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Investigating the composition and metabolic capacity of aquatic microbial assemblages usually requires the filtration of multi-litre
samples, which are up to 1 million-fold larger than the microenvironments within which microbes are predicted to be spatially
organised. To determine if community profiles can be reliably generated from microlitre volumes, we sampled seawater at a coastal
and an oceanic site, filtered and homogenised them, and extracted DNA from bulk samples (2 L) and microvolumes (100, 10 and 1 μL)
using two new approaches. These microvolume DNA extraction methods involve either physical or chemical lysis (through pH/thermal
shock and lytic enzymes/surfactants, respectively), directly followed by the capture of DNA on magnetic beads. Downstream analysis
of extracted DNA using both amplicon sequencing and metagenomics, revealed strong correlation with standard large volume
approaches, demonstrating the fidelity of taxonomic and functional profiles of microbial communities in as little as 1 μL of seawater.
This volume is six orders of magnitude smaller than most standard operating procedures for marine metagenomics, which will allow
precise sampling of the heterogenous landscape that microbes inhabit.
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Interest in extraction methods capable of recovering ‘trace’ or low-
input amounts of DNA has grown rapidly in a wide range of
research fields, including forensics [1], the human microbiome [2],
soil microbiology [3], ancient DNA [4–6] and aerosol research [7].
For instance, recent studies successfully characterised microbial
consortia from 1mg of soil, when standard approaches typically
recommend using 250 times this amount [8]. In contrast, the
aquatic microbial ecology field is lacking low-input DNA extraction
techniques. Currently, the recovery of microbial DNA from aquatic
environments typically involves the filtration of large volumes
(2–200 L) of seawater [9–11]. This large volume sampling means
that targeted characterisation of microbial communities inhabiting
microenvironments (e.g. surrounding marine protists, attached to
marine snow particles, or within-host cavities) is not possible and
spatial heterogeneity in aquatic bacterial community composition
and abundance is therefore often ignored and averaged out
[12, 13], resulting in the potential misinterpretation of important
ecological patterns [14–17]. Within this context, the critical
bottleneck has been the capacity to obtain sufficient amounts of
quality DNA from small volume samples (i.e. microliters)
for downstream analysis (e.g. amplicon sequencing and metage-
nomics) [18]. Here we present and validate two novel
microvolume DNA extraction techniques that employ either i)
physical or ii) chemical lysis to rupture cells (Fig. 1a), facilitating-
precise assessment of the taxonomic composition and
functional potential of microbial assemblages from samples as
small as 1 µL.

Both microvolume DNA extraction techniques were tested on
samples collected from two marine locations: an oceanic (34°07′
06′′S 151°13′09′′E) and a coastal (33°54′52.9′′S 151°16′04.5′′E) site
near Sydney (Australia), enabling comparison of environments
harbouring distinct assemblages, low microbial abundances, and
varying water chemistry. Twenty litres of surface seawater
collected from each site were first gently poured through a 165-
µm mesh to remove particulates and then homogenised by
mixing in a carboy to reduce microscale heterogeneity. DNA was
then extracted from different volumes in quadruplicate: (i) 2 L
were filtered and extracted with a commonly used DNA extraction
kit (DNeasy PowerWater, QIAGEN), which acted as a benchmark;
(ii) 100 µL, 10 µL, and 1 µL were extracted using our two
microvolume extraction approaches (Fig. 1a, Table S1). This
volume range was used to assess the ability of each method to
characterise microbial communities at scales that are more
relevant to the ecology of the microorganisms. For each
microvolume sample, cells were lysed by exposure to either (i)
an alkaline solution (including KOH and dithiothreitol to cleave
protein disulphide bonds [19]) followed by a thermal shock
(physical lysis), or (ii) a mixture of broad spectrum lytic enzymes
and surfactants (Lysozyme—SDS—proteinase K; chemical lysis)
(Fig. S1). Free DNA was then captured using magnetic beads
commonly used for library preparation [20–22], before being
purified and eluted (Tables S2-S3). To maximise DNA recovery, the
entire extraction protocol was carried out in a single tube per
sample. Multiple negative controls were collected alongside the
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seawater samples to identify and remove contaminants. Extracted
samples were then characterised via amplicon sequencing (16S
rRNA gene, Tables S4–S6) and those from the oceanic site were
further explored using shotgun metagenomics.
All microvolume DNA extractions, including the 1 µL samples,

were successfully amplified and sequenced. Their taxonomic
composition was compared to the 2 L samples after stringent
quality filtration and contaminant removal (Fig. S2). The propor-
tion of reads identified as contaminants increased as extracted
volume decreased, ranging from an average of 0.12% (100 µL
samples) to 4.5% (1 µL samples) for the physical lysis, and from

6.99% (100 µL) to 54.5% (1 µL) for the chemical lysis (Table S7).
Despite the large proportion of reads lost due to contaminants in
some of the chemical lysis samples, taxonomic profiles from all
DNA extraction methods and volumes were statistically indis-
tinguishable within each site (PERMANOVA, p > 0.4; Fig. 1, Figs. S3,
S4, Tables S8–S12). In addition, the amplicon sequence variant
(ASV) proportions derived from the microvolumes were highly
correlated to the standard large volume approach (Spearman’s
correlation, p < 0.0001; Figs. S5–S7), highlighting a high level of
fidelity between the microvolumes and the 2 L samples. These
findings demonstrate that both microvolume extraction
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Fig. 1 Microvolume DNA extraction method and resulting taxonomic composition of 16S rRNA gene amplicons from the different
extraction methods and seawater volumes tested. a Microvolume (e.g. 100 µL, 10 µL, 1 µL) DNA extraction protocol for both physical lysis
(which relies on both pH and thermal shock to lyse cells and takes ~30min for a batch of ten samples) and chemical lysis (which uses
lysozyme and SDS to lyse cells and takes ~105min for a batch of ten samples). Cell lysate is then cleaned using AMPure beads, which takes
about 50min and results in purified DNA ready to be used in a variety of downstream applications (e.g. amplicon sequencing, shotgun
metagenomics, Nano-string, qPCR, etc). A more detailed version of this schematic is presented in Fig. S1. b Non-metric multidimensional
scaling (nMDS) plot based on Bray–Curtis distance between samples. Ovals highlight statistically different consortia between the two
sampling sites (PERMANOVA, p < 0.001, Table S8); within those ovals the consortia were not statistically different irrespective of volume or
extraction method (PERMANOVA, p > 0.4, Tables S9, S10). Microbial diversity of amplicon sequence variants (ASVs) (>0.1% relative abundance
in at least one replicate extraction) are displayed for each site separately: c oceanic sampling site and d coastal sampling site. ASVs are ordered
by decreasing relative abundance. ASVs that were rare in the bulk 2 L extraction (<0.1% relative abundance), but made up >0.1% of one of the
microvolume extractions, are coloured in various shades of blue in all extractions. ASVs absent from the 2 L extraction are coloured in various
shades of grey and present at the bottom of the bar chart. The full legend for c and d can be found in Tables S11, S12. Note: the colour
palettes used for c and d are different.
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techniques enable reliable characterisation of microbial commu-
nity composition down to 1 µL of seawater.
To determine if consistent and representative functional profiles

could also be derived from microvolume extractions, samples
from the oceanic site were sequenced using shotgun metage-
nomics and functional and taxonomic profiles were compared to
those generated using the standard 2 L extraction (with 20 cycles
of amplification used for the microvolume samples based on
previous optimisations [21]). Each of the microvolume extractions

resulted in an insertion size range that was within the
recommended length for the Illumina protocol (200–340 bp;
Figs. S8, S9, Table S13). Despite larger proportion of contaminants
identified in the chemical lysis approach, this extraction out-
performed the physical lysis method for the 1 µL samples, with an
average of nine times more contigs assembled (Fig. S8, Table S13).
Additionally, the 1 μL physical lysis extractions yielded smaller
library sizes with fewer unique reads, did not assemble as well
(producing on average 51.5 times fewer contigs longer than 500
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Fig. 2 Functional composition of the seawater metagenomes from the oceanic site using the different methods and seawater volumes.
a Non-metric multidimensional scaling (nMDS) plot based on Bray-Curtis distance between the annotated genes from prokaryotes. All
samples were statistically indistinguishable (PERMANOVA p > 0.05, Table S14). b Spearman’s correlation analysis of the KO-based averaged
functional profile of the annotated genes with at least 100 reads, all correlations shown are statistically significant (p < 0.0001). c Metagenomic
genes (>0.3% relative abundance in at least one sample) identified from the 2 L extraction; physical lysis (100 µL, 10 µL, 1 µL); and chemical
extractions (100 µL, 10 µL, 1 µL). The full legend for c can be found in Table S16.
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bp than the 1 µL chemical lysis), and exhibited large deviations
from the other metagenomes (Figs. S8–S10, Table S13). Irrespec-
tive of extraction or volume, the assigned functional profiles of the
microbial assemblages were not statistically different (PERMA-
NOVA, p > 0.05; Fig. 2, Figs. S11, S12, Tables S14, S16). These results
confirm that the microvolume extractions accurately and repro-
ducibly capture the functional capacity of the marine microbial
consortia and that microscale sampling schemes can be used to
characterise microbial metabolic capacities from 1 µL of seawater
(Figs. 2, S13).
We were able to co-assemble metagenome assembled gen-

omes (MAGs; completion: >50%, redundancy: <20%) from the
microvolume extractions. Specifically, we recovered: 19 MAGs
from the 100 µL chemical lysis, 6 MAGs from the 10 µL chemical
lysis, and 7 MAGs from the 100 µL physical lysis (in comparison, we
recovered 20 MAGs from the 2 L; Table S17). We identified 6 MAGs
in common between the 2 L extractions and the 100 µL chemical
lysis, while the 10 µL chemical lysis and 100 µL physical lysis both
shared 3 MAGs with the 2 L extractions (Table S18). Although it
was not possible to assemble MAGs from the 1 µL samples
(probably due to their lower numbers of contigs larger than 500
bp; Fig. S8), we anticipate that an increased number of replicates
from this microvolume will enable their assembly.
Both microvolume extractions are (i) more cost effective than

standard large volume extractions (e.g. PowerWater ($10.38 USD/
sample)), costing $7.09 USD/sample when extracting 100 µL and
only $0.72 USD/sample when extracting 10 µL or less; and (ii)
much faster than standard extractions, given that filtration of the
samples is not required (PowerWater extraction takes ~120 min,
plus 30 to 120min per sample to filter the required volume of
water). Based on the results of our benchmarking tests, we
suggest that the physical lysis extraction protocol is the most
suitable for sample volumes greater than 10 µL, it is faster (taking
~80min/batch of ten samples), and produces data with high
levels of fidelity compared to standard approaches. However, the
chemical lysis extraction is better suited for the smallest volume
tested here (1 µL), enabling accurate characterisation of microbial
communities with both amplicon sequencing and shotgun
metagenomics. At this small volume, the variability between
replicates increased significantly compared to 2 L for both
amplicon sequencing (Figs. S14–S16, Tables S19–S27), and
metagenomes (Figs. S10, S13, Table S28), which is consistent with
prediction of heterogeneity at the microscale and indicates that
despite prefiltration and homogenisation, some heterogeneity
persisted in our samples.
Here we introduce and validate two DNA extraction approaches

that facilitate reliable examination of both the taxonomic
composition and metabolic potential of microbial communities
in as little as 1 µL of seawater. Further reduction of contaminants
originating from the chemical lysis reagents (as outlined in the
methods) may allow successful extraction of nanolitre samples. In
addition, these microvolume extractions enable the characterisa-
tion of microbial communities without the biases induced by
filtration, which might be advantageous when studying viruses.
We therefore believe that the DNA extraction methods presented
here have the potential to change how we study aquatic microbial
ecology, enabling researchers to assess the distributions and
ecological interactions of microorganisms at the minute scales
that are often more relevant to their ecology.
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