-gene pair. The inner tracks are explained in the figure. The track with locus zoom plots shows
that SNPs within a GR binding site were generally more significantly associated with eQTL genes than other SNPs within the 200kb window of a gene.
(C, D) P-Values for eQTL analyses from our study using 30 LCLs (Y axis) vs P-Values for eQTL analyses using 174 GTEx LCL samples. The majority of
the PGx-eQTLs identified in the present study were not significant in GTEx even with larger sample sizes. (E) The number of SNP-gene pairs identified
for each drug condition and their overlap across conditions. The majority of PGx-eQTL SNP-gene pairs after cortisol or C297 treatment no longer existed
after antagonism (CortC297) was introduced. (F) Percentages of identified PGx-eQTL SNPs that mapped within a known GR binding motif or in tight
LD with SNPs within a GR motif according to HaploReg V4.0 database.
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Figure 3. Prediction of chromatin states for GR-modulated PGx-eQTLs. (A) 25 LCL chromatin states predicted from the occupancy of 15 epigenetic marks
for the reference LCL from ENCODE and the enrichment of GR peaks within each state. Columns represent epigenetic marks. Rows represent the co-
occurrence probability of epigenetic marks within a state. (B, C) Distribution of GR-dependent PGx-eQTL SNPs among different chromatin states, which
have been color coded as in (A).

size of around 1300bp (Supplementary Figure S4b). After
sequencing the transcribed loci, we mapped them to the hu-
man genome and achieved a mapping rate of more than
90% across all samples. We then called variants across loci,
filtered out indels, multi-allelic variants, variants with low
counts, and retained a total of 94 of the originally identi-
fied SNP-gene pairs for differential analysis. Replications
for each sample were highly correlated (r2 ≥ 0.9) (Supple-
mentary Figure S4c).

Because all samples shared the same input library, we
focused on analyzing differences of STARR-seq transcrip-
tional activities among drug treatment conditions and al-
leles. Principal component analysis showed global differ-
ences among drug treatments (Supplementary Figure S4d),
demonstrating drug effects on STARR-seq transcription.
Particularly, differential analysis showed that 95% of cloned
loci exhibited drug-dependent transcription activity across
cell lines and drugs (Supplementary Figure S5a–d, Table
S2). To test for allele-dependent drug-responsive effects, we
analyzed percentage differences of alternative alleles before
and after drug treatments. In LCLs, the expression of 44
originally genotyped SNPs was allele-dependent after corti-
sol treatment, as were 55 after C297 treatment (FDR < 0.05,
percentage change of alternative allele > 10%) (Figure
4B). De novo SNPs identified by sequencing in STARR-
seq demonstrated that 55 (cortisol) and 67 (C297) loci had
allele- and drug-dependent transcriptional activity (Figure
4C). In A549 cells, expression of 52 originally genotyped
SNPs was allele-dependent after cortisol treatment, and 61

after C297 treatment (Figure 4D). De novo SNPs identified
by sequencing in STARR-seq demonstrated that 62 (cor-
tisol) and 73 (C297) loci had allele- and drug-dependent
transcriptional activity (Figure 4E). Out of 66 allele- and
drug-dependent loci where de novo SNPs were discovered,
54 (82%) had de novo SNPs that were in LD with the origi-
nal genotyped SNPs based on 1000 Genome Project Phase I
(see Supplementary Data 2 for more details). These loci dis-
played high consistency between the two cell lines in which
STARR-seq was applied (Figure 4F). As anticipated, the
majority of allele- and drug-dependent loci identified by
STARR-seq were ChromHMM-predicted enhancers, vali-
dating up to 81% of the cloned PGx loci that we had iden-
tified (Figure 4G, see Supplementary Data 2 for details on
each locus). Overall, up to 94% of PGx loci also harbored
GR-dependent transcription activity, demonstrating robust
functional modulation of GR in these loci (Supplementary
Figure S5e). We also further validated selected STARR-seq
SNP loci that later displayed associations with clinical phe-
notypes (see below) with traditional luciferase reporter gene
assays and observed similar allele- and drug-dependent ac-
tivity between the two assays (Supplementary Figure S6).

PGx-eQTL SNP-gene pairs are connected by drug-
dependent enhancer-enhancer and enhancer-promoter loops

To determine the nature of physical interactions between
PGx SNP loci and eQTL genes, we applied H3K27ac
HiChIP, an assay that can capture chromatin conforma-
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Figure 4. Testing allele- and drug-dependent effects of PGx-eQTLs with STARR-seq, a massively parallel reporter enhancer assay. (A) Experimental workflow
for STARR-seq. (B–E) Volcano plots showing PGx-eQTL loci where SNP-dependent and GR-dependent activities were detected. The Y axis represents
–log10 of FDR from Fisher’s Exact Test, the X axis represents change of alternative allele percentages after drug treatment. Circles represent originally
genotyped SNPs, and squares represent SNPs sequenced in each STARR-seq locus. Each SNP was color coded by the chromatin state in which they resided.
All loci that were later found to be associated with diseases that achieved statistical significance for SNP-dependent and GR-dependent transcriptional
analysis are bolded in black. (F) High consistency between the two cell lines, LCL and A549, used in the STARR-seq assay in terms of loci that displayed
allele- and drug-dependent properties. (G) STARR-seq results validated allele- and drug-dependent enhancer activities of identified PGx-eQTL loci.
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tion of enhancer-promoter and enhancer-enhancer inter-
actions in a high-resolution manner (29), before and af-
ter cortisol exposure. First, to demonstrate that drug treat-
ment in the HiChIP experiment was successful, qRT-PCR
was conducted for FKBP5, a prototypical GR-targeted
gene, using total RNA from the same cells before fixation.
FKBP5 was induced ∼6-fold after drug treatment, confirm-
ing drug treatment effect (Figure 5A). After library prepa-
ration, H3K27ac ChIP efficiency was achieved at 0.21%
to 0.42% of total input for vehicle and cortisol, respec-
tively. Shallow sequencing confirmed that the percentage
of PCR duplication was less than 0.01%, and that more
than 40% of the fraction of reads represented interactions
within the same chromosome (long-range cis interactions).
Deep sequencing yielded 829,599,511 raw PE reads for ve-
hicle (of which 88.1% were mapped), and 539 417 612 for
cortisol (of which 87.4% were mapped). Using known EN-
CODE H3K27ac ChIP-peaks for LCLs for loop calling
at an FDR threshold of 0.01, the number of called loops
was 193,107 for vehicle and 131,926 for cortisol, which dis-
played high enrichment around ChIP-peaks (Supplemen-
tary Figure S7a). These numbers are comparable with those
reported for a publicly available H3K27ac HiChIP library
for LCL GM12878 (185,167 loops) (29). The percentage
of intra-chromosomal interactions that spanned >15 kb
in linear genomic distance, a measure of how well the li-
brary captured chromatin interactions between genomic
loci, was 35.7% for vehicle and 36.9% for cortisol, surpass-
ing the manufacturer’s minimum benchmark of 25%. Per-
centages of valid interaction pairs located within known
ChIP-seq peaks was 37.5% for vehicle and 33.5% for cor-
tisol, surpassing the manufacturer’s minimum benchmark
of 15%.

To determine whether H3K27ac loops changed after cor-
tisol treatment and to what extent they might be correlated
with functional outcome (differential gene expression), we
integrated the cortisol-regulated RNA-seq, GR ChIP-seq
and HiChIP datasets. Out of 1361 differentially expressed
genes (DEGs), 345 had HiChIP loops connecting them to
one or more cortisol-induced ChIP-seq peaks, and 79 DEGs
had loops that were altered after drug treatment (defined as
a fold change in number of loops >1.5 or a change from
no loop to a number > 1) (Figure 5B, C). To help read-
ers visualize this integrative approach, which was applied
later to fine-map PGx-eQTL SNP-gene pairs, we showcased
two positive controls for all of the datasets in Figure 5D-
G and Supplementary Figure S7b-d. Specifically, RNA-seq
showed that FKBP5 mRNA expression was induced by cor-
tisol (FDR = 2.08E−45), an induction that was reversed
by C297 (FDR = 1.02E−22). This observation for gene ex-
pression correlated with the GR-binding patterns under the
same drug conditions at the enhancer regions that mapped
50kb upstream of FKBP5 (Figure 5D, E). This region was
predicted to be a strong enhancer with looping properties
(Figure 5G). After being tested in STARR-seq, it showed a
strong induction in enhancer activity after drug treatment
(FDR = 2.19E−107) (Figure 5E). The number of H3K27ac
HiChIP loops also increased 2-fold after cortisol treatment,
connecting the GR-induced enhancers to FKBP5, tran-
scriptionally regulating the gene (Figure 5F). Similar ob-
servations were made for FOXO1, for which GR-modulated

enhancer signals were integrated from four different regions
over hundreds of kilobases, with a 2-fold change of HiChIP
loops after drug treatment (Supplementary Figure S7b–d).

As expected, most of the SNPs that were connected
with PGx-eQTL genes with H3K27ac loops mapped within
ChromHMM-predicted active enhancers (Figure 5H). Pub-
licly available data (29) showed that 71 of the PGx-eQTLs
that we identified displayed H3K27ac connecting ‘loops’ at
baseline. We observed a similar number of connected PGx-
eQTLs before and after cortisol treatments in our data (78
and 76, respectively) (Figure 5H), with 68 being constitutive
loops connecting the PGx SNP loci and eQTL genes but re-
quiring glucocorticoids to ‘unmask’ their functional tran-
scriptional regulation. In fewer cases, cortisol was shown
to induce loops for 5 SNP-gene pairs or to repress loops
for 6, either bringing together SNP-gene loci that otherwise
would not have been in proximity or separating them (Sup-
plementary Data 2). The precise molecular mechanisms by
which GR reorganizes the enhancer landscape have been
described elsewhere (46).

Glucocorticoid-modulated PGx-eQTLs unmasked potential
function of SNP loci previously associated with common dis-
eases involving glucocorticoid signaling

In an unbiased search of GWAS/PheWAS databases (https:
//www.ebi.ac.uk/gwas/, https://pheweb.sph.umich.edu/,
https://r4.finngen.fi/about), we found that twenty-five
percent of the glucocorticoid-modulated PGx-eQTL SNPs
that we identified had previously been associated with
clinical phenotypes, but usually without a clear underlying
mechanism and often lacking clarity with regard to the gene
or genes involved. These associations spanned many differ-
ent disease and drug response categories including adverse
response to corticosteroids, inflammation and immunity,
osteoporosis, neuropsychiatric disorders and cancer (Table
1; see Supplementary Data 2 for integrative annotation of
each locus). For example, a mechanistically unexplained
variant that had been associated with breast cancer risk,
rs1697139 (26), was a cortisol-dependent PGx-eQTL for
the Microtubule Associated Serine/Threonine Kinase
Family Member 4 (MAST4) gene. Specifically, MAST4
expression was repressed by cortisol in subjects with the
G/G but not the A/A genotype (Adjusted P = 0.0061),
and that repression was reversed after antagonist treat-
ment (adjusted P = 0.3446) (Figure 6A). This SNP, in a
genotype-dependent fashion, modulated a GR-responsive
intergenic enhancer (FDR = 1.62E−41) that ‘looped’
across 40,000 bp to MAST4, transcriptionally regulating
that gene (Figure 6B, C). Because these sets of data were
generated from LCLs, we conducted a series of functional
studies to validate the findings in cell lines that were directly
relevant to the disease. We found that rs1697139 interfered
with GR-dependent enhancer activity in MDA-MB-231
cells, a triple-negative breast cancer cell line, in a way
similar to that observed in LCLs (Figure 7A). We also
demonstrated that GR bound to the same rs1697139 locus
and dramatically repressed MAST4 expression in MDA-
MB-231 cells as well as cell lines for other breast cancer
subtypes (Figure 7B, C, Supplementary Figure S8a−f). Ad-
ditionally, the SNP locus also appeared to loop to MAST4

https://www.ebi.ac.uk/gwas/
https://pheweb.sph.umich.edu/
https://r4.finngen.fi/about
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Figure 5. Generation and integration of H3K27ac HiChIP before and after glucocorticoid treatment with other datasets. (A) Validation of drug treatment
effect for HiChIP samples as measured by qRT-PCR for FKBP5, a prototypical GR-targeted gene, using RNA extracted from the same cells. Statistical
significance was evaluated with Student’s t-test, achieving P < 0.005. Each dot represents a replicate. (B) Number of cortisol-regulated genes that were
connected to a cortisol-induced GR ChIP-peak by a H3K27ac loop in different treatment conditions. (C) Cortisol-regulated genes that were connected
to one or more cortisol-induced GR ChIP-peaks by differential cortisol-regulated H3K27ac loop(s) (fold change > 1.5 or a change from 0 that is more
than 1). The X axis shows gene names (Please see Supplementary Data 1 for a complete list of gene names). (D) mRNA expression of FKBP5 before and
after drug treatment as determined by RNA-seq. CPM represents counts per million. (E) Transcriptional activity driven by the enhancer region upstream
of FKBP5 as measured by STARR-seq. (F) Number of HiChIP H3K27ac loops that connected GR-binding sites to the FKBP5 gene. (G) Integrative
Genomics Viewer (IGV) plots of two different GR-dependent enhancers over a distance of 50kb, which together regulated FKBP5. These two enhancers
were predicted to be strong enhancers with looping properties by ChromHMM. (H) Number of PGx-eQTLs that displayed physical interactions between
SNP loci (categorized by enhancer/non-enhancer states) and eQTL genes as demonstrated by H3K27ac HiChIP.
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Table 1. GR-modulated PGx-eQTLs which we identified that have been associated with clinical phenotypes by previous GWAS/PheWAS. SNP-gene pairs
that were PGx-eQTLs (P < 0.05) but not eQTLs in GTEx (P > 0.05) are bolded

Genotyped SNP Ligands PGx-eQTL gene(s) Identified SNP-associated phenotype(s) in GWAS/PheWAS

Pharmacogenomics
rs11633087/

rs4843073/

rs4843074/

rs4843075/

rs7162168/

Cortisol KLHL25 Adrenal cortical steroids causing adverse effects in
therapeutic use (61)

Inflammation/Immunity
rs2834655 Cortisol RUNX1 Immune response to smallpox vaccine (51)

Monocyte percentage of white cells (62)
Red blood cell count (63)

rs2984920/
rs7535818

Cortisol RGS1 Systemic lupus erythematosus risk (64)
Intestinal malabsorption/Celilac disease (61)
Multiple sclerosis (65)
Dermatitis and eczema*

rs4735336 Cortisol PLEKHF2 Viral hepatitis C (61)
rs2297539 Cortisol IKBKE/SRGAP2 Fasciitis

Celilac disease (61)
rs2399594 Cortisol NLRC5 Lichen Planus (inflammation of the skin)*

rs12440899 Cortisol SRP14-AS1 Inflammatory liver diseases*

rs12053126 CORT108297 AFF3 Otosclerosis*

rs9594738 CORT108297 DGKH Otosclerosis*

rs2051541 Cortisol HIST1H2AC Celilac disease (61)
Ankylosing spondylitis (inflammation of the spine)*

Acute and subacute iridocyclitis (inflammation of the iris)*

rs7356 Cortisol EYA3 Platelet count (66)
rs4843073 Cortisol KLHL25 Neutrophil count (62)
rs4984913 CORT108297

CCDC78/WDR90/FAM195A/

WFIKKN1

Platelet count (62)

Psychiatry & Neurology
rs2779180 Cortisol ARRDC5 Depression in response to interferon-based therapy of

chronic hepatitis C (67)
rs1050863 Cortisol ZCCHC14/JPH3 Mood Instability (68)
rs696284 CORT108297 NFX1 Mood disorders*

rs7288411 Cortisol RRP7BP Bipolar disorder or major depressive disorder (69)
rs11678116 Cortisol LDAH Migraine*

Cancer
rs1697139 Cortisol MAST4 Breast cancer risk(26)
Bone-related diseases
rs9594738 CORT108297 DGKH Bone mineral density (70)

Medication use (drugs affecting bone structure and
mineralization) (71)
Otosclerosis*

rs12053126 Cortisol AFF3 Otosclerosis*

rs1539330 Cortisol KIF11 Fracture of hand or wrist (61)
rs7406439 Cortisol HEXDC Disorders of continuity of bone*

Metabolism
rs1978487 Cortisol FBXL19/HSD3B7 Obesity/hypertension/Body mass index (61)
rs11215427 Cortisol CADM1 Childhood body mass index (72)
rs4735336/

rs4735337
Cortisol PLEKHF2 Hypertensive diseases*

Others
rs2051541 Cortisol HIST1H2AC Disorder of iron metabolism (61)

Hereditary hemochromatosis (61)
rs10053292 Cortisol SLC26A2 Acquired deformities of finger (2)
rs12440899 Cortisol SRP14-AS1 Endometriosis*

rs2313167 CORT108297 PDLIM2 Height (2)

*Associations from FinnGen PheWAS.
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Figure 6. An example of GR-dependent PGx-eQTLs with functional implications for disease risk. (A) PGx-eQTL SNP-gene pairs for rs1697139-MAST4.
Adjusted P-values from Tukey’s post-hoc multiple comparisons and represent differences between wildtype and variant genotypes. Cortisol induced the
eQTL, and C297 antagonized the cortisol effect, normalizing eQTL expression across genotypes. (B) IGV plots of the PGx SNP-eQTL gene locus. Tracks
for GR-targeted ChIP-seq in different treatment conditions are colored in blue, which show similar drug-dependent patterns as expression data: Cortisol
induced GR binding at SNP locus, and C297 antagonized the cortisol effect, reducing GR binding. H3K4me1 is a histone mark associated with enhancers.
H3K4me3 is a histone mark associated with promoters. H3K27ac is a histone mark associated with active promoters and enhancers. For the H3K27ac
HiChIP tracks, loops directly interacting with the PGx SNP locus are highlighted in pink and others in blue. (C) SNP-dependent and drug-dependent
enhancer activity of the PGx locus in LCLs as measured by STARR-seq. CPM stands for counts per million.

in MDA-MB-231 based on HiChIP data (Figure 7D). To
interrogate the causal relationship between this SNP locus
and MAST4 gene expression in breast cancer cells, we used
CRISPR/Cas9 to delete the SNP region (Figure 7E, F)
and measured GR-dependent MAST4 mRNA expression.
We observed a decrease in the repression of MAST4 by GR
across different colonies of pure knock-out cells (Figure
7G). Although the function of MAST4 in breast cancer is
unknown, it may be a novel risk gene since its expression
was significantly repressed in breast tumor tissue when
compared with normal breast tissue (P < 0.0001) (Figure
7H). Furthermore, MAST4 expression also appeared to be
a predictor of treatment response since decreased expres-
sion of MAST4 was associated with decreased relapse-free
survival (P = 1.6E−10) (Figure 7I). These observations
agree with the direction of the SNP-phenotype association.
Specifically, the rs1697139-G/G genotype was associated
with decreased MAST4 expression after exposure to corti-
sol, a hormone that promotes breast cancer heterogeneity
and metastasis (16), which might have led to the increased
risk for breast cancer observed in the original GWAS

(Figure 7J). Of interest is the fact that glucocorticoids
were recently found to induce chemo-resistance in solid
tumors by transcriptionally regulating another MAST
family member, MAST1 (47), a protein which has the most
homology with MAST4 within this protein family (48).

Beyond this illustrative example, Table 1 lists a total of
30 disease risk loci that we found to behave as PGx-eQTLs
(see Supplementary Table S4 for current knowledge of each
gene). Of importance, glucocorticoids were either known
risk factors or therapeutic agents used to treat most of these
diseases, demonstrating a genetic risk × hormone/drug
risk interaction in disease predisposition. For instance,
glucocorticoids are potent immune-suppression and anti-
inflammatory agents (13). As a result, GR agonists are used
clinically to treat a wide variety of immune-related diseases
including those listed in Table 1––e.g. multiple sclerosis (18)
and systemic lupus erythematosus (19). Corticosteroids are
also known to increase platelet number and, as a result, are
first-line therapy for immune thrombocytopenia (49). In an-
other example, we found that a SNP previously associated
with response to vaccine and counts for different immune-
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Figure 7. Functional Validation of rs1697139-MAST4 GR-dependent PGx-eQTL in Breast Cancer Cells. (A) SNP-dependent and drug-dependent enhancer
activity of the PGx locus associated with breast cancer in Figure 6 as measured by luciferase reporter gene assay in MDA-MB-231, a triple negative breast
cancer cell line. RLU stands for relative light units and reflects normalization of luciferase signal to Renilla signal as an internal control. (B) ChIP-qPCR
assays that tested GR binding at the PGx locus for MAST4 in MDA-MB-231 using two different primers. ChIP-qPCR targeting FKBP5 peak served as
a positive control. P-values from Student’s t-tests. (C) Dose-dependent repression of MAST4 by glucocorticoids in MDA-MB-231 cells. (D) Epigenomic
datasets for MDA-MB-231 cells demonstrated that the SNP locus also looped to MAST4 in MDA-MB-231. GR ChIP-seq was downloaded from the
database ReMap2022. (E) Designs of guide RNAs utilized in the CRISPR/Cas9 experiment that cut out the PGx SNP enhancer locus where GR binds
and primers to test editing outcomes. (F) Gel electrophoresis of PCR products amplified with primers targeting the cut region demonstrated successful edits.
(G) MAST4 gene expression as measured by qRT-PCR after CRISPR/Cas9 edits showed that the glucocorticoid-dependent repression was alleviated after
the PGx SNP locus was cut out across two colonies of pure knock-out cells. Data included three biological replicates. (H) Expression of MAST4 in tumors
from breast cancer patients in the TCGA database. **** P-values < 0.0001 by Student’s t-tests. TPM stands for transcripts per million. (I) Kaplan–Meier
curves for relapse-free survival rate in 1764 breast cancer patients predicted based on MAST4 expression. (J) Summary of functional insights gaining from
in-depth studies of a GR-dependent eQTL and their implications for breast cancer risk.
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related blood-cell types interacted with cortisol to influ-
ence the expression of RUNX Family Transcription Factor
1, RUNX1 (Supplementary Figure S9a), a major regulator
of hematopoiesis (50). Specifically, the RUNX1 G/G geno-
type increased GR binding, correlating with an increase in
GR-modulated enhancer activity, an intergenic enhancer
that ‘looped’ the RUNX1 promoter, resulting in decreased
RUNX1 expression (Supplementary Figure S9b–e). The re-
pression of RUNX1 could result in a decrease of B cells (50),
which might help to explain, in part, why antibody levels
after vaccination were decreased in individuals carrying the
G/G genotype (51). Different from the breast cancer exam-
ple presented above, where the direction of the genotypes
were the same between enhancer activity and gene expres-
sion (lower activity, lower expression), in this example for
RUNX1, we observed that the risk allele was associated with
higher STARR-seq cortisol induction but reduced RUNX1
expression. Because results from luciferase reporter gene as-
say independently validated the direction of the SNPs, this
‘discrepancy’ was not due to technical error of the assay
but perhaps some other type of biological mechanism, such
as (i) the indirect effect of the SNP on RUNX1 via other
nearby interacting genes such as CLIC6 (Supplementary
Figure S9e), and/or (ii) the effect of multiple regulatory ele-
ments in the chromatin context that reporter assays are un-
able to capture (26). We also identified a SNP previously as-
sociated with lichen planus, an autoimmune condition that
attacks cells of the skin and mucous membranes, that inter-
acted with cortisol to influence the expression of NLRC5, a
key regulator of adaptive immune responses (52,53).

In addition to inflammation and immunity, glucocor-
ticoids also play an important role in osteoporosis (14),
mood disorders (8,15), cancer (16) (as described above),
and metabolism (17), diseases that are also listed in Table
1. In an example involving the rs11678116 SNP and the
Lipid-Droplet Associated Hydrolase (LDAH) gene, corti-
sol was shown to bring together SNP-gene loci that oth-
erwise would not have been in proximity, ‘unmasking’ the
impact of rs11678116 on LDAH transcription (Supplemen-
tary Figure S10a, b). Specifically, the rs11678116 SNP cre-
ated a GR binding motif (Supplementary Data 2), which
led to decreased cortisol-responsive enhancer activity of
the T/T genotype and decreased LDAH expression after
cortisol treatment of subjects with the T/T but not the
G/G genotype (Supplementary Figure S10c). Based on
PheWAS results, rs11678116 was also associated with mi-
graine (Table 1), a stress-sensitive condition for which cor-
tisol is a biomarker (54), providing an intriguing genotype-
phenotype link for functional investigation given the ele-
vated levels of cholesterol and triglycerides observed in mi-
graine patients (55). We also found that SNPs previously as-
sociated with body mass index and obesity interacted with
cortisol to influence genes located as far as 150,000bp away
such as FBXL19, an adipogenesis-controlling gene (56),
HSD3B7, a cholesterol metabolizing enzyme (Supplemen-
tary Figure S11a, b), or CADM1, a gene that regulates body
weight via neuronal modulation (57). Taken together, these
examples demonstrate that glucocorticoid-dependent PGx-
eQTLs identified in LCLs uncovered functional SNPs re-
lated not only to immune-related diseases but also diseases
reflecting dysfunction of various other cell types. That is

consistent with previous observations that eQTLs which are
shared across tissues comprise a larger fraction of trait as-
sociations than do tissue-specific eQTLs (58).

DISCUSSION

Despite the many associations with human disease that have
been described for non-coding genetic variants, their func-
tional interpretation remains a significant challenge. Fur-
thermore, complex diseases are usually influenced by both
genetic and environmental factors, which are difficult to in-
terrogate mechanistically (11). This manuscript addresses
these two themes by mechanistic studies of a type of non-
coding genetic variant with functions that are modulated by
pharmacologic or physiologic chemical agents. Obviously,
this study has limitations previously discussed that are in-
herent to the study of response-eQTLs (4)––namely, lim-
ited cell types that are available as study models and lim-
ited power because of the resources required to generate
datasets with and without chemical stimuli. We addressed
these issues by studying combinations of treatment with ag-
onists and antagonists to verify drug-dependent effects. We
then provided additional layers of mechanistic evidence to
support our observations but with the clear acknowledge-
ment that we might fail to capture all relevant SNPs. We also
validated selected examples with experiments in other rele-
vant cell lines, coupled with the integration of available clin-
ical data for functional interpretation. For example, we con-
ducted a series of in-depth functional validation studies us-
ing breast cancer cell lines for a breast-cancer-risk SNP that
was discovered in LCLs to be a PGx-eQTL with MAST4
(Figures 6 and 7). We found that the SNP behaved in a sim-
ilar fashion in MDA-MB-231, a triple negative breast can-
cer cell line, in terms of its interaction with glucocorticoids
and the subsequent impact on MAST4 expression. Further-
more, the more prominent repression of MAST4 in cell lines
carrying the risk genotype by glucocorticoids, a risk hor-
mone for breast cancer metastasis (16), fits with the fact that
lower expression of MAST4 was observed in breast cancer
tissues and was associated with worse treatment outcomes
in breast cancer patients. This example demonstrated that,
while glucocorticoid-dependent PGx-eQTLs were identi-
fied in LCLs, novel functional genes could be uncovered
for not only immune-related diseases but also diseases re-
flecting dysfunction of other cell types, encouraging similar
functional validation of clinically significant signals in rel-
evant cell types and datasets in the future and the develop-
ment of new peripheral biomarkers for diseases and thera-
peutic responses. Moreover, functional studies of genes dis-
covered via this mechanism have already yielded novel in-
sights into mechanisms of disease (6,8), serving as a logical
next step after novel risk genes have been identified during
SNP-focused studies. The mechanistic insight that certain
SNPs only manifest their function after exposure to partic-
ular chemical stimuli might also encourage a modified ap-
proach in GWAS studies in which these environmental fac-
tors are built into SNP-phenotype association models.

We observed that the function of these PGx-eQTL SNPs
was usually ‘masked’ in the absence of exposure to hor-
mones or related drugs because exposure to these com-
pounds could either initiate transcriptional activity between
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connected loci or elicit a conformational change in the
epigenomic landscape to disrupt or bring the SNP locus
into contact with distal gene(s) that were often relevant to
the observed clinical phenotypes. While we observed that
GR could mediate chromatin looping dynamics similarly
to what has been described by Hoffman et al. (46), most
SNP-gene pairs appeared to have pre-established connec-
tions at baseline, an observation consistent with that re-
ported by D’Ippolito et al. (59). A limitation of Hi-C-based
techniques, however, is that it provides a static snapshot of
chromatin interactions, interactions which have been shown
to be overwhelmingly transient and dynamic by super-
resolution live-cell imaging (60).

Another relevant question to be explored is whether these
GR-responsive eQTLs could be replicated in vivo in human
studies. To partially address this issue, we overlapped our
PGx-eQTL discoveries with the 296 unique SNP-gene pairs
described by Arloth et al. (10) that were identified from pe-
ripheral blood mononuclear cells (PBMCs) of psychiatric
patients after dexamethasone stimulation. However, given
the large differences in experimental designs between the
two studies (e.g. microarray versus RNA-seq, PBMCs ver-
sus B-lymphocytes, varying blood drug levels in patients
versus tightly controlled drug conditions in cell lines), we
were unable to observe an overlap.

In conclusion, by systematically fine-mapping genotype-
phenotype interactions in which measurable environmental
factors such as drug or hormone exposure were taken into
account, we uncovered potential novel risk genes for a wide
range of diseases in which the pharmacological or physio-
logical stimuli played important roles. As a result, this study
has added a novel perspective to functional genomics by
providing a mechanistic framework for additional studies
of ligand-dependent ‘silent’ non-coding genetic variants to
advance the fine-mapping of disease risk and pharmacoge-
nomic loci. Insights from those efforts could partly explain
mechanisms underlying genetic and environmental suscep-
tibility to common diseases and/or predict variation in re-
sponse to drug therapy.
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