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Mass spectrometry-based metaproteomics is a relatively new field of research that enables the characterization of the functionality
of microbiota. Recently, we demonstrated the applicability of data-independent acquisition (DIA) mass spectrometry to the analysis
of complex metaproteomic samples. This allowed us to circumvent many of the drawbacks of the previously used data-dependent
acquisition (DDA) mass spectrometry, mainly the limited reproducibility when analyzing samples with complex microbial
composition. However, the DDA-assisted DIA approach still required additional DDA data on the samples to assist the analysis. Here,
we introduce, for the first time, an untargeted DIA metaproteomics tool that does not require any DDA data, but instead generates
a pseudospectral library directly from the DIA data. This reduces the amount of required mass spectrometry data to a single DIA run
per sample. The new DIA-only metaproteomics approach is implemented as a new open-source software package named glaDIAtor,
including a modern web-based graphical user interface to facilitate wide use of the tool by the community.
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INTRODUCTION

Microbiome profiling has attained increasing attention in the past
few years with the recognition of the important role of microbiota
in human health and disease [1-3] and potential major implica-
tions for disease prediction, prevention, and treatment. Currently,
metagenome sequencing has remained the most common
approach to study microbiome, with several successful applica-
tions in various studies, including large multi-center studies of
thousands of samples using either 16S rRNA or whole genome
sequencing [4]. By cataloguing which microbes are present in a
sample and their relative abundances, metagenomics can provide
important information about the taxonomic composition of the
microbial communities and predict their functional potential. A
major limitation of the metagenome approach is, however, that it
does not directly assess the function of the microbiota. To
overcome this limitation, mass spectrometry based metaproteome
analysis has emerged as a compelling option.

Metaproteomics is a relatively new field of research that aims to
characterize all proteins expressed by a community of micro-
organisms in a complex biological sample [5]. Its major promise
lies in its ability to directly measure the functionality of microbiota,
while the more widely used metagenomics captures only the
taxonomic composition and functional potential. Therefore,
metaproteomics has emerged as an intriguing option, for
example, in the study of human gut microbiota functionality in
various healthy and disease states [6, 7].

To date, metaproteomics has typically involved data-dependent
acquisition (DDA) mass spectrometry, which is, however, known to
have limitations [8]. For example, only the most intense peptide
ions are selected for fragmentation, which leaves the rest of the
peptides unidentified, while MS1-based methods still allow their

quantification. This is particularly challenging for metaproteomics,
where the vast number of peptides increase the chance of co-
elution. The selection also introduces stochasticity to the
identifications, reducing the overlap between repeated analyses.
For this reason, DDA often requires multiple runs from the same
sample to discover all obtainable peptides. Furthermore, the ion
intensities are often not consistently recorded through the whole
chromatographic profile, making quantification challenging [9].

To overcome the limitations of DDA, data-independent acquisi-
tion (DIA) mass spectrometry systematically fragments all pre-
cursor peptide ions. Therefore, DIA has been proposed as an
alternative method to overcome many fallbacks of DDA. However,
the systematic fragmentation of the precursor peptide ions
produces highly convoluted fragment spectra, making peptide
identification a difficult task. This is especially pronounced for
complex metaproteomic samples, where multiple precursor ions
are more likely to elute simultaneously.

Recently, we were the first to demonstrate that DIA mass
spectrometry can be successfully applied to analyze complex
metaproteomic samples by using a spectral library constructed
from corresponding DDA data to assist the peptide identification
[10]. While such DDA-assisted DIA method requires the peptides
to be previously discovered through DDA, it allows reproducible
identification and quantification of the detected peptides across
the samples [11]. However, the requirement for having a DDA-
based spectral library can be considered as a major drawback of
the method. Creating the DDA-based spectral library consumes
sample material, may not represent well the content of all the
samples and, most importantly, brings the DDA-related limitations
of peptide identification to DIA, as only peptides present in the
library can be detected from the DIA data.
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Fig. 1 Schematic illustration of the glaDIAtor workflow and software. glaD/Ator is an open-source software package that implements a
complete workflow for DIA metaproteomics data from raw mass spectrometry files to peptide quantifications and their taxonomic and
functional annotations (lower panel). To enable wide use of the tool, we provide both a modern web-based graphical user interface (upper
panel) as well as a command line interface that enables high-performance computing (HPC) cluster usage.

To this end, we introduce here untargeted analysis of DIA
metaproteomics data without the need for any DDA data. To solve
the problem of convoluted DIA spectra, we generate a pseudos-
pectral library directly from the DIA data. This is done using the
DIA-Umpire algorithm to deconvolve the DIA spectra into DDA-
like pseudospectra, having precursors and their fragments, which
can then be used for peptide identification with conventional
protein database searches [12]. Similar approach has not been
used in complex metaproteomics studies before. Using a
laboratory-assembled microbial mixture and human fecal samples,
we demonstrate that our DIA-only metaproteomic approach
enables overcoming the limitations of the DDA-assisted DIA
approach and reduces the number of required mass spectrometry
analyses to a single DIA analysis per sample.

The new DIA-only metaproteomics approach is implemented
as a new open-source software package named glaDIAtor. It
contains two different interfaces to facilitate wide use of the tool
by the community. The easy-to-use graphical user interface (GUI)
is suited to users without extensive bioinformatics background,
whereas the command line interface is more suited to high-
performance computing (HPC) cluster usage and other scripted
use cases. To provide a modern graphical web user interface,
glaDIAtor utilizes the Pyramid and Vue frameworks. The primary
intended method for its deployment is a server installation,
where it can be accessed from multiple workstations by using
web browsers, such as Firefox or Chrome. Alternatively,
glaDIAtor can be deployed to a workstation where the web
service is visible only to the local machine. Using the command
line interface, glaDIAtor can be deployed on HPC clusters under
work managers such as SLURM.

RESULTS

The glaDIAtor software package implements a complete data
analysis workflow for DIA metaproteomics from raw mass
spectrometry files to peptide quantification and taxonomic/
functional annotation (Fig. 1). It is implemented using container
technology, which provides all the required utilities and libraries in
a single package enabling easy installation on multiple different
platforms [13, 14], including support for server and workstation
deployments. To enable broad adoption of the tool, we provide
both a modern web-based graphical user interface as well as a
command line interface that enables HPC cluster usage.
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To demonstrate the feasibility and benefits of our new DIA-only
metaproteomics approach, we applied it to a laboratory-
assembled microbial mixture containing twelve different bacterial
strains (12mix) and to human fecal samples from six healthy
donors (Supplementary Tables 1 and 2).

Peptide identifications with glaDIAtor DIA metaproteomics
are highly reproducible

First, we investigated the peptide identification yields using the
DIA-only approach of glaDIAtor and compared them against our
previously introduced DDA-assisted DIA method [10] and the
conventional approach of using DDA only. In the simplified 12mix
data, three replicate samples were prepared from the same
bacterial mixture and analyzed separately with DIA. For the
generation of the DDA-based spectral library, these three
replicates were pooled together and analyzed in triplicate. Since
both the individual replicates and the pooled sample represented
the same mixture, they were highly similar. As expected, this was
advantageous for the DDA-assisted DIA approach and, accord-
ingly, it identified more peptides than the DIA-only approach in
these data (15742 vs. 7967 peptides, Fig. 2A). Interestingly,
however, we also identified a considerable number of peptides
using the DIA-only method. On average, 7957 peptides per sample
were identified using the DIA-only approach, with 7943 peptides
identified across all the replicates. With the DDA-assisted DIA
approach, on average, 15519 peptides were identified per sample,
with 15218 peptides identified across all the replicates. Use of only
the DDA data identified, on average, 18132 peptides per sample,
while the number of peptides identified across all the replicates
was 10912.

In the complex human fecal data, six replicate samples were
prepared from different individual donors and analyzed separately
with DIA. For the generation of the DDA-based spectral library,
these six samples were pooled together and analyzed with six
injections to increase the peptide coverage in the library.
Importantly, in these complex data, the DIA-only approach
produced over 30% more peptide identifications than the DDA-
assisted DIA approach (14691 and 11122 peptides, Fig. 2B). On
average, 8211 peptides per sample were identified using the DIA-
only approach and 6385 peptides using the DDA-assisted DIA
approach. Use of only the pooled DDA data identified, on average,
18650 peptides per technical replicate, while the total number of
peptides identified across all the technical replicates was 7348.
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Of all the peptides identified by either the DDA-assisted DIA or
the DIA-only approach, 37% and 30% were shared between both
approaches in the 12mix and the fecal data, respectively (Fig. 2A,
B). This was in line with the observed overlap of ~35% between
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Fig. 2 Overlap of the peptides detected by the DIA-only and the
DDA-assisted DIA approach. Overlap of the A 12mix and B human
fecal samples. C Overlap of the detected peptides between all pairs
of replicated 12mix samples using the DIA-only, the DDA-assisted
DIA, and the DDA-only approach.
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the corresponding spectral and pseudospectral libraries, which
were used as the search space for the peptides and determined
what could be identified from the DIA data (Supplementary Fig. 1).
Of note, while deconvolution is able to extract pseudospectra
from the DIA data, the set of fragment ions for a given peptide
may not be exactly the same as with DDA, but even peptides with
identical amino acid sequences can be represented by partially
different sets of fragment ions between the libraries, possibly
affecting the peptide identification (Supplementary Fig. 2).

Since the 12mix data contained technical replicates, it also
allowed us to investigate the technical reproducibility of the
identified peptides. This was done by comparing the overlap of
the peptide identifications between each possible pair of
replicates divided by the total number of peptides identified in
the replicate pair. The reproducibility of both the DIA-only and the
DDA-assisted DIA approach was high, with an overlap of over 99%
and 96%, respectively (Fig. 2C), whereas the use of only the DDA
data of the pooled mixture samples resulted in an overlap of only
~40% between technical repeats, highlighting the improved
reproducibility of DIA over DDA.

DIA-only approach by glaDIAtor enables detection of
individual-specific microbial taxonomic profiles

The overall taxonomic profiles of the metaproteomes observed
were mostly similar when using the DIA-only and the DDA-
assisted DIA approach, as well as only the DDA data. With all
approaches, a unique taxonomic annotation was assigned at
phylum level to >90% of the peptides in the 12mix and ~70% of
the peptides in the human fecal data (Fig. 3A, Supplementary
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Fig. 3 Taxonomic profiles of the human fecal samples. A Phylum-level and B genus-level taxonomic annotations of the peptides using the
DIA-only approach (left panel), the DDA-assisted DIA approach (middle panel), or only the pooled DDA data (right panel). Phyla or genera
having less than 0.5% of the total peptides were aggregated to category other. C Differences between the DIA-only and the DDA-assisted DIA
results of the individual human fecal samples, measured by the differences of the observed percentages between the two approaches.
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Fig. 4 Functional profiles of the human fecal samples. A KEGG functional categories of the peptides using the DIA-only approach (top
panel), the DDA-assisted DIA approach (middle panel), or only the pooled DDA data (bottom panel). Functional categories having less than
0.5% of the total peptides were aggregated to category other. B Heatmaps of the functional profiles of the six individual healthy donor
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C Genus-wise distributions of the peptides involved in carbohydrate metabolism in the six individual healthy donor samples using the DIA-
only and the DDA-assisted DIA approach, and in the six technical repeats of the pooled sample analyzed with DDA.

Fig. 3A). At genus level, a unique taxonomic annotation was
assigned with all approaches to ~60% of the peptides in the 12mix
and ~40% of the peptides in the human fecal data (Fig. 3B,
Supplementary Fig. 3B). Only ~2% of the identified peptides in the
laboratory assembled 12mix were annotated to genera not
present in the mixture, while the taxonomic profile of human
fecal samples was similar to those reported in the literature, [6, 15].
Similarly, despite the differences in the spectral and pseudospec-
tral libraries, the overall taxonomic profiles of their overlapping
and non-overlapping parts remained similar (Supplementary
Fig. 4).

To take a closer look at the differences between the DIA-only
and DDA-assisted DIA approaches, we compared the genus-level
taxonomic profiles of the peptides in the human fecal data.
Although the overall taxonomic profiles were highly similar, some
notable differences were observed. First, while the DIA-only
approach detected a larger number of peptides, it also detected a
larger proportion of peptides that did not yet have taxonomic
annotation in the widely used integrated reference catalog of the
human gut microbiome (IGC) [16]. Secondly, the DDA-assisted DIA
method detected a larger proportion of ambiguous peptides with
multiple different annotations in IGC, which is typical to peptides
that are shared by multiple organisms. Finally, when investigating
the individual genera, the largest difference between the results of
the DIA-only and DDA-assisted DIA approaches was observed in

SPRINGER NATURE

Prevotella in the human fecal samples, which had a 4.2% share
with the DIA-only approach and 2.5% share with the DDA-assisted
DIA approach. A closer look at the individual human fecal samples
revealed that Prevotella was dominant in a single sample, while its
proportion in the other samples was very low (Fig. 3C). This
illustrates the possible limitations of a pooled DDA library in the
presence of large individual variation in the metaproteomes.

DIA-only approach by glaDIAtor enables detection of
individual-specific microbial functional profiles
Next, we investigated the functional profiles of the metapro-
teomes observed using the DIA-only, the DDA-assisted DIA, or
only the DDA data. Using KEGG functional categories from the IGC
database, a functional annotation could be assigned to ~90% of
the peptides in both the 12mix and the human fecal data with all
the approaches (Fig. 4A, Supplementary Fig. 5A), supporting the
utility of the peptide-centric approach in the functional annota-
tions without the need for the intermediate step of protein
inference. The overall functional profiles with all the approaches
were highly similar (Fig. 4A, Supplementary Fig. 5A, B). Similarly,
despite the differences in the spectral and pseudospectral
libraries, the overall functional profiles of their overlapping and
non-overlapping parts remained similar (Supplementary Fig. 6).
A more detailed examination of the functional profiles in the
human fecal data suggested that the largest functional categories

ISME Communications
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Fig. 5 Representative examples of correlations of peptide quantifications. Correlations between two technical replicates of the 12mix
samples using A the DIA-only or B the DDA-assisted DIA approach, or between the DIA-only and the DDA-assisted DIA approach in the
C 12mix and D human fecal samples. All the corresponding pairwise comparisons are shown in Supplementary Figs. 4 and 5.

included carbohydrate metabolism (~30%), translation (~15%),
and energy metabolism (~10%), which together covered over 50%
of the peptides (Fig. 4A). These are in line with previous studies of
healthy human fecal metaproteomes [17, 18]. The overall
functional profiles were highly similar across the different
individuals and with all the different approaches, despite
differences in the peptide identifications (Fig. 4B). This was also
true to the detected functional pathways, despite differences in
the coverage of the pathways (Supplementary Fig. 7). However,
more detailed investigation of the functionality can reveal more
variation between the individuals. For instance, by investigating
genus-wise distribution of the peptides involved in carbohydrate
metabolism, the individual with the largest Prevotella abundance
stood out, as well as did another individual with markedly lower
contribution of Faecalibacterium compared to the other indivi-
duals (Fig. 4Q).

DIA metaproteomics using glaDIAtor enables reproducible
peptide quantifications

Finally, we assessed the performance of the DIA-only approach of
glaDIAtor in quantifying the identified peptides. The pairwise
Pearson correlation coefficients between the quantifications
across the technical replicates in the 12mix data were very high
(r>0.97 with p<0.001 in each pairwise comparison, Fig. 5A,
Supplementary Fig. 8), indicating high reproducibility. The values
were even higher than with the DDA-assisted DIA approach, which
already produced highly reproducible quantifications (r>0.95
with p<0.001 in each pairwise comparison, Fig. 5B, Supplemen-
tary Fig. 8).

Comparison of the quantifications between the DIA-only and
the DDA-assisted DIA approach across the shared peptides
suggested overall high correlations in both the 12mix and the
human fecal samples (r > 0.85 with p < 0.001 in each comparison)
(Fig. 5C, D, Supplementary Fig. 9). The differences were related to
the libraries built by the approaches, where each unique peptide

ISME Communications

can be represented by multiple ions with different charge states
and modifications and the same peptide is typically represented
by a partially different set of fragments. Since the peptides are
quantified based on the fragment level, this results in quantifica-
tion differences between the approaches.

DISCUSSION

A major bottleneck in the utilization of mass spectrometry
metaproteomics has been the lack of appropriate computational
tools to interpret the data produced [19]. Because of the inherent
complexity of the data, conventional tools to analyze single-
species proteome data are often not well suited for metapro-
teomics. While a few tools have been introduced for the analysis
of DDA metaproteome samples [20, 21], until our recent work [10],
there have been no tools for DIA mass spectrometry metapro-
teomics, despite its high potential to improve the reproducibility
over the DDA mode. Here, we introduce untargeted DIA for
metaproteomics of complex microbial samples, which is a major
practical improvement to metaproteomics. Importantly, we
demonstrate that reproducible identification and quantification
of microbial peptides is possible without the need for any
additional DDA library samples using our new DIA-only tool
glaDIAtor.

In comparison to our previously introduced DDA-assisted DIA
approach, a major benefit of the proposed DIA-only approach is
that it omits the need to design a representative set of DDA
samples for spectral library generation and, thereby, it reduces the
number of samples that need to be analyzed. This is of particular
importance in studies with large numbers of samples, such as
those in clinical study settings.

In addition to a reduced number of samples that need to be
analyzed, the new DIA-only approach also circumvents the initial
DDA-originated limitations in peptide identification that hamper
approaches using a DDA-based spectral library, especially as such
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library is typically prepared using only a limited set of pooled
samples. For instance, with the complex human fecal data, the
DIA-only approach improved the number of peptide identifica-
tions over the DDA-assisted DIA approach. This supports the
notion that a spectral library generated from pooled DDA samples
might not represent well the whole diversity of the samples but is
dominated by highly abundant peptides and peptides commonly
detected in the samples. This may play a crucial role in the data
interpretation; for instance, in the analysis of the human fecal
samples, Prevotella was dominant in one of the samples but lowly
abundant in the others. If the DDA library does not represent well
the whole sample set, important parts of the microbial commu-
nities may remain undetected, which can be avoided with the
proposed DIA-only approach. Still, a comprehensive DDA library
can enable detection of peptides in greater numbers than is
detected by deconvolving the DIA data (Fig. 2A), suggesting that
there likely remains room for further methodological improve-
ments for deconvolution, as not all peptides present in the DIA-
data are detected.

A well-known limitation of the DDA-based analysis is that it
tends to detect peptides that are highly abundant. This includes
peptides shared by multiple species, which causes a peptide to
have an ambiguous taxonomic annotation. Accordingly, we
observed a relatively large proportion of peptides with ambiguous
taxonomic annotation with the DDA-assisted DIA approach at the
genus level. On the other hand, the DIA-only approach tended to
detect a larger proportion of peptides with unknown genus
annotation than the DDA-assisted DIA approach, indicating that
they were less well characterized in the current databases. This
suggests that the most abundant proteins, commonly targeted by
DDA, are more likely to have an annotation in the database. This
may also suggest the ability to target proteins not detectable by
other means, thus revealing proteins that are not well known and
annotated by databases.

In the current version of glaDIAtor, peptide annotations are
assigned to fixed taxonomy levels using a peptide-centric
approach. Alternatively, the widely used lowest common ancestor
(LCA) approach could be used for taxonomic annotation, which
maps the peptides to the taxonomic lineages based on the lowest
common ancestor [22]. The same peptide-centric approach is also
applicable to functional annotations, which are typically not
organized in tree-based structures, making the LCA approach
unsuitable for them. A benefit of our pragmatic peptide-centric
approach is that it allows examination of the data at different
levels of generality, instead of only the most specific annotation(s)
associated with a peptide, such as the most specific taxon
with LCA.

Technically, the analysis of metaproteomics data can be a very
computationally intensive task in terms of the required comput-
ing power and memory usage. For building a spectral or
pseudospectral library, a great deal of computing power is
needed to compare the theoretical spectra of the vast sequence
database against the experimental spectra obtained from the DIA
data. With the datasets in this study, the library generation was
found to be the most time-consuming step that can take several
days. By comparison, the DIA-only approach was computationally
more intensive than the DDA-assisted DIA approach due to the
fact that each DIA spectrum file was deconvoluted to pseudos-
pectrum files, which were subsequently analyzed to build a
pseudospectral library. Once the spectral or pseudospectral
library has been produced, the subsequent analysis of the DIA
data against the library spectra is then considerably faster. The
current version of glaDIAtor scales the processing with threads
using efficiently the processing power of a single computer.
However, it is possible to extend the parallel analysis to multiple
computers, such as cluster environments. On AMD EPYC
hardware with 64 cores and 228GB RAM, the glaDIAtor run times
for both the 12mix and human fecal datasets were ~12 h in DDA-
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assisted DIA mode and ~24 h in DIA-only mode. To enable easy
deployment of glaDIAtor, it is implemented as a software
container which provides all the required utilities and libraries
in a single package.

An interesting future development would be to circumvent the
need of generating reference spectra separately for each new
project. For this, machine learning has been suggested as a
possible solution using, for instance, artificial neural networks
[23-25]. A major challenge with such approaches is, however, their
potential biases towards the training data and need for re-training
for specific conditions. This remains an interesting topic for further
investigation. In general, the microbiome research still involves
multiple different types of unknowns that are continuously being
revealed thanks to improved technologies [26], with metaproteo-
mics providing an excellent opportunity to uncover the functional
aspects of the microbial communities.

MATERIALS AND METHODS

Generation of DIA-based pseudospectral library in glaDIAtor
To enable building a pseudospectral library directly from the DIA data, the
DIA spectra were deconvolved into pseudospectra containing precursor
ions and their corresponding fragment spectra, following a similar
procedure as previously proposed for single-species proteomics [12]. In
short, a two-dimensional feature detection algorithm was first used to
locate precursor and fragment ions from the MS1 and MS2 data. Pearson
correlation coefficients of the elution peaks and retention time differences
of the peak apices were then used to group the fragment ions with the
precursors. For the generation of a pseudospectrum for each precursor-
fragment group, all likely complementary y and b ions were detected.
Finally, the obtained DIA pseudospectra were further filtered by searching
them with X!Tandem [27] and Comet [28] algorithms against the Integrated
reference catalog of the human gut microbiome (IGC, 9.9M) [16], containing
over 9 million protein sequences covering human gut bacteria. The false
discovery rate (FDR) for the identifications was set at 1%. The identified
spectra formed the final pseudospectral library that was used to identify
peptides from the DIA data.

Peptide identification and quantification

For peptide identification, either the DIA-based pseudospectral library
(referred to as DIA-only approach) or the DDA-based spectral library
(referred to as DDA-assisted DIA approach) was used. Both libraries utilized
X!Tandem [27] and Comet [28] algorithms and the IGC reference database
for peptide identification. Parent ion mass tolerance was set to 10 ppm and
fragment ion tolerance to 0.02 Da. The false discovery rate (FDR) for the
spectral library matching was set at 1%. For TRIC feature alignment [29],
the target and maximum FDRs were set to 1% and 5%, respectively.

Taxonomic and functional annotations

The identified peptides were taxonomically and functionally annotated
using the annotations from the IGC database without protein inference.
For each peptide, annotations of all possible protein sequences were
retrieved. Each peptide was first assigned to all its possible source proteins.
The annotation of a peptide was then determined on the basis of the
annotations of these proteins. If all the source proteins had the same
annotation, then that annotation was assigned to the peptide. Unan-
notated source proteins were allowed since they do not conflict with the
existing annotations. In case the source proteins had different annotations,
then the peptide annotation was labeled as ambiguous.

glaDIAtor software and availability
The glaDIAtor software is open source and distributed as a Docker image
that can be downloaded from DockerHub repository elolab/gladiator.
The current image is based on Ubuntu 20.04 and comes bundled with
several programs and libraries that retain their original licenses. The
installed software include: Comet 2019.01 rev. 5, X!Tandem 2017.02.01.4,
OpenMS 2.4 (includes OpenSWATH), Trans-Proteomic Pipeline (TPP) 5.2,
msproteomicstools 0.6.0, SWATH2stats 3.12, DIA-Umpire 2.1.3, and
ThermoRawFileParser 1.3.4.

The source code and step-by-step instructions to use glaDIAtor are
provided at https://github.com/elolab/glaDIAtor.
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Laboratory assembled microbial mixture and human fecal
samples

The 12mix data was a mixture of twelve different bacterial strains isolated
from fecal samples of three human donors grown on fastidious anaerobe
agar (LAB 090; LAB M, UK) and annotated by sequencing their 16S-rDNA:
Bacteroides vulgatus, Parabacteroides distasonis, Enterorhabdus sp., Bifido-
bacterium pseudocatenulatum, Escherichia coli, Streptococcus agalactiae,
Bacteroides fragilis, Alistipes onderdonkii, Collinsella aerofaciens, Clostridium
sordellii, Eubacterium tenue, and Bifidobacterium bifidum. Prior to mixing,
the bacterial cell counts were equalized to 10x 108 cells/ml using flow
cytometry and 1 x 10 cells of each isolate were added to the final mixture.
Three isolations and mixtures were made, and the mixtures were analyzed
in DDA and DIA mode.

The human fecal data contained six human fecal samples from
anonymous individuals representing a complex metaproteomic scenario.
Each fecal sample was analyzed in DIA mode with a single injection.
Additionally, all six samples were pooled together and analyzed in DDA
mode with six injections to increase the peptide coverage in the spectral
library.

The sample preparation and mass spectrometry analysis were con-
ducted as previously described [10]. Briefly, the protein isolation for the
12mix samples was performed using a Barocycler instrument NEP3229
(Pressure BioSciences) and for the human fecal samples using the NoviPure
Microbial Protein Kit (Qiagen) following the manufacturer’s instructions.
For each sample, 50 ug of protein was used for trypsin digestion. The
proteins were reduced with dithiothreitol and alkylated with iodoaceta-
mide. Trypsin digestion was performed in two steps; first trypsin added in a
1:50 ratio digested for 4 h, and then in a 1:30 ratio overnight at 37 °C. After
digestion, the peptides were desalted using a SepPak C18 96-well plate
(Waters).

The samples were analyzed using liquid chromatography tandem mass
spectrometry (LC-MS/MS) on a nanoflow high-performance liquid
chromatography (HPLC) system (EASY-nLC1200) coupled with a Q Exactive
HF mass spectrometer (both from Thermo Fisher) and a nano-electrospray
ionization source. The digested protein sample (500 ng) was loaded on a
trapping column and separated inline on a 15 cm C18 column (Dr. Maisch
HPLC GmbH). A mobile phase of water with 0.1% formic acid (solvent A) or
acetonitrile/water (80:20 volume/volume) with 0.1% formic acid (solvent B)
was applied. Peptides were eluted with a 90 min two-step gradient from 7
to 35% B, followed by wash with 100% B. The mass spectrometry data was
acquired automatically using the Thermo Xcalibur 3.1 software (Thermo
Fisher). The DDA analysis consisted of an Orbitrap MS survey scan of the
mass range 375-1500 m/z with 120 K resolution, AGC target of 3 x 105, and
maximum injection time of 50 ms, followed by higher-energy collisional
dissociation fragmentation of the 15 most intense peptide ions. The DIA
analysis covered the mass range of 400-1000 m/z through 40 consecutive
15m/z isolation windows. The acquisition was performed with 30K
resolution, AGC target of 5 x 10°, and automatic maximum injection time.

The mass spectrometry data are available from the ProteomeXchange
Consortium via the PRIDE partner repository with the dataset identifier
PXD008738.

DATA AVAILABILITY

The mass spectrometry data are available from the ProteomeXchange Consortium via
the PRIDE partner repository with the dataset identifier PXD008738.
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