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Validation and real-world clinical application of an artificial
intelligence algorithm for breast cancer detection in biopsies
Judith Sandbank1,2, Guillaume Bataillon3,7, Alona Nudelman1, Ira Krasnitsky2, Rachel Mikulinsky2, Lilach Bien2, Lucie Thibault3,
Anat Albrecht Shach4, Geraldine Sebag2, Douglas P. Clark2, Daphna Laifenfeld2,8, Stuart J. Schnitt 5,6, Chaim Linhart2,
Manuela Vecsler 2 and Anne Vincent-Salomon 3✉

Breast cancer is the most common malignant disease worldwide, with over 2.26 million new cases in 2020. Its diagnosis is
determined by a histological review of breast biopsy specimens, which can be labor-intensive, subjective, and error-prone. Artificial
Intelligence (AI)—based tools can support cancer detection and classification in breast biopsies ensuring rapid, accurate, and
objective diagnosis. We present here the development, external clinical validation, and deployment in routine use of an AI-based
quality control solution for breast biopsy review. The underlying AI algorithm is trained to identify 51 different types of clinical and
morphological features, and it achieves very high accuracy in a large, multi-site validation study. Specifically, the area under the
receiver operating characteristic curves (AUC) for the detection of invasive carcinoma and of ductal carcinoma in situ (DCIS) are 0.99
(specificity and sensitivity of 93.57 and 95.51%, respectively) and 0.98 (specificity and sensitivity of 93.79 and 93.20% respectively),
respectively. The AI algorithm differentiates well between subtypes of invasive and different grades of in situ carcinomas with an
AUC of 0.97 for invasive ductal carcinoma (IDC) vs. invasive lobular carcinoma (ILC) and AUC of 0.92 for DCIS high grade vs. low
grade/atypical ductal hyperplasia, respectively, as well as accurately identifies stromal tumor-infiltrating lymphocytes (TILs) with an
AUC of 0.965. Deployment of this AI solution as a real-time quality control solution in clinical routine leads to the identification of
cancers initially missed by the reviewing pathologist, demonstrating both clinical utility and accuracy in real-world clinical
application.
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INTRODUCTION
Breast cancer is the most common malignant disease worldwide,
with over 2.26 million new cases in 20201. Its diagnosis is
determined based on the histological review of specimens
acquired by needle core biopsies (NCBs), including Tru-cut
biopsies for palpable masses or masses identified under mammo-
grams, ultrasound scans, or magnetic resonance imaging and
vacuum-assisted breast biopsies, especially used for sampling of
calcifications, or surgical excision biopsies taken from the site of
suspected malignancy. Breast cancer is classified based on
morphological and cytological characteristics associated with
invasive breast carcinoma. Many different histological types of
breast cancers are recognized in the World Health Organization
classifications2, the two most frequent being the invasive
carcinoma of the breast of no special type (IC-NST), and
infiltrating/invasive lobular carcinoma (ILC), accounting for ~70%
and 10–15% of all invasive breast tumors, respectively2. Other
invasive breast cancers, such as mucinous and metaplastic
carcinomas, are significantly less prevalent3. Clinical management
of those histological variants of invasive carcinomas are becoming
different in the era of personalized medicine4, emphasizing the
need for an accurate histological classification at initial diagnosis.
Pre-invasive epithelial proliferation within the ducts encompasses
ductal carcinoma in situ (DCIS) and atypical ductal hyperplasia
(ADH), which are associated with significantly higher risks of
subsequent invasive carcinoma, and women with these findings
may require additional surveillance, prevention, or treatment to

reduce their risks of developing an invasive carcinoma3,5. DCIS are
classified as low grade (LG), medium/intermediate grade (IG), or
high grade (HG), based on the morphology of the cells and their
nuclei. ADH may be morphologically similar to LG DCIS, and its
diagnosis will rely on the size of the lesion, or it may have a
morphology that is between DCIS and florid hyperplasia6.
Histopathological assessment of tumor type, size, and stage of

cancer, as well as phenotype, have a major impact on the choice
of treatment strategies7,8 and are also used as prognostic aids8,9.
Histopathological assessment of biopsies is performed using
microscopic examination of tissue sections stained by hematoxylin
and eosin (H&E) and by immunohistochemical techniques. Since
histopathological assessments rely on pathologists’ labor, diag-
nostic processes may have significant limitations in the timely
turnaround of pathology reports, even though breast biopsies are
generally reviewed as a high priority. Moreover, the pathology
workload is constantly growing due to the shortage of expert
pathology workforce alongside an increase in the number of
specimens with higher breast cancer incidence10,11 and screening
programs for early cancer detection12. In addition, as with any
manual diagnostic process, it is subject to substantial intra- and
inter-reader variability, adding to the risk of misdiagnosis or
overdiagnosis. The cumulative probability of a woman receiving at
least one false-positive biopsy over 10 years is estimated to be
between 4.8% and 9.4%13. An estimated 13% (1 in 8) of women in
the United States will likely be diagnosed with breast cancer in
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their lifetime, emphasizing the need for access to high-quality
diagnosis with implications on optimal treatment pathways10.
Automated tools for biopsy review that employ Artificial

Intelligence (AI) algorithms to augment the pathologist’s effort
can offer more scalable, standardized, and streamlined processes
of biopsy diagnostic review and breast cancer detection, and can
ultimately help optimize patient treatment. The adoption of digital
imaging in pathology has grown significantly in recent years,
enabling the initial deployment of AI-based tools to support
routine clinical use, in particular in prostate biopsies14,15. For
breast biopsy diagnostic support, several publications have
demonstrated the feasibility of developing AI-based algorithms
to support classification, with a sensitivity of 70–79%, specificity of
41–95%, and accuracy of 0.70– 0.9416–20 depending on the type
and grade of tumors. These tools have not progressed from the
academic setting into properly designed clinical studies, and none
of them, to the best of our knowledge, have been deployed in a
live setting in a diagnostic laboratory. Moreover, to date, none of
the developed and validated AI algorithms have the capability to
identify dozens of morphological features in histology samples, to
the best of our knowledge.
This study presents the development of an AI algorithm with

very broad capabilities for breast biopsies and the results of a
blinded multi-site clinical validation assessing its performance in
the detection of invasive and in situ breast carcinomas in core
needle biopsies. Subsequently, an automated slide review work-
flow based on the developed AI algorithm is deployed as a second
read (SR) application in a pathology laboratory in routine clinical
practice, the first read being a microscopic or digital examination
of slides by a pathologist.

RESULTS
Algorithm internal testing
For algorithm internal testing, 2252 H&E slides from 1090
consecutive patients from Maccabi Healthcare Services (MHS)
were used (Fig. 1). The mean (SD) patient age in the internal test
set was 49.3 (13.9) years (Table 1). The majority of specimens were
NCBs (Tru-cut) (91.4%) and the remainder vacuum-assisted
biopsies (8.6%) (Table 1). Of the 1090 internal test cases, the
majority were benign (80.8%), with the remaining cases present-
ing invasive carcinomas (15.9%) and DCIS (LG, IG, and HG)/ADH
(3.3%), reflecting the real-world distribution of breast biopsies
diagnoses (Table 1). Four cases of rare invasive subtypes (non-ILC
and non-IC-NST) were present in the internal test set.
The performance of the AI algorithm measured on the internal

test set for the detection of invasive carcinoma showed high
accuracy: specificity of 98.27% (95% CI: 95.03%; 99.41%), sensitivity
of 99.02% (95% CI: 98.15%;99.48%) and area under the ROC curve
(AUC) of 0.998 (95% CI: 0.996;1.000). The PPV and NPV values for
this outcome were also very high—95.0% and 99.7%, respectively.
In addition, high performance was received when differentiating
the DCIS type tumor from benign and other types of non-invasive
tumors, with a specificity of 98.64% (95% CI: 97.56%;99.30%), a
sensitivity of 100% (95% CI: 84.50%;100%), and AUC of 0.999 (95%
CI: 0.997;1). The performance on differentiating between IDC
(including IC-NST and rare subtypes) and ILC demonstrated an
AUC of 0.932 (95% CI: 0.862;1.000); the number of ILC cases was
too low to estimate additional statistics (Table 2).

Algorithm external validation
The external validation set included 841 H&E and hematoxylin-
eosin-saffron (HES) slides from 436 patients from two sites -
Institut Curie (IC) and MHS (Fig. 1 and Table 1). Among them,
61.7% of the cases were from the IC and the rest were from MHS.
Patients’ mean (SD) age was 52.3 (10.6) years in IC and 53.5 (12.9)
in MHS cohorts. The external validation set was enriched with 135

DCIS/ADH cases (31.0%) and with 156 invasive cases (35.7%),
including 55 invasive lobular carcinomas (ILC) and 34 rare
subtypes (tubular, mucinous, invasive papillary, encapsulated-
papillary, apocrine, acinic cell, metaplastic, and tubulo-lobular
invasive carcinomas) (Table 1).
Study pathologists’ reviews based on the H&E or HES slides for

ground truth (GT) determination were concordant in 378 cases
(86.7%) and had discrepancies in 58 (13.3%) cases (Supplementary
Table 1). Eleven (7%) cases had discrepancies in invasive
diagnoses; fourteen cases (10.4%) had discrepancies between
DCIS/ADH and benign diagnosis (Supplementary Table 1, see
example in Fig. 2a, b). All discrepancies necessitated a third
assessment by a specialist to establish ground truth. Six of the
discrepancies between DCIS/ADH and benign diagnosis also
necessitated a review on a multi-head microscope to reach a
consensus decision, since there was no majority even after the
additional reviews.
The external validation of the AI algorithm demonstrated high

performance for all examined endpoints. As in the internal test
results, the detection of invasive carcinoma achieved very high
AUC [0.990 (95% CI: 0.984;0.997)], specificity [93.57% (95% CI:
90.07%;95.90%)] and sensitivity [95.51% (95% CI: 91.03%;97.81%)].
The PPV and NPV values for this outcome were 89.2% and 97.4%,
respectively (Table 2). For the detection of DCIS, the AI algorithm
demonstrated similarly high performance with an AUC of 0.980
(95% CI: 0.967;0.993), specificity of 93.79% (95% CI:
88.63%;96.70%), and sensitivity of 93.20% (95%
CI:86.63%;96.67%), respectively (Table 2). The AI algorithm also
demonstrated very high accuracy for the detection of the rare
invasive subtypes (Supplementary Table 2), and similar perfor-
mance on H&E and HES slides (Supplementary Table 3).
The AI differentiated well between subtypes and grades of

invasive and in situ cancers with an AUC of 0.973 (95% CI:
0.949;0.996) for IDC (IC-NST and special subtypes) versus ILC, and
an AUC of 0.921 (95% CI: 0.878;0.965) for DCIS high- and
intermediate grade versus low grade/ADH (Table 2). The algorithm
accurately categorized essential pathological features, including
tumor subtypes, such as ILC, or rare subtypes, such as invasive
mucinous, micropapillary (Fig. 2c, d), and metaplastic carcinomas
(Fig. 2e, f). The AI algorithm also detected accurately tumor-
infiltrating lymphocytes (TILs) (Fig. 2g, h and Supplementary Table
4), a prognostic marker in triple-negative and HER2-positive breast
carcinomas, and identified angiolymphatic invasion (ALI) (Fig. 2i, j).
Phyllodes tumor (Fig. 2k, l) and other pathological findings, such
as microcalcifications (Fig. 2m, n) and columnar cell changes (Fig.
2o, p), were also identified by the AI algorithm and marked by
heatmaps.

Deployment in routine clinical use
Deployment of the AI algorithm as a real-time quality control
system performing second reads (SR) in MHS commenced in
December 2019 and is ongoing (Supplementary Fig. 1a). The
system was configured to raise two types of clinical alerts—
invasive cancer alert, when the AI identifies an area suspicious for
invasive cancer in a case diagnosed as benign or in situ cancer;
and in situ cancer alert, when the algorithm detects a focus
suspicious for DCIS/ADH in a case diagnosed as benign. All slides,
alerts, and other algorithmic results were accessible through the
system’s web-based user interface (Supplementary Fig. 1b). The
deployed system allows quick review of specific suspicious foci in
a predefined percentage of the slides with the highest potential to
have been misdiagnosed, which is more effective and productive
than reviewing a percentage of randomly selected slides. The
results presented here are for the period of March 2020 to June
2021. The system processed 5954 cases (12,031 H&E slides),
including 1107 invasive carcinomas, 231 DCIS/ADH, 131 with both
invasive carcinoma and DCIS, and 4485 benign cases. Invasive
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115,457 H&E slides from 
25,874 cases from 9 labs 
were collected and digi�zed 
with various scanners

2,153 H&E slides from 
1,992 cases selected 
and annotated by 
18 pathologists

2,011,047 labeled image 
patches from 51 classes 
used to train the algorithm

2,330 H&E slides from 
1,122 consecu�ve cases 
included in the test set

2,252 H&E slides from 
1,090 consecu�ve cases 
included in the test set

32 cases excluded
- 34 slides due to physical 

condi�ons and out of focus 
scans

171 cases (372 H&E slides)  
from MHS

436 cases (841 H&E slides) 
were included in the valida�on 
set analysis

All breast biopsies at  
MHS (March 2020 –
June 2021)

5,954 cases (12,031 H&E slides) 
were processed by the Galen 
Breast SR in a live clinical 
se�ng a�er deployment 

270 cases (480 H&E slides)  
from IC

441 cases (852 H&E slides)  
included in the valida�on set

5 cases (11 H&E slides) excluded
- 4 slides from 4 cases out of focus
- 1 slide from 1 case not found

Algorithm development Algorithm tes�ng Algorithm valida�on DeploymentLegend

Fig. 1 Study flow chart detailing the cases analyzed and the different study phases.

Table 1. Patient and diagnostic characteristics of the internal test and external validation sets.

Dataset Internal test set External validation set

MHS IC MHS Total

Cases, N 1090 269 (61.7%) 167 (38.3%) 436

H&E/HES Slides, N 2252 479 (57.0%) 362 (43.0%) 841

Patient age at biopsy (years)

Mean (SD) 49.3 (13.9) 52.3 (10.6) 53.5 (12.9) 52.7 (11.5)

Median 49.0 53.4 51.0 52.8

Min-Max 18-89 20-70 21-90 20-90

Patient age (years) category, N (%)

<40 241 (22.1%) 37 (13.8%) 17 (10.2%) 54 (12.4%)

40–49 333 (30.6%) 70 (26.0%) 51 (30.5%) 121 (27.8%)

50–59 248 (22.8%) 84 (31.2%) 46 (27.5%) 130 (29.8%)

60–69 177 (16.2%) 77 (28.6%) 34 (20.4%) 111 (25.5%)

≥70 91 (8.3%) 1 (0.4%) 19 (11.4%) 20 (4.6%)

Biopsy type, N

NCBs (tru-cut) 996 (91.4%) 176 (64.2%) 98 (35.8%) 274 (62.8%)

Vacuum-assisted/Macrobiospies 94 (8.6%) 93 (57.4%) 69 (42.6%) 162 (37.2%)

Distribution of diagnoses, N (%)

Benign/othersa 881 (80.8%) 92 (34.2%) 53 (31.7%) 145 (33.3%)

DCIS/ADH only 36 (3.3%) 76 (28.3%) 59 (35.3%) 135 (31.0%)

DCIS grades HG/IG 23 (63.9%) 47 (61.8%) 41 (69.5%) 88 (65.2%)

LG/ADH 12 (33.3%) 29 (38.2%) 17 (28.8%) 46 (34.1%)

Unknown 1 (2.8%) 0 (0.0%) 1 (1.7%) 1 (0.7%)

Invasive breast carcinoma 173 (15.9%) 101 (37.5%) 55 (33.0%) 156 (35.7%)

Invasive subtype IDCb 156 (90.2%) 61 (60.4%) 37 (67.3%) 98 (62.8%)

ILCc 13 (7.5%) 38 (37.6%) 17 (30.9%) 55 (35.3%)

Otherd 4 (2.3%) 2 (2.0%) 1 (1.8%) 3 (1.9%)

NCBs needle core biopsies, ADH atypical ductal hyperplasia, DCIS ductal carcinoma in situ, HG/IG/LG high- / intermediate- /low- grade, IDC invasive ductal
carcinoma, IC-NST invasive carcinoma no special type, ILC infiltrating/invasive lobular carcinoma, IC Institut Curie, MHS Maccabi Healthcare Services.
aIncludes benign and other diagnoses, such as biphasic tumors (fibroadenoma and phyllodes).
bIncludes IC-NST and rare subtypes, such as mucinous, papillary, tubular, etc.
cInclude also pleomorphic and signet ring cell-like ILC.
dIncludes metaplastic and tubulo-lobular carcinoma.
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cancer alerts were raised for 363 (4.2%) slides from 272 cases
initially diagnosed as benign, and for 136 (15.1%) slides from 81
cases initially diagnosed as DCIS/ADH. In situ cancer alerts were
raised for 333 (3.8%) slides from 237 cases initially diagnosed as
benign. Upon pathologist’s review of these alerts, 75% of alerts
required no diagnostic amendment; most were identified as either
necrosis/fat necrosis (26%), fibroadenomatous changes (23%),
hyperplasia (11%) and other features (15%) (e.g., skin, hemor-
rhage, plasma cells) consistent with rare or irregular features that
visually mimic malignant features. 25% of the alerts led to
additional sections/stains being ordered, 2% of which led to an
additional (third) opinion request. Alerts were focused on specific
areas and visualized with associated heatmaps for invasive, IDC,
ILC, DCIS, and DCIS grading, as well as other relevant features (e.g.,
TILs, ALI, tumor necrosis, and microcalcifications) requiring
minimal pathologist review time (Supplementary Fig. 1c). The
system’s performance during the deployment, was measured
against the sign-out reports (that were considered GT) with an
AUC= 0.990 (95% CI: 0.984;0.995), sensitivity of 98.09% (95% CI:
95.68%;99.33%), and specificity of 96.24% (95% CI: 94.70%;97.38%)
for the detection of invasive carcinoma and AUC= 0.972 (95% CI:
0.949;0.996), sensitivity of 92.30% (95% CI: 83.41%;97.23%), and
specificity of 92.22% (95% CI: 90.12%;93.93%) for the detection of
DCIS/ADH.

Discrepancies and misdiagnoses during external validation
and deployment
During algorithm external validation, eleven cases identified as
invasive in the ground truth process had discrepancies between
the study pathologists (Supplementary Table 1). Of these, four
discrepancies were between invasive versus benign, i.e., one of
the study pathologists diagnosed these as benign and the other
as invasive carcinoma. All four cases were detected by the
algorithm as invasive, which was their final ground truth
diagnosis. One of these cases had an invasive component

represented only by a rare lymphovascular invasion at one edge of
the biopsy that was missed by the original reporting pathologist
(Fig. 3a, b). Two cases of ILC, one with a diffuse pattern and the
second associated with granulomatous mastitis with foreign body
reaction, fat necrosis, and multinucleated giant cells and
hemosiderin-laden macrophages (Fig. 3c, d), and one case of
tubular carcinoma surrounded by fibrocystic changes and
columnar cell lesions (Fig. 3e, f) were missed by a study
pathologist.
During deployment, several cancer cases that had been

misdiagnosed by the original pathologist were detected by the
algorithm and subsequently reviewed, leading to an amended
sign-out report. Here we report on four such examples. An MRI-
guided biopsy of the left breast upper quadrant from a 30-year-
old woman was initially diagnosed by the pathologist as DCIS high
grade suspicious of microinvasion, ER and PR negative. Following
an alert for the presence of invasive cancer by the AI, the
pathologist re-examined the case and amended the report to
infiltrating ductal carcinoma with several foci of infiltration with
apocrine features and high-grade DCIS (Fig. 3g, h). These features
were confirmed by IHC results, with p63(−) and CKMNF-116(+)
(Fig. 3i, j). Importantly, Her2 on the infiltrative foci was scored 3+
(positive) and Ki67 was expressed in 50% of the tumor cells, with a
high impact on the patient’s correct treatment pathway. Another
example of a Tru-cut biopsy from a 39-year-old female patient was
diagnosed by the pathologist as DCIS with microinvasion and
metastasis in a lymph node. The AI raised an alert for the presence
of invasive cancer with a high probability (>0.99). Subsequent re-
examination by the pathologist led to a revised diagnosis of IC-
NST, the size of the invasive lesion being larger than 1mm (Fig. 3k,
l). Another example was a Tru-cut biopsy, where the pathologist
initially diagnosed fibroadenomatoid changes with ductal hyper-
plasia. Following an alert for the presence of DCIS/ADH by the AI,
level sections and IHC (myosin) were ordered and examined, and
the diagnosis was revised to ADH (Fig. 3m, n). A fourth example
was a biopsy originally diagnosed by the pathologist as a

Table 2. AI algorithm performance on the internal test and external validation sets.

Set Analysis Number of cases AUC [95% CI] Specificity
[95% CI]

Sensitivity
[95% CI]

PPV NPV

Internal test set (MHS) Invasive vs. non-
invasive

1090 (173 invasive, 917 non-
invasive)

0.998
[0.996;1.000]

98.27%
[95.03%;99.41%]

99.02%
[98.15%;99.48%]

95.0%, 99.7%

DCIS vs. benign/
other

908a (27 DCIS, 881 benign) 0.999
[0.997;1.000]

98.64%
[97.56%;99.30%]

100%
[84.50%;100%]

69.3%, 100%

IDC vs. ILC 169b (156 IDC, 13 ILC) 0.932
[0.862;1.000]

NAc NAc NAc

External validation set
(IC+MHS)

Invasive vs. non-
invasive

436 (156 invasive, 280 non-
invasive)

0.990
[0.984;0.997]

93.57%
[90.07%;95.90%]

95.51%
[91.03%;97.81%]

89.2%, 97.4%

DCIS vs. benign/
other

248 (103 DCIS, 145 benign/
other)

0.980
[0.967;0.993]

93.79%
[88.63%;96.70%]

93.20%
[86.63%;96.67%]

91.4%, 95.1%

DCIS/ADH vs.
benign/other

280a (135 DCIS/ADH, 145
benign/other)

0.949
[0.925;0.972]

86.9%
[80.44%;91.45%]

87.41%
[80.67%;92.08%]

86.1%, 88.1%

IDC vs. ILCd 153b (98 IDC, 55 ILC) 0.973
[0.949;0.996]

92.73%
[82.74%;97.14%]

92.86%
[85.98%;96.50%]

95.8%, 87.9%

DCIS HG/IG vs. LG/
ADHe

134f (88 DCIS HG/IG, 46 DCIS
LG/ADH)

0.921
[0.878;0.965]

84.09%
[74.92%;90.41%]

84.78%
[71.46%;92.74%]

91.4%, 73.6%

ADH atypical ductal hyperplasia, AUC area under the receiver operating characteristic curve, DCIS ductal carcinoma in situ, HG/IG/LG high- / intermediate- /low-
grade, IDC invasive ductal carcinoma, ILC infiltrating/invasive lobular carcinoma, IC Institut Curie, MHS Maccabi Health Services, NPV negative predictive value,
PPV positive predictive value.
aIncludes only non-invasive cases.
bIncludes only IDC (IC-NST and rare subtypes) and ILC cases, excludes other invasive cases.
cCannot be reliably estimated because the internal test set included only 13 ILC cases.
dIDC was considered positive and ILC negative for these analyses.
eDCIS HG/IG was considered positive and DCIS LG/ADH negative for these analyses.
f134 cases excluding 1 DCIS/ADH case with no ground truth on grading.
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fibrocystic disease with florid ductal hyperplasia. Following an
in situ cancer alert, deeper level sections and IHC (p63) were
ordered, and the pathologist revised the diagnosis to ADH and
florid ductal hyperplasia (Fig. 3o, p).

DISCUSSION
In this work, we report on a multi-feature clinical-grade AI
algorithm that detects a wide range of histologic features, beyond
breast carcinomas, in whole slide images (WSI) stained with either
H&E or HES and digitized by two different scanners (Philips® and
Hamamatsu®). As was demonstrated in a large-scale multi-site
blinded external validation study, the AI algorithm was able to
identify invasive carcinoma, including multiple rare subtypes, with
high accuracy, irrespective of staining protocol and scanner type.
Specifically, the algorithm accurately identified subtypes of
invasive carcinomas (IC-NST, ILC, and special subtypes) and
in situ carcinoma and atypia (DCIS and ADH), as well as differential

in situ grading (DCIS HG/IG versus LG/ADH). The algorithm also
highlighted additional features, such as TILs, ALI, columnar cell
changes, and microcalcifications. To the best of our knowledge,
this is the first report of an AI-based algorithm that can accurately
detect such a wide range of clinically significant pathological
features. Moreover, this is the first-ever implementation of an AI-
based tool for breast biopsies in routine clinical use in a pathology
laboratory.
Several deep-learning image analysis algorithms have been

developed to assess breast cancer type and grade and show
performance characteristics for invasive and in situ cancer
detection inferior to those shown herein16–23. Many of these prior
publications report on algorithms limited to just one task24 and
provide performance metrics verified mostly on small internal test
datasets21. There are many previous publications reporting on
clinical-grade highly accurate prostate cancer algorithms14,24–26;
however, the progress of algorithms for breast cancer has been
slower, probably due to the complexity of the breast tissue and

a dc
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e f
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Fig. 2 Examples of tumors and benign features identified by the AI algorithm. a Macrobiopsy showing atypical ductal hyperplasia focus at
8x (1.25 μm/pixel) magnification; b Same focus with algorithm DCIS low grade /ADH vs. DCIS high grade heatmap detecting ADH with high
probability (where blue shows DCIS low grade/ADH and red shows DCIS high grade); c Tru-cut biopsy showing both invasive mucinous and
micropapillary patterns at 8x (1.25 μm/pixel) magnification; d Same focus with IDC vs. ILC cancer heatmap detecting both subtypes (where
blue indicates high probability for IDC and red for ILC); e, f Tru-cut biopsy with metaplastic carcinoma, detected by the algorithm with the
invasive cancer heatmap at 10x (1 μm/pixel); g, h Tru-cut biopsy with IC-NST showing a focus of heavy lymphocytic infiltration, detected by the
algorithm with the TILs heatmap at 16x (0.625 μm/pixel); i, j Tru-cut biopsy with IC-NST showing a focus of angiolymphatic invasion (ALI),
detected by the ALI heatmap at 10x (1 μm/pixel); k, l Tru-cut biopsy with phyllodes grade I tumor, detected by the algorithm with the biphasic
tumor heatmap displayed at 8x (1.25 μm/pixel); m, n Vacuum-assisted biopsy showing microcalcifications, detected by the algorithm with
microcalcifications heatmap at 16x (0.625 μm/pixel); o, p Macrobiopsy with columnar cell changes, detected by the algorithm with columnar
cell changes heatmap at 10x (1 μm/pixel). Slides were stained with H&E or HES. Heatmaps display low probability in blue and high probability
in red, unless otherwise specified. ADH atypical ductal hyperplasia, DCIS ductal carcinoma in situ, IDC invasive ductal carcinoma, TILs tumor-
infiltrating lymphocytes.
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multiple pathological lesions required to be detected and
reported. Some of these prostate algorithms were based on
weakly supervised deep learning and performed tasks of
detecting cancer only (yes/no)24. The algorithm reported here,
based on fully supervised learning, was trained to identify 51
different features, some of which are very small and not
consistently reported (e.g., inflammation, microcalcifications, ALI,
adenosis), and thus slide-level labels cannot be used for training as
in weakly supervised AI. In addition, the expert manual annota-
tions, although labor-intensive, enable training on various benign/
normal tissue morphologies that might confuse the AI (e.g.,
atrophy, fat tissue, necrosis, stroma, and plasma cells).

An algorithm published by Cruz-Roa et al. was shown to identify
the presence and extent of an invasive tumor with an F1 score of
75.86%, PPV of 71.62%, and NPV of 96.77%19, performance
markedly lower than those demonstrated for the same endpoint
in the current study probably due to the smaller training set,
simpler model architecture and only positive (invasive)/negative
classification. While Han et al. developed a classifier that can
distinguish more classes (eight classes of benign and malignant
breast tumors), its accuracy (93.2%) was demonstrated in a very
small set of 21 cases20. Likewise, other recent studies reported the
accuracy for the detection of invasive and in situ carcinoma on
only very small sets of eight cases (10 WSIs)27 and 92 WSIs28,
respectively. On a larger test set of 240 cases, Mercan et al.

Fig. 3 Examples of misdiagnoses identified by the algorithm. a Tru-cut biopsy originally diagnosed as benign with an invasive component
represented only by a rare lymphovascular invasion at 16x (0.625 μm/pixel) magnification and b detected by the algorithm with the ALI
heatmap (high probability areas in red, low probability in blue); c, d Vacuum biopsy with foreign body reaction where ILC was missed by the
study pathologist, but detected by the algorithm with the invasive cancer heatmap displayed at 10x (1 μm/pixel); e Tubular carcinoma
surrounded by fibrocystic changes at 8x (1.25 μm/pixel), detected by the algorithm (fibrocystic change heatmap) that was missed by the study
pathologist; f Same focus detected by the algorithm with invasive cancer heatmap; g, h MRI-guided biopsy originally diagnosed as DCIS
showing one of the foci of invasive cancer that were detected by the algorithm with the invasive cancer heatmap displayed at 5x (2 μm/pixel);
Same focus on the IHC slides i positive for pancytokeratin (Ckmnf-116) and j negative for the myoepithelial marker (p63) confirming the
diagnosis of IDC; k, l IC-NST focus missed by the original diagnosis and detected by the algorithm at 4x (2.5 μm/pixel) magnification;
m, n Missed ADH case originally diagnosed as benign, alerted by the algorithm with DCIS/ADH heatmap at 16x (0.625 μm/pixel); o, p Missed
ADH case originally diagnosed as benign with fibrocystic disease, alerted by the algorithm with DCIS/ADH heatmap at 16x (0.625 μm/pixel); All
slides were stained with H&E or HES. Heatmaps display low probability in blue and high probability in red, unless otherwise specified. ADH
atypical ductal hyperplasia, ALI angiolymphatic invasion, DCIS ductal carcinoma in situ, IC-NST infiltrating/invasive ductal carcinoma no special
type, ILC infiltrating/invasive lobular carcinoma.
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reported accuracy of 94% and 70% for the detection of invasive
and in situ carcinomas, respectively16. In the current study, AUCs
of 0.99 and 0.98 were achieved for the detection of invasive
carcinoma and DCIS, respectively, in the 841 external validation
slides. Moreover, the external validation set used in this study was
enriched for difficult and rare lesions, such as special subtypes of
IDC and ADH, and it consisted of multiple stain types and
scanners. The accuracy of the AI on real-world data (i.e., all-comers
in a single lab) is therefore expected to be even higher, as
demonstrated by the extremely high performance in the internal
test and deployment cohorts. Considering the overall combination
of robust training methodology, algorithm architecture, and
performance, the current study has demonstrated the highest
levels of performance reported to date on the detection of
invasive and in situ breast carcinomas (Table 3).
The multi-feature AI algorithm reported in this work detects an

array of tissue features in addition to breast carcinoma-specific
features. The algorithm was trained to identify 51 breast-specific
cytological and morphological features, or classes, that may
appear in breast biopsies, such as cancer-related classes (e.g., IC-
NST, mucinous IDC, metaplastic carcinoma, ILC, TILs, ALI, ADH, and
HG DCIS), other clinical features (e.g., columnar cell change,
phyllodes tumor, and microcalcifications) and normal tissue
structures (e.g., blood vessels, smooth muscle, and normal ducts).
Other studies trained models on much fewer classes (e.g., six
classes in Ho et al.29 or eight classes in Polόnia et al.27) and,
therefore, could not identify certain important structures or
pathologies, such as DCIS or ALI17. The detection of multiple
features renders the AI algorithm to be more comprehensive,
accurate, and explainable, and thus the system has the ability to
support pathologists across a wider range of tasks, including
finding and grading cancer, identifying cancer subtypes, and
detecting other features, such as microcalcifications.

To ensure a robust and generalizable algorithm that can
accurately identify dozens of classes, the algorithm was trained
using annotations and labeling of thousands of areas in more than
2000 H&E slides conducted by a global and diverse team of 18
experienced, board-certified pathologists. Training slides were
selected from a collection of more than 115,000 slides to ensure
the representation of rare and small features. Moreover, the
annotated slides were collected from nine different labs, each lab
with its own slide preparation technique (e.g., H&E vs. HES stains)
and WSI scanner. The results demonstrated in this study on a
large, diverse external validation cohort that was enriched with
rare and difficult cases support the conclusion of very strong
generalizability and high accuracy of the AI algorithm.
The performance of the algorithm reported here was estab-

lished by an extensive, rigorous, blinded external validation, which
is not often the case with AI algorithm studies. The majority of
studies performed cross-validation and internal algorithm testing,
and very few previous studies examined a few hundred
cases16,17,19. None of the studies included a deployment phase
of the magnitude reported here —5954 cases and 12,031 slides
during deployment, with the total number of patients in the
internal testing, external validation, and deployment stages
amounting to 7480 cases and 15,124 slides. Such rigorous, large-
scale validation is crucial for AI tools that are deployed in live
clinical settings to ensure their safety and applicability.
One of the most important parts of the work presented here is

the deployment of the AI algorithm in a routine clinical care
setting. The utility of digital tools developed for clinical routine
depends in equal parts on the tools’ performance and their
usability. The ability to integrate within a clinical setting and
demonstrate measurable value to the existing healthcare pro-
cesses is one of the strengths of our system, as was proven by the
examples of missed invasive and DCIS/ADH cases that had been
detected during the deployment of the algorithm as a real-time
quality control system, providing 100% QC on all breast biopsies.
Having an objective tool that supports pathologists in their review
is particularly significant when considering the substantial intra-
and inter-reader variability among the pathologists. A study that
examined the inter-observer diagnostic concordance for breast
biopsy diagnoses among pathologists reported only around 75%
agreement, with the lowest levels of agreement seen with DCIS
and atypia, as low as 48%30. Given these rates, an automated
second read system such as the one herein can add objectivity
and reproducibility to the interpretation, resulting in more
consistent and accurate diagnoses. Apart from pathologists’
variability, increasing pathology workloads31 and a shortage of
pathologists in many countries12,32,33 preclude performing effec-
tive quality control schemes. Specifically in the United States, a
17.53% decrease in the number of pathologists was reported from
2007 to 201712, with a resulting imbalance between the increase
in pathology workload and the number of available trained
pathologists. Pathologist workforce concerns have been raised
since the 1960s34, emphasizing the need for AI algorithms to
provide support to pathologists and thus ensure more timely and
qualitative diagnoses. This need is especially relevant considering
the increase in the percentage of biopsies with invasive breast
cancer diagnoses in the United States35.
Our study has some limitations. The AI algorithm was

developed to identify pathologies in female breast biopsy
specimens on H&E/HES-stained slides. In the work reported here,
only biopsies, and no surgical specimens, were included. For
future versions, the algorithm is also being trained on surgical
specimens, including the detection of margins, Nottingham
grading, and quantification of IHC breast panel biomarkers. In
addition, this study was not powered for the rare findings, such as
ILC pleomorphic, LCIS, rare breast cancer subtypes, etc., and
ongoing studies are focused on assessing performance character-
istics of additional features identified by the AI, assessment of

Table 3. Performance of algorithms in the detection of invasive and
in situ breast carcinoma.

Study Slides/case Invasive
carcinoma
accuracy

In situ
carcinoma
accuracy

Cruz-Roa
et al., 201719

195 cancer cases
(TGGA), 21 normal

F1= 75.9% Not available

PPV= 71.6%

NPV= 96.8%

Han et al.,
201720

21 cases (BreaKHis) Accuracy = 0.93 Not available

Bejnordi
et al., 201817

330 cases (928 WSIs) AUC= 0.96 Not available

Mercan et al.,
201916

240 cases Accuracy = 0.94 Accuracy =
0.70

Sens= 70% Sens= 79%

Spec= 95% Spec= 41%

Sheikh et al.,
202028

92 WSIs (ICIAR2018) Accuracy = 0.68 Accuracy =
0.64

Max
Sens= 96%

Max
Sens= 83%

Max
Spec= 85%

Max
Spec= 93%

Polónia et al.,
202127

152 ROIs (10 WSIs
from 8 cases)

Accuracy = 0.92 Accuracy =
0.88

Current study 436 cases (841 WSIs) AUC= 0.99 AUC= 0.98

Sens= 95.5% Sens= 93.2%

Spec= 93% Spec= 93.8%

AUC area under the ROC curve, ROI regions of interest, WSI whole slide
image, PPV positive predictive value, NPV negative predictive value.
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which was beyond the scope of this study, including quantifica-
tion of tumor-infiltrating lymphocytes and accuracy of micro-
calcifications identification, as well as studies reporting on the
implementation of this algorithm in different workflows, such as
first read and associated clinical utility are underway.
In summary, the AI algorithm demonstrated exceptionally

higher levels of performance compared to that from published
literature. The main strengths of the AI algorithm stem from the
strongly supervised pathologist-based training methodology, the
size and diversity of the training dataset, and the rigorous testing
and validation processes that the algorithm has undergone during
and after its development. Following deployment, the clinical
utility of this algorithm was demonstrated by diagnoses of cases
revised by pathologists following alerts for a high probability of
invasive or in situ carcinoma. Accordingly, the main value
introduced by our algorithm is in the minimization of diagnostic
errors. Thus, the AI algorithm deployed as a second read solution
allows laboratories for the first time to implement an extremely
effective and accurate quality control process with a very small
added work in terms of pathologist time. Such algorithms can
offer an important tool for computer-aided diagnosis in routine
pathology practice impacting diagnosis quality and standardiza-
tion of reporting to ultimately improve patient management.

METHODS
Study design
The study followed four key steps: (1) development of an AI
algorithm for breast pathology detection in WSIs of biopsies; (2)
algorithm internal testing; (3) blinded algorithm validation in an
independent dataset; and (4) algorithm deployment in routine
clinical use. Each of these steps is described below.
Institutional review board approval for secondary data use and

waiver of informed consent were obtained for this study [MHS
Ethics Helsinki Committee #0153-16-ASMC; IC Ethics Committee
#DATA200210] and for the real-time quality control on de-
identified patient samples [MHS Ethics Helsinki Committee
#0081-18-BBL]. All study data were anonymized or de-identified,
and metadata for each case was recorded.

Algorithm development
The AI algorithm was designed to identify findings of invasive
breast carcinoma, including IDC (IC-NST and rare subtypes), ILC,
and other subtypes, as well as DCIS and ADH and their respective
grade, and other clinical and morphological features, when
applied to digitized glass slides of breast biopsies stained with
H&E or with HES. The algorithm is based on multilayered
convolutional neural networks (CNNs) and was specifically
designed to classify and analyze a WSI in three consecutive steps
(based on the previously developed algorithm for prostate
biopsies14): tissue detection, classification, and slide-level analysis.
For this study, the original algorithm [see Pantanowitz et al.14 for
details] was updated as described below.
As in the previous study, the tissue detection step runs on

patches of size 256 × 256 pixels area at magnification 5x and
classifies each patch into one of three classes: tissue, blurry (out-
of-focus) tissue, and background. This was achieved using a
Gradient Boosting classifier that uses multiple features, such as the
mean and standard deviation of each RGB channel, the mean and
variance of each channel in the HSV color space, the variance of
the Laplacian of the patch (used to improve the detection of
blurry areas), etc. In this study, the tissue detection algorithm was
extended so that it could be applied to breast WSIs. The training
dataset of the original algorithm, which consisted of prostate
slides, was augmented by breast slides from multiple institutes, in
which background and tissue areas were marked and labeled.
Specifically, features that are quite rare in prostate biopsies, such

as adipose tissue, were annotated to ensure that the entire breast
tissue is identified correctly by the algorithm. Overall, the three
classes (tissue, blurry tissue, and background) were annotated in
110 slides with 2000 annotations and 9500 patches.
The classification step was adapted to include breast-specific

histological and morphological features. The breast classification
algorithm generates probabilities of an image patch to belong to
each of 51 predefined breast tissue classes. These classes were
defined by breast specialist pathologists to include breast tissue
lesions that have clinical significance and/or a distinct morpho-
logic appearance. The classes cover different features of benign
tissue (e.g., normal ducts and lobules, stroma, nerve, blood vessel,
and adipose tissue), non-cancerous findings (e.g., inflammation,
stromal changes, columnar cell changes, and fibrocystic changes),
atypia and hyperplasia (e.g., ductal hyperplasia, ALH, ductal
cancerization, lobular neoplasm, and ADH), in situ carcinoma
(DCIS per grade, with necrosis, solid, etc.), invasive carcinoma and
associated features (e.g., IC-NST (IDC), ILC, rare subtypes of IDC/ILC,
tumor-infiltrating lymphocytes (TILs), angiolymphatic involvement
(ALI), tumor necrosis), and fibroepithelial lesions (e.g., biphasic
tumors).
Feeding all the patches that contain tissue (as identified in the

tissue detection step) to the classification algorithm results in 51
heatmaps, each representing the probabilities of one class along
the entire slide.
The classification algorithm consists of an ensemble of three

networks of different architectures: Inception V1, Inception V3,
and ResNet 101. Each network combines two CNNs of the same
architecture—one that works on patches at higher magnification
(40x/20x/10x), which can identify cytologic features, and one for
patches at lower magnification (10x/5x/2.5x), which can observe
morphological characteristics. The strides of the models are
selected such that they will produce heatmaps of the same size.
Each of the 51 heatmaps generated by each of the three models is
then averaged between the models to reach the final 51
classification heatmaps.
As evidence that this setup improves the algorithm results, we

calculated the log loss of each CNN per magnification, the log loss
of the combination of two networks, and the log loss of the entire
ensemble (Supplementary Table 5).
The CNN models were trained using transfer learning from the

models used in the prostate study. In order to fine-tune the CNNs
to our specific classification task, each network was trained on
image patches extracted from manual annotations on 2153 H&E
slides from 1992 cases, selected from 115,457 slides (25,874 cases)
(Fig. 1) from nine different labs, and digitized by multiple types of
scanners. The distribution of diagnoses among the 1992 cases
used for training is provided in Supplementary Table 6. In
addition, standard data augmentation techniques, including
rotations of 90 degrees, horizontal flips, and color augmentation
(brightness with a maximum delta of 64/ 255, saturation with a
factor between 0.5 and 1.5, hue with a maximum delta of 0.04,
contrast with a factor between 0.5 and 1.5) were used to avoid
over-fitting and to encourage invariance to differences in color
due to staining. A total of 2,011,047 image patches were used to
train the algorithm. Training slides for the classification algorithm
were selected using the following criteria: (1) randomly selected
breast cases; (2) slides representing specific uncommon features in
breast slides (e.g., rare subtypes of invasive cancer); and (3) slides
enriched for features with a low performance by the initial
algorithm. Annotations were performed by 18 senior pathologists
with a range of 10– 40 years of clinical experience. The size (e.g.,
number of classes, annotations, and image patches) and wide
diversity (e.g., rare cancer subtypes and other tissue morphologies;
multiple labs, stains, and scanners) of the dataset ensured that the
CNNs could converge after training to very accurate and robust
models. Following annotations and training process, the main
confusions that the model exhibits were related to (1) Classes with
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relatively scarce data (such as special types of IDC: mucinous,
adenoid cystic, papillary carcinoma, etc), (2) Classes that share
morphological features with other classes (such as tumor necrosis
and HG DCIS, which both contain areas with necrosis), and (3)
Classes whose classification by pathologists is subjective (such
as ADH).
The training of the models was performed using stochastic

gradient descent with a different optimizer and learning rate
schedule for each CNN model: For Inception V1 and Inception V3,
we used a momentum of 0.9, and for ResNet 101, we used
Nesterov momentum of 0.9. Initial learning rates varied between
0.01 and 0.0001. Training of all three models took a total of 40 h
on a single RTX 2080 Ti GPU.
As in our previous algorithm14, during the final step of the slide-

level analysis, the trained CNN-based models generated slide
classification results and computed a WSI-level and case-level
score. For example, to determine whether a given WSI/ case was
suspicious of invasive carcinoma, the software summed up the
probabilities of the invasive related classes (such as IC-NST, ILC,
mucinous IDC, pleomorphic ILC, TILs, and ALI) at each location in
the WSI/ case, performed localized averaging with a small sliding
window, and took the highest score. A similar process was
performed for in situ carcinoma with in situ-related classes.
Likewise, the algorithm computed case-level scores to distinguish
between invasive ductal and lobular carcinomas by combining all
the classes related to IDC and comparing the total score to that of
all ILC-related classes. Similarly, the DCIS grading score compared
the combined score of ADH and LG DCIS to the total score of IG
and HG DCIS.
The case-level score is used to perform a case-level analysis of

the images: The algorithm score is compared to a predefined
threshold, and slides, where the score passed the threshold, are
considered positive according to the algorithm, and the rest are
considered negative.

Algorithm internal testing
The internal test dataset of breast biopsies was extracted from the
archive of the Pathology Institute at MHS and consisted of all
consecutive cases from a defined time period (November–December
2018). This cohort was distinct and independent from the slides that
were included in the algorithm training. The slides were digitized
using a Philips IntelliSite Scanner (Philips Digital Pathology Solutions,
Netherlands) at 40× magnification (resolution of 0.25 μm/pixel). The
internal test set included 2330 H&E-stained slides from 1122
consecutive breast biopsies (Fig. 1), of which 32 (2.9%) cases were
excluded, as 34 slides from these cases could not be scanned due to
poor physical condition (e.g., damaged slide, broken glass) or
insufficient focus. Ground truth for the internal test dataset at the
case-level was based on diagnoses from the original pathology
reports. The algorithm was applied to the internal test dataset in a
blinded manner and algorithmic results were compared to the
ground truth following unblinding.

Algorithm external validation
The algorithm was applied to a blinded validation set, which was
independent of the data on which the algorithm was developed,
trained, and tested. The diagnoses were subsequently unblinded
and the results of the algorithm were compared with the ground
truth defined as the pathologist’s diagnoses as described below.

Study period and population. The external validation study was
conducted on a dataset, which consisted of histopathology slides
collected as part of routine clinical practice. All cases were from
the pathology departments of two medical institutions: Institut
Curie (IC) (France) and Maccabi Healthcare Services (MHS) (Israel).
The cases were randomly selected within a predefined study
period (04.2018-09.2020 in IC and 01.2019 -12.2019 in MHS), with

an enriched distribution of 1:1:1 ratio of positive-invasive- positive-
DCIS/ADH -to-negative cases. In addition, the set was enriched
with ILC and ADH/LG DCIS cases. Specifically, after each recruited
positive, the first consecutive negative was recruited until the
predefined number of positives was reached.
The examined images were digitized slides originating from

breast biopsies (NCBs/Tru-cut or vacuum-assisted/macrobiopsies)
stained with H&E or HES, and provided with a pathology report,
completely anonymized. All slides included in the study were from
female subjects ≥18 years old. Cases were excluded if the scanned
slides were of inadequate technical quality (e.g., large out-of-focus
areas, damaged slide), or if the slides were previously included in
the algorithm’s internal test set. The glass slides were scanned at
40× magnification (resolution of 0.23–0.25 μm/pixel) with Philips
IntelliSite Scanner (Philips Digital Pathology Solutions; Nether-
lands) at MHS and with Hamamatsu NanoZoomer 360 scanner
(Hamamatsu, Japan) at IC.

Performance definition and calculation. Ground truth was estab-
lished using the following process. Two study pathologists (GB
and AN) examined the slides and the diagnostic information from
the original pathology report at the respective site, validating the
diagnosis for each case. In parallel, two other study pathologists
(experienced breast specialist pathologists, AVS and JS, with 20–40
years of experience), who were not involved in the original
diagnosis and were blinded to it during the independent
validation study, examined the cases and corresponding slides
to determine each case as either positive or negative for invasive
ductal/lobular carcinoma, DCIS and ADH, as well as DCIS grading
and other important pathological features, such as TILs, ALI,
hyperplasia, adenosis, columnar cell changes, etc. Each pathologist
initially reviewed only H&E/HES slides, and, if requested, was
provided with immunohistochemistry slides (blinded to the date
of production). Ground truth was based on the consensus
agreement between both study pathologists’ diagnoses. The
discrepancies between the study pathologists are presented in
Supplementary Table 1. For slides on which there was a
disagreement between the two, a third assessment was
performed by a third experienced study pathologist (AAS or LT),
blinded to both sources. Following that, the majority vote was
determined as the final consensus diagnosis and used as
ground truth.
The ground truth for TILs was established by the consensus

between two expert pathologists on the presence of TILs. While
some of the experts included TILs scoring in the percentage of the
stromal area occupied by TILs as per the TIL Working Group
guidelines, others only indicated the presence /absence of TILs,
while considering ≥30% TILs in IDC and ≥5% in ILC as positive36,
criteria that were used to dichotomize TILs.
Sensitivity was defined as TP/(TP+ FN), and specificity was

defined as TN/(TN+ FP), where TP was true positives, TN was true
negatives, FP was false positives, and FN was false negatives. A
Receiver Operating Characteristic (ROC) curve was calculated
along with the area under the curve (AUC), provided with a 95%
Wald confidence interval. Negative predictive value (NPV) was
defined as TN/(FN+ TN) and positive predictive value (PPV) was
defined as TP/(TP+ FP). All performance measures were provided
with exact two-sided 95% confidence intervals (95% CI).
Sensitivity, specificity, NPV, PPV, and AUC of the algorithm were

computed for the following endpoints:

1. Invasive cancer (IDC, including IC-NST and other subtypes,
ILC, and other invasive subtypes) versus non-invasive (i.e.,
DCIS, ADH, benign and other cases, such as biphasic tumors
and lymphomas).

2. In situ lesions (DCIS and ADH) versus benign and others
(excluding invasive).

3. IDC (including IC-NST and other subtypes) versus ILC.
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4. High-grade and intermediate-grade DCIS versus low-grade
DCIS and ADH.

Sample size. To meet the performance goal of at least 80% in
sensitivity and specificity, a minimal sample size of 94 positive
(invasive) cases, 94 positive (in situ) cases, and 94 negative slides
was calculated, assuming 80% power and a two-sided 5% level of
significance.

Statistical analysis
Statistical analyses were performed using SAS® v9.4 (SAS Institute,
Cary, NC, USA). Continuous variables were summarized using a
mean and standard deviation, and categorical variables by a count
and percentage. The required significance level of findings was
set to 5%.

Algorithm deployment in a routine care setting
Galen Breast, the product based on the developed algorithm, was
deployed in December 2019 at the Institute of Pathology of MHS,
which is the second-largest healthcare provider in Israel, with a
centralized pathology lab serving around 120,000 surgical pathol-
ogy cases annually. Among these, ~7000 are breast biopsy
specimens. The AI algorithm was implemented as a Second Read
(SR) system, i.e., as a real-time quality control solution that
analyzed WSIs of breast biopsies that had been reviewed and
reported by pathologists using a standard of care diagnosis in live
routine practice. Supplementary Fig. 1 presents the process of
biopsy review with the integrated AI algorithm. The workflow
started with the scanning of slides, which were automatically
exported from the Philips Image Management System to the
server for processing by the AI solution. In parallel, the slides were
reviewed by the pathologist, as per standard lab practice, and a
pathology report was generated. The AI solution did not produce
a diagnosis, but alerts were raised based on a predefined alert
threshold. The algorithmic score that triggered an alert (i.e., alert
threshold), was set to correspond to a specificity of 95% for both
invasive carcinoma and DCIS/ADH alerts (i.e., the system was
configured to raise alerts for 5% of the relevant slides), thus alerts
were raised for 5% most suspicious slides. Alerts do not indicate
false positives, they are equivalent to choosing 5% of cases for a
second review as in a regular quality control practice, but here the
AI selects the most suspicious 5% slides for review. The alerts
triggered a focused pathologist review of the specific region in the
slide highlighted by the alert and displayed in the system’s web-
based user interface (Supplementary Fig. 1b, c), where the
pathologist could view the entire slide, turn on heatmaps to
examine areas that received high scores for various classes,
resolve alerts, and more. Since the alerts were focused on specific
suspicious areas, the review time was minimal, resulting overall in
a ~1% increase in the pathologists’ time, and usually did not
significantly affect the sign-out time. The solution deployed at
MHS raised the following alerts: (a) Invasive cancer alerts on slides
from cases originally diagnosed as benign or as DCIS/ADH that
have a high probability of invasive cancer; (b) In situ lesions (DCIS/
ADH) alerts on slides from cases originally diagnosed as benign
that have a high suspicion of DCIS/ADH.
Overall, the implementation of the AI solution and integration in

an existing workflow took 1 month. Training sessions were held
for all system users, including the technicians scanning the slides.

DATA AVAILABILITY
The data collected during this study for algorithm training and validation was patient
data obtained under Ethical Committees’ approval and was provided to the
researchers through a restricted-access agreement that prevented its sharing with a
third party or publicly. Future access to the external dataset can be considered

through direct application for data access. Aggregate data were available within the
manuscript and its Supplementary information.
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