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Depth dependence of climatic controls on soil microbial
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Subsoil microbiomes play important roles in soil carbon and nutrient cycling, yet our understanding of the controls on subsoil
microbial communities is limited. Here, we investigated the direct (mean annual temperature and precipitation) and indirect (soil
chemistry) effects of climate on microbiome composition and extracellular enzyme activity throughout the soil profile across two
elevation-bioclimatic gradients in central California, USA. We found that microbiome composition changes and activity decreases
with depth. Across these sites, the direct influence of climate on microbiome composition and activity was relatively lower at depth.
Furthermore, we found that certain microbial taxa change in relative abundance over large temperature and precipitation gradients
only in specific soil horizons, highlighting the depth dependence of the climatic controls on microbiome composition. Our finding
that the direct impacts of climate are muted at depth suggests that deep soil microbiomes may lag in their acclimation to new
temperatures with a changing climate.

ISME Communications; https://doi.org/10.1038/s43705-021-00081-5

INTRODUCTION
Microbial community composition varies considerably through-
out the soil profile [1] likely due to edaphic factors that change
with depth, including organic carbon (C) availability, nutrients,
pH, and texture [2–5]. However, most studies on subsoil
microbial communities do not span large ecological gradients,
preventing a conclusive understanding of large-scale drivers of
subsoil microbial communities. Therefore, across broad ecolo-
gical gradients, our understanding of the controls of subsoil
microbial communities is inconclusive for bacteria [1] and even
more limited for fungi. Climate is often considered a major
driver of microbial community composition and activity at large
spatial scales in the surface soil [6–8]. However, the role of
climate in predicting subsoil microbial community composition
and activity is still unclear. Given that subsoil microbial
communities play a significant role in decomposing the ~1400
Pg of soil organic carbon (SOC) stored below 20 cm [9],
understanding the large-scale controls over subsoil microbial
communities is critical in predicting future soil C stocks and
future temperatures.
The direct effects of climate on microorganisms are dictated by

temperature, precipitation, and aridity, and how these factors vary
and covary seasonally [10]. Given that microorganisms and their
extracellular enzymes (EEs) have different temperature and
moisture optima [11–13], climatic adaptations are common.
Various microorganisms in the surface soil, particularly within
the phyla Actinobacteria and Chloroflexi, have been shown to
respond positively to increased temperatures [14]. Climate can

also affect microbial communities indirectly through its influence
on soil development. For instance, climate is one of the five state
factors of soil development [15], affecting the availability of
inorganic nutrients, soil texture, and organic matter [10, 16], all of
which impact microbial community dynamics. Additionally, wetter
climates generally lead to decreased pH [17], a major correlate of
microbial community structure [18, 19], through base cation
leaching and accumulation of iron and aluminum colloids [20].
Finally, climate often covaries with vegetation [21], leading to
differences in organic substrate abundance and chemical compo-
sition, which also impacts microbial community composition and
activity [22, 23]. These direct and indirect effects lead to strong
bioclimatic patterns of soil microbial community structure and
activity in surficial soils.
Climatic effects on subsoil microbial communities may differ

compared to their surface soil counterparts. While the surface
soil interfaces directly with air temperature and precipitation,
the surface soil modulates the impacts of climatic changes on
the underlying subsoil. Thus, seasonal and diurnal fluctuations in
temperature and moisture are muted at depth [24, 25]. This
could lead to two alternative scenarios: (1) subsoil microbial
communities are less adapted to climate, whereby
moderate temperature and moisture levels are not strong
selective pressures; or (2) subsoil microbial communities are
more adapted to climate, whereby reduced temperature and
moisture fluctuations select for highly constrained microbial
communities. Recent evidence suggests that subsoil microbial
community composition may be less responsive to climatic
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conditions. For example, the effect of 4.5 years of experimentally
increased temperature on microbial community composition
and metabolism was reduced at depth. This was likely due to
metabolic capabilities of subsoil microbial communities that
allow for the decomposition of a variety of complex organic
matter substrates that are enriched with warming [26].
Additionally, laboratory warming (+10 °C) of Tibetan soils
showed that subsoil microbial communities are, in general, less
responsive to altered temperatures, at least in the short-term
(30 days) [27]. However, the full effect of climate (i.e., including
how climate affects biota and soil formation) may not emerge
over such short timescales, because the indirect effects of
climate (i.e., changes in vegetation and soil chemistry) may take
decades to develop. Therefore, well-constrained, observational
studies investigating the longer-term direct and indirect effects
of climate on the subsoil microbial community are particularly
valuable for capturing the full effect of climate.
Understanding the controls on microbial communities at depth

is particularly important because they are relatively understudied
[28] and they play a significant role in decomposing the ~1400 Pg

of SOC stored below 20 cm [9]. For instance, over half of EE activity
in the upper meter of the soil profile occurs below 20-cm [5].
Furthermore, when warmed, subsoil respiration can account for
over 40% of the increase in CO2 emissions from the whole soil
profile [29]. Finally, laboratory rates of C and nitrogen (N)
mineralization of added substrates were as fast in the subsoils
as in surface soils in an old-growth forest, suggesting that
microbial competition and demand for C and N resources does
not decrease with depth [30]. Taken together, these results
suggest that subsoil microbial communities are important
mediators of deep C persistence. Within the context of a changing
climate, climate-induced alterations to the microbial community
could enhance SOC loss from the subsoil, exacerbating climate
change [31, 32]. Hence, our understanding of the climatic controls
of subsoil microbial communities and how these differ from
surface soils is integral in constraining long-term soil C storage
predictions.
To understand the impact of climate on microbial community

composition and activity throughout the soil profile, we
collected soil samples from each genetic horizon (A–C) in soil

Fig. 1 Overview of the study sites. Elevation, location, and biome (note: while ADG is classified as a boreal forest, it is an alpine tundra) are
shown (A). Principal coordinates analysis (PCoA) plots of prokaryote (B) and fungal (C) community composition. The percentage in
parentheses indicates the variation explained by each axis. Vectors represent the direction and magnitude (indicated by vector length) of
correlations of environmental variables with the first two axes of the PCoA. Key: MAP mean annual precipitation, MAT mean annual
temperature, C:N the soil carbon-to-nitrogen ratio (molar basis).
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profiles along two elevational gradients (Fig. 1A). Elevational
transects are valuable bioclimatic gradients that can be used to
study the long-term impact of climate on soils, particularly when
other soil development state factors are held constant [33].
These samples were analyzed for prokaryote and fungal
community composition (16S rRNA and ITS gene, respectively),
potential activity (using EE activity assays), and soil chemistry.
We hypothesized that the microbial community composition
would vary among sites and with depth (in cm, herein referred
to as “depth”) or soil master horizon. Given our study design, we
were able to test the hypothesis that soil master horizon would
be a stronger predictor of microbial community composition
than depth. Additionally, we hypothesized that, the direct effect
of climate on microbial community composition and activity
would be reduced at depth, consistent with the few previous
studies conducted to date (e.g., Bai et al. [27], Dove et al. [26]).
Deeper in the soil profile, the indirect effects of climate, namely
soil chemistry, would become the dominant control of microbial
community composition and activity. We also hypothesized that
certain microbial taxa would correlate with the direct effects of
climate both throughout the soil profile and within master
horizons based on their taxonomically inferred metabolism. The
overall goal of our study was to provide a greater understanding
of microbial communities with depth and to elucidate their
patterns as they relate to climate. Such knowledge should
improve our ability to predict microbial decomposition and soil
C stocks in a changing climate.

METHODS
Study sites
We sampled soils at eight sites along two bioclimatic gradients based on
elevational transects in Central California, USA (Fig. 1A). The Southern
Sierra Critical Zone Observatory (SSCZO) experiences a Mediterranean-
type climate that traverses the west side of the Sierra Nevada [34]. From
west to east, sites increase in elevation, increase in precipitation, and
decrease in temperature, and they are defined as follows: oak savannah
(OS), pine-oak forest (POF), mixed conifer forest (MCF), and subalpine
forest (SAF; Fig. 1A). The White Mountain Elevational Transect (WMET)
experiences a semiarid-type climate (i.e., significantly drier than SSCZO,
Fig. 1A) along the west side of the White-Inyo Range [35]. From west to
east, sites also increase in elevation, increase in precipitation, and
decrease in temperature and are defined as follows: sagebrush shrub-
land (SBS), pinyon-juniper woodland (PJW), subalpine shrubland (SAS),
and alpine desert grassland (ADG; Fig. 1A; see Table S1 for further site
characteristics). Soil age across our sites is difficult to determine because
of significant aeolian and colluvial deposits [36, 37]; however, all soils are
derived from granite, granodiorite, or tonalite, and only SAF was
glaciated [34, 35]. Therefore, we contend that bioclimatic influences
dominated differences in soils across the eight sites.

Sample collection
Sampling occurred during the dry seasons (late summer, early fall) of 2014
and 2015. Because the microbial communities in these climates are
moisture-limited, the microbial communities at these sites are relatively
dormant during the dry season—EE activities during the summer/fall are
about a third of those in the spring [38]. While overall EE activities may be
lower, sampling during the dry season minimizes the temporal effects of
sampling at different times. Four soil profiles were dug at each site at least
20m apart representing the major topographic features of the landscape
(i.e., stratified sampling). To minimize the effect of plant roots, all profiles in
the SSCZO were dug under relatively open canopies, and within hours
after excavation, soil was collected based on master and subordinate
genetic horizons (Table S2). Soil genetic horizons were classified following
the USDA NRCS taxonomic system [39]. At WMET sites, SBS, PJW, and SAS,
there are considerable soil chemical differences between areas under
shrubs and the interspace [35]. We sampled only under shrubs to keep
sampling consistent with other sites that did not have interspace
components. Sampling tools were sanitized with 10% bleach followed
by 70% ethanol and were used to dig horizontally into a single soil profile
face (after clearing away exposed soil). Soil profiles were 1m wide, and we

sampled across the horizon. Hence, replication for all analyses was
assessed at the soil profile level (n= 4). Soils were immediately placed on
dry ice for transport back to the laboratory.

Soil chemistry
Soil samples were air dried and sieved (<2mm) for chemical analyses. We
determined elemental concentrations of iron, aluminum, calcium, phos-
phorus (P), potassium, magnesium, and silicon using lithium metaborate
fusion [40] measured by inductively-coupled plasma optical-emission
spectrometry (ICP-OES; Perkin-Elmer Optima 5300 DV; University of
California, Merced Environmental Analytical Laboratory). We measured
organic C and total N on an elemental analyzer (Costech Analytical ECS
4010 Elemental Analyzer, Costech Analytical Technologies, Inc., Valencia,
CA; Stable Isotope Laboratory at the University of California, Merced).
Carbonates were removed from WMET sites prior to analysis of organic C
using hydrochloric acid fumigation [41] (no effervescence occurred after 1
M HCl addition to SSCZO sites, so organic C was considered equivalent to
total C). Soil pH was measured in a 1:2 suspension:solution w/v in
deionized water and 0.01 M CaCl2 (Accumet Basic, Model AB15, Fisher
Scientific with an Ag/AgCl electrode; [42]).

Microbial biomass and extracellular enzyme activity
We measured microbial biomass C (MBC) by chloroform fumigation-
extraction using 10–50 g (depending on sample weight availability and
master horizon—greater soil weight was used in deeper horizons) of
previously frozen and thawed, field-moist mineral soil [43–45]. Performing
chloroform fumigation-extraction on previously frozen soils may slightly
affect the absolute values, but the relatively differences among treatments
are generally unaffected [46].
We measured potential EE activity (i.e., activity not limited by substrate

concentrations) of β-glucosidase (BG), N-acetylglucosaminidase (NAG), and
acid phosphatase (AP) fluorometrically following Bell et al. [47]. These three
enzymes are considered C-, N-, and P-acquiring enzymes, respectively. EE
activities were expressed per soil weight (mmol EE activity kg−1 soil h−1),
SOC (mmol EE activity kg−1 SOC h−1), and MBC (mmol EE activity kg−1

MBC h−1). These latter two variables are called SOC-normalized and MBC-
normalized, respectively in this paper.

DNA extraction
We extracted total soil DNA using the MoBio PowerSoil DNA isolation kit
(Carlsbad, CA) following the manufacturer’s instructions. We extracted DNA
from 1 g of soil using four parallel, replicate extractions (0.25 g per
extraction), and replicate extracts were pooled onto a single column and
eluted in 50 μL for downstream analysis to increase DNA yield. We
quantified DNA yields using the Quant-it PicoGreen dsDNA assay kit
(Invitrogen, Carlsbad, CA).

PCR amplification, sequencing, and bioinformatics
Sample libraries were prepared and sequenced at the Environmental
Sample Preparation and Sequencing Facility at Argonne National
Laboratory (Lemont, IL). For prokaryotes (archaea and bacteria), 16S rRNA
genes were amplified in PCRs using primers (515F/806R) that target the V4
region of the 16S rRNA gene [48]; for fungi, ITS2 regions were amplified in
PCR reactions using ITS9f/ITS4R primers [49, 50]. Each 25 µL PCR reaction
contained 9.5 µL of MoBio PCR Water (Certified DNA-Free), 12.5 µL of
QuantaBio’s AccuStart II PCR ToughMix (2x concentration, 1× final), 1 µL
Golay barcode tagged forward primer (5 µM concentration, 200 pM final),
1 µL reverse primer (5 µM concentration, 200 pM final), and 1 µL of
template DNA. The conditions for PCR are as follows: 94 °C for 3 minutes to
denature the DNA, with 35 cycles at 94 °C for 45 s, 50 °C for 60 s, and 72 °C
for 90 s; with a final extension of 10min at 72 °C to ensure complete
amplification. Amplicons were then quantified using PicoGreen (Invitrogen,
Carlsbad, CA) and a plate reader (Infinite® 200 PRO, Tecan Group Ltd.,
Männedorf, Switzerland). Once quantified, volumes of each of the products
were pooled into a single tube in equimolar amounts. This pool was then
cleaned using AMPure XP Beads (Beckman Coulter) and quantified using a
fluorometer (Qubit, Invitrogen, Carlsbad, CA). After quantification, the
molarity of the pool was determined, diluted down to 2 nM, denatured,
and then diluted to a final concentration of 6.75 pM with a 10% PhiX spike
for sequencing on the Illumina MiSeq platform (Illumina Inc., San Diego,
CA), resulting in 251 bp paired-end reads.
Both 16S and ITS2 datasets were denoised, joined, delineated into

amplicon sequence variants (ASVs) using DADA2 [51], without further
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trimming/truncation prior to ASV delineation in the QIIME2 environment
(v. 2019.7; [52]). We then assigned representative sequences a taxonomic
classification using the Naïve Bayes classifier through the sklearn python
package for 16S rRNA sequences with the SILVA database (Release 132;
[53]) and a confidence of 0.7. We assigned taxonomic classifications of
the ITS2 of the ribosomal operon to representative sequences using
consensus BLAST (% identity = 80%, e value = 0.001, and minimum
fraction of assignments = 0.51; [54]) and the UNITE reference database
(version 8.0, [55]). Fungal ASVs were further classified as ectomycorrhizal
(EM) using FUNGuild [56]; all ASVs assigned to the family Glomeraceae
were classified as arbuscular mycorrhizal (AM) fungi. All sequence data
are deposited at the Sequence Read Archive under the Bioproject
PRJNA743681.

Statistical analysis
All statistical analyses were conducted in R v. 4.0.2 [57], with the betareg
[58], car [59], lme4 [60], phyloseq [61], and vegan [62] packages. For all
statistical tests, significance was defined at the α= 0.05 level. The R code
used to conduct statistical analyses and generate figures can be found at
https://github.com/nicholascdove/climate_subsoil_microbiome.
Differences in the community composition of the prokaryotes and

fungi among sites and with depth or by horizon were assessed by
PERMANOVA [63]. Multiple models were conducted to investigate how
community composition is impacted at all sites (Full Model), or the
SSCZO and WMET separately. For these models, site identity as well as
depth or master horizon were used as independent variables.
Differences in beta-diversity among soil master horizons as well as
overall heterogeneity of multivariate dispersions were tested by using
the ‘betadisper’ function in vegan [62, 64]. Prokaryote and fungal
community compositions were visualized using principal coordinates
analysis (PCoA). Environmental vectors were fit onto PCoA ordinations
using the ‘envfit’ function in vegan. For the PERMANOVAs, beta-diversity,
and PCoAs, we used Bray-Curtis dissimilarity applied to proportionally
normalized data.
The predictive power of depth (in cm) and master horizon in explaining

microbial community composition were compared by first assessing the
significance of “depth” or “horizon” in the aforementioned PERMANOVA
models. If both were significant, then the R2 value of the “depth” or
“horizon” term was assessed, and terms with higher R2 values were
considered to be better predictors.
The relative control of the direct effects of climate (i.e., MAP and MAT)

versus the indirect effects of climate (i.e., soil chemistry) on microbial
community composition was assessed using variance partitioning [65],
again using Bray-Curtis dissimilarity applied to proportionally normalized
data. For these variance partitioning models, the effect of MAT and MAP
were combined to form the variable “climate,” and the effect of pH as well
as the effect of the molar concentrations of the aforementioned elements
were combined to form the variable “soil chemistry.” This resulted in
variance partitioning models with three independent variables: climate,
soil chemistry, and their interaction. The significance of variables was

determined using ANOVA and distance-based redundancy analysis (db-
RDA, [66]), sequentially “partialling out” variables.
To determine the impact of MAT and MAP with depth, multiple mixed

effects models were fit to our EE activities with the fixed effects of depth,
MAT and MAP and the random effect of pit. These a priori defined models
are as follows: (1) log10(enzyme) ~ Depth+ (1|Pit), (2) log10(enzyme) ~
Depth + MAT+ Depth × MAT+ (1|Pit), (3) log10(enzyme) ~ Depth + MAP
+Depth × MAP+ (1|Pit), and (4) log10(enzyme) ~ Depth + MAT+ Depth ×
MAT+MAP+ Depth × MAP+ (1|Pit). Enzyme activities were log10
transformed to satisfy assumptions of normality and homoscedasticity.
Significant changes in the relative abundance of individual major

microbial taxa with depth, MAT, and MAP were determined by analysis of
compositions of microbiomes with bias correction (ANCOM-BC [67]). For
differences in mycorrhizal relative abundance among sites and master
horizons, we used beta regression, which fit the distributions of the
dependent variables (i.e., percentages). Where significant, multiple
comparisons among sites were assessed by Tukey’s HSD.

RESULTS
Site identity explains greater variation in microbial
community composition than depth
While both site identity and depth were significant moderators of
microbial community composition, site identity generally
explained a greater amount of the variation in the microbial
community composition than depth, likely due to differences in
climate, soil chemistry, and vegetation (Fig. 1; Table 1). However,
there was a significant site identity by depth interaction on
microbial community composition, such that depth did not
significantly affect microbial community composition at all sites
(Fig. S1, Table 1). For prokaryotes, depth was not a significant
moderators of community composition at MCF and POF (Table 1),
two of the three wettest sites in our study (Fig. 1A), and for fungi,
depth was only a significant moderator of community composi-
tion at ADG, SBS, and SAF (Table 1).
Master horizon was also a significant factor affecting microbial

community composition. While the variation in the microbial
community explained by horizon was overall lower than site
identity, master horizon consistently explained a greater amount
of the variation in microbial community composition than depth
(Table 1). In fact, horizon was a significant moderator of
prokaryote community composition in all sites except MCF
(Table 1). However, horizon was only a significant moderator of
fungal community composition at ADG (Table 1). On average,
across all PERMANOVAs, horizon explained 51% and 89% more
variation than depth for prokaryote and fungal community
composition, respectively (Table 1).

Table 1. The R2 of “horizon” or “depth” in prokaryote and fungi PERMANOVA models when either was included.

Prokaryote Fungi

Model Site Horizon Depth Site × Horizon Site × Depth Site Horizon Depth Site × Horizon Site × Depth

Full 0.346 0.039 0.024 0.122 0.089 0.221 0.021 0.010 0.109 0.068

SSCZO 0.278 0.073 0.045 0.104 0.069 0.143 0.036 0.019 0.086 0.061

OS 0.255 0.164 0.167 0.089

POF 0.156 0.137 0.096 0.096

MCF 0.189 0.126 0.160 0.072

SAF 0.375 0.201 0.145 0.110

WMET 0.255 0.082 0.051 0.102 0.085 0.218 0.049 0.024 0.101 0.061

SBS 0.212 0.155 0.205 0.124

PJW 0.238 0.195 0.147 0.110

SAS 0.387 0.206 0.249 0.118

ADG 0.218 0.182 0.296 0.091

The Full, SSCZO, and WMET models also included “site” and the interaction of “horizon” and “site” or “depth” and “site” as factors. Bolded values indicate
significance of the factor (p < 0.05).
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Among master horizons, prokaryote beta-diversity was similar
across the entire dataset (ANOVA: F2,141= 1.6, p= 0.215, Fig. S2).
However, fungal beta-diversity significantly differed by horizon
(F2,143= 3.8, p= 0.026), with the A horizon having a significantly
higher beta-diversity than the B horizon (Tukey HSD: p= 0.032).

The direct effect of climate on the microbial community
declines with depth
Across elevational gradients and master horizons, both climatic
factors (i.e., MAT and MAP) and soil chemistry (i.e., pH and
elemental concentrations) significantly influenced prokaryote (soil
chemistry: F11,139= 3.4, p < 0.001; climate: F2,139= 4.6, p < 0.001)
and fungal community composition (soil chemistry: F11,141= 2.4, p
< 0.001; climate: F2,141= 3.1, p < 0.001; Fig. 2A). However, the
variance explained by soil chemistry was almost three and a half
times greater than that of climate. Within each elevational
gradient, the relative effect of climate (compared to soil chemistry)
decreased with depth (Fig. 2B). For prokaryotes, the effect of
climate was minimal in the B horizon at the SSCZO, as was the
effect of soil chemistry in the A horizon at WMET. For fungi, while
the effect of soil chemistry on community composition was
relatively similar to that of climate in the A horizon; soil chemistry
explained three to seven times more variance in the composition
than climate in the B horizon.

The impact of climate on extracellular enzyme activity
depends on normalization method and depth
EE activity per unit soil weight consistently decreased with soil
depth (Fig. S3). Still, when normalized by mol MBC or SOC, EE
activity increased with soil depth (Table 2). Per unit soil weight, EE
activity was generally unrelated to climatic factors when control-
ling for soil depth (Table 2). However, normalized by mol MBC, the
activities of NAG and AP were positively influenced by increasing
MAT and MAP, and normalized by SOC, the activities of NAG and
AP were positively influenced by increasing MAT (Table 2).
However, the effect of these climate variables interacted with soil
depth, where the effect of both MAP and MAT diminished with
increasing soil depth (Table 2). For BG per mol MBC, there was
only a main, positive effect of MAP, which interacted negatively
with soil depth; BG activity per mol SOC was not influenced by the
main effects of MAT and MAP. However, the effect of soil depth on
BG activity per mol MBC decreased with increasing MAP (Table 2).

Substituting the effect of master horizon for the effect of depth
on EE activities revealed similar patterns, with master horizon
being a strong moderator of EE activity (Table S3). However, for BG
and NAG activities (across all normalization methods), the effect of
horizon on activity consistently interacted with MAT. Similar to
models including soil depth, the effect of MAT on EE activity
decreased in subsoil horizons (Figs. S4–S6).

Response of specific taxa to climate and depth
Overall, the number of differentially abundant taxa were similar
(range: 2–9) across elevation gradients and master horizons
(Figs. 3 and 4). However, certain microbial taxa responded
consistently to differences in MAT and MAP, while others followed
idiosyncratic patterns across elevation gradients and master
horizons (Figs. 3 and 4). For example, the relative abundance of
Actinobacteria and Deltaproteobacteria consistently responded
positively to increasing MAT, and the relative abundance of
Acidobacteria consistently responded positively to increasing MAP
(Fig. 3). However, the relative abundance of Agaricomycetes was
positively correlated with MAP and negatively correlated with
MAT only in the SSCZO gradient (Fig. 4). The same was also true
for Verrucomicrobia, but only in the WMET gradient (Fig. 3). On the
other hand, the relative abundance of Archaea was negatively
correlated with MAP and correlated positively with MAT, but only
in subsurface soil horizons across both gradients (Fig. 3).
The relative abundances of many microbial taxa were also

significantly impacted by depth, but only in certain sites (Fig. S7).
For example, the relative abundance of Chloroflexi and
Dothideomycetes increased with depth in only two of the eight
sites (MCF and ADG for Chloroflexi and OS and SAF for
Dothideomycetes, Fig. S7). Alternatively, the relative abundance
of Agaricomycetes and Alphaproteobacteria decreased with
depth in only three (SBS, SAS, ADG) and four sites (OS, POF, SAF,
ADG), respectively (Fig. S7). The relative abundance of Bacter-
oidetes consistently decreased with depth, while other taxa had
idiosyncratic depth distributions depending on the site (Fig. S7).
At the two wettest sites, the relative abundance of Peziziomy-
cetes decreased with depth, and in a single site in the WMET
gradient (PJW) the relative abundance of Pezizomycetes
increased with depth. Similarly, the relative abundance of
Actinobacteria decreased with depth in the wettest site and
increased with depth in the three driest sites (Fig. S7).

Fig. 2 Variance partitioning from the PERMANOVA of prokaryote and fungal community composition, overall, across elevational
gradients, and among master horizons (lack of samples in the C horizon prevented analysis in this layer). Climate is the combined effect of
mean annual temperature and precipitation. Soil chemistry is the combined effect of pH (1:2 CaCl2) as well as the concentration of total
extractable aluminum, calcium, carbon, iron, magnesium, nitrogen, phosphorus, potassium, silicon, and sodium (mmol kg−1).
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The influence of depth on the relative abundance of EM and
arbuscular mycorrhizal (AM) fungi interacted with site (EM: F7,143=
6.1, p < 0.001, AM: F7,143= 2.1, p= 0.041), such that depth was a
significant moderator of EM fungi only at SH (increased) and of AM
fungi at SBS and ADG (decreased; Fig. S8, Table S4). However, the
patterns of EM and AM relative abundances among sites were
generally consistent among horizons. The relative abundances of
EM fungi were generally higher in forested ecosystems such as
POF, MCF, SAF, and PJW. In comparison, the relative abundances of
AM fungi were generally higher in grassland ecosystems, such as
OS, SBS, and SAS (Fig. S8).

DISCUSSION
It is becoming increasingly evident that microorganisms in the
subsoil play important roles in soil C and nutrient cycling
[5, 26, 29, 31], yet our understanding on the controls of microbial
communities in the subsoil is limited. Here, we not only show that
microbial community composition changes with depth, but also
that the impact of climate, which strongly controls the surface soil
microbial community composition, decreases in subsoil horizons
[7, 8, 68, 69]. Furthermore, we find that certain microbial taxa
change in relative abundance over large temperature and
precipitation gradients only in specific soil horizons, highlighting

Table 2. Coefficients of competing mixed effects models of enzyme activity (μmol) normalized by soil weight, microbial biomass carbon (MBC), and
soil organic carbon (SOC).

Enzyme Modela Depth MAT Depth × MAT MAP Depth × MAP

μmol kg−1 soil BG 1 −3.43E−03

2 −6.21E−03 −2.13E−02 2.74E−04

3 −6.28E−04 2.11E−04 −3.84E−06

4 −3.90E−03 −2.11E−02 2.55E−04 2.09E−04 −2.96E−06

NAG 1 −2.60E−03

2 −1.70E−03 1.58E−02 −1.08E−04

3 1.64E−03 5.15E−04 −6.05E−06

4 3.56E−03 1.90E−02 −1.57E−04 5.45E−04 −6.71E−06

AP 1 −1.89E−03

2 −2.28E−03 1.02E−02 1.87E−05

3 2.00E−03 2.61E−04 −5.29E−06

4 2.00E−03 1.09E−02 −2.36E−05 2.46E−04 −5.16E−06

μmol mol−1 MBC BG 1 3.09E−03

2 9.39E−03 3.13E−02 −7.98E−04

3 1.62E−02 9.42E−04 −1.67E−05

4 1.81E−02 2.15E−02 −6.06E−04 8.67E−04 −1.33E−05

NAG 1 1.86E−03

2 1.31E−02 8.50E−02 −1.40E−03

3 2.17E−02 1.44E−03 −2.45E−05

4 2.66E−02 7.70E−02 −1.21E−03 1.30E−03 −1.89E−05

AP 1 5.14E−03

2 1.39E−02 6.80E−02 −1.14E−03

3 2.21E−02 9.88E−04 −2.14E−05

4 2.47E−02 5.80E−02 −8.78E−04 7.86E−04 −1.63E−05

μmol mol−1 SOC BG 1 4.59E−03

2 5.92E−03 −1.74E−03 −1.13E−04

3 1.47E−02 −7.21E−05 −1.27E−05

4 1.79E−02 5.76E−03 −2.32E−04 −6.86E−05 −1.35E−05

NAG 1 4.43E−03

2 9.67E−03 4.64E−02 −5.21E−04

3 1.54E−02 2.67E−04 −1.42E−05

4 2.49E−02 5.56E−02 −7.05E−04 3.63E−04 −1.73E−05

AP 1 6.40E−03

2 1.07E−02 3.03E−02 −4.21E−04

3 1.68E−02 −6.64E−05 −1.32E−05

4 2.29E−02 3.50E−02 −1.43E−05 −8.81E−05 −1.43E−05

Bolded coefficients represent significant (p < 0.05) fixed effects.
BG β-glucosidase, NAG N-acetylglucosamine, AP acid phosphatase, MAT mean annual air temperature (°C), MAP mean annual precipitation (mm).
a1= log10(enzyme) ~ Depth+ (1|Pit)
2= log10(enzyme) ~ Depth + MAT+Depth × MAT+ (1|Pit)
3= log10(enzyme) ~ Depth + MAP+Depth × MAP+ (1|Pit)
4= log10(enzyme) ~ Depth + MAT+Depth × MAT+MAP+Depth × MAP+ (1|Pit).
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the depth dependence of the climatic controls on microbial
community composition.
Consistent with our hypothesis, the indirect effects of climate

(i.e., soil chemical properties) became a more dominant control of
microbial community composition with soil depth. At depth,
seasonal and diurnal fluctuations in temperature and moisture are
muted [24, 25], such that temperature and moisture extremes
common in the surface that would likely select for certain
microbial taxa [70, 71] may not occur in the subsoil. Instead,
edaphic factors such as organic C limitation and changes in soil
nutrients with depth [4, 9, 72] were apparently stronger
moderators of subsoil microbial community composition. Our
results support this assertion as oligotrophic and lithotrophic
microorganisms adapted to low organic C availabilities increased
in relative abundance with depth. For example, Bacteroidetes,
which are generally considered copiotrophic [73], decreased in
relative abundance with soil depth, while Nitrospirae and Archaea,
which are commonly lithotrophic [74], increased in relative
abundance with soil depth. However, we recognize that climate
and soil chemistry together only explained a fraction of the
microbial community composition (Fig. 2). This could be due to
unmeasured environmental factors, such as soil water potential;
biotic interactions among microbes, mesofauna, and viruses; or
stochastic assembly processes [75]. Nevertheless, conceptually, we
propose that the direct influence of climate extends from the
atmosphere into the surface while the subsoil is influenced by the
longer-term effects of climate, namely soil chemistry. This
suggests that extrapolating microbial community composition
based solely on climate variables when the climate is changing
may not be appropriate in deeper soil layers.

While the effect of climate on microbial communities
diminished in the subsoil, there were still microbial taxa that
consistently responded to changes in climate across soil
horizons. For instance, Actinobacteria consistently increased
in relative abundance with increasing temperatures. This is
consistent with previous research in the surface soil showing
Actinobacteria phylotypes have greater relative abundances at
warmer sites and respond positively to increasing temperature
in laboratory incubations [14]. Furthermore, in field warming
studies, Actinobacteria also increase in relative abundance in
the surface [76, 77] and subsoil [26] in response to warming. In
contrast, Archaea generally increased in relative abundance
with increasing temperatures only in the subsoil. The relative
abundance of Archaea does not generally correlate positively
with temperature in the surface soil [78], but they have been
shown to increase in relative abundances with permafrost
warming in deeper layers [79]. Our results show that Archaea
respond positively to temperature at depth in temperate
forests as well. However, it is important to recognize that
differences in relative abundances may not reflect changes in
total abundance. We were unable to correct our relative
abundances through qPCR using 16S and ITS primers because
16 S and ITS copy numbers in microbial genomes vary by an
order of magnitude [80], and therefore, this analysis does not
accurately represent microbial abundances over large differ-
ences in microbial community composition (as was the case in
this study). Thus, our results suggest that characterizing
responses of the relative dominance of microbial taxa to
temperature is depth-dependent, underscoring the need of
whole profile warming studies to elucidate the response of

Fig. 3 Differentially abundant prokaryotic taxa. Average relative abundance of prokaryotic taxa that significantly change (p-adjusted < 0.05)
with mean annual air temperature (MAT, A) and mean annual precipitation (MAP, B) within each horizon and elevational gradient. Lines are
calculated using loess regression of average relative abundance at each site (n= 4).

N.C. Dove et al.

7

ISME Communications



microbial communities to increased temperatures (e.g., John-
ston et al. [79], Dove et al. [26]).
The depth dependence of climate impacts on microbial

community composition also extended to microbial activity. We
found that the impact of depth on microbial activity interacted
with climate such that the positive effect of MAT and MAP on
MBC- and SOC-normalized EE activity was muted in deeper soil
horizons. This suggests that while EE activity on a MBC or SOC
basis is positively correlated with MAT and MAP [6], this may not
be the case in deeper soils. It is possible that greater clay
stabilization of EE activities at depth may have reduced the
influence of climate on microbial activity because higher microbial
activities would reflect soil mineralogy rather than biology
[5, 81, 82]. Hence, our results provide another line of evidence
showing that the direct effects of climate (i.e., MAT and MAP) on
microbial communities diminish with depth.
It was somewhat surprising that site identity explained over

an order of magnitude more variation in microbial community
composition than depth because many physical and chemical
properties of soil change dramatically throughout the soil
profile. For instance, organic C concentration decreases with
increasing soil depth [4], selecting for microorganisms capable
of utilizing a myriad of substrates [26] or even alternative energy
sources, such as CO [1]. Hence, the effect of soil depth on
microbial community composition has been shown to be as
strong as the effect of location [83]. However, over relatively
broader ecological gradients, the effect of site identity can
become stronger than soil depth [1]. This discrepancy is
probably the result of greater soil chemical and climatic
heterogeneity across sites, which likely explains the findings in
this study as our sites spanned multiple bioclimatic envelopes

(Fig. 1A) and included large differences in soil chemistry. For
example, the relative abundance of EM and AM largely
correlated with whether the ecosystem was treE− or grass-
dominated and was generally not influenced by depth. It is also
possible that differences in the maximum depth of the soil could
have contributed to site specific differences in microbial
community composition. For instance, microbial dispersal
limitations may increase with greater depth, decreasing the
available species pool in deeper soil layers. Thus, deeper soils
could result in greater microbial isolation affecting community
assembly. Also, if the lateral movement of soil microbes across
large distances occurs primarily aboveground [84, 85], then the
species pool for subsurface colonization is constrained by
surface soil conditions. In other words, subsoil microbial
communities need to pass through two environmental filters:
the condition of the surface soil and the subsoil counterpart.
Indeed, in a temperate grassland ecosystem, dispersal limitation
across 2 km and selective determinism was found to increase
with soil depth [86]. In the context of a changing climate, this
apparent dispersal limitation suggests that changes to the
community composition of the subsoil will likely follow that of
the surface soil.
Our finding that master soil genetic horizon explained a greater

proportion of the variation in microbial community composition
than depth suggests that depth-resolved microbial ecology
should sample based on master or subordinate genetic horizons
when possible. Commonly, soils are sampled by depth rather than
master horizon [1, 5, 26], because delineating genetic horizons
necessitates an in-depth understanding of physical and chemical
nature of the soil profile and technical expertise. Furthermore, soil
characterization is often only possible through full soil profile

Fig. 4 Differentially abundant fungal classes. Average relative abundance of fungal classes that significantly change (p-adjusted < 0.05) with
mean annual temperature (MAT, A) and mean annual precipitation (MAP, B) within each horizon and elevational gradient. Lines are calculated
using loess regression of average relative abundance at each site (n= 4).
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excavation rather than deep soil cores sampled from the surface
(i.e., how deeper soil layers are commonly sampled in microbial
ecology). Because we found that soil chemistry is a strong
moderator of microbial community composition and genetic
horizons are in part delineated by soil chemistry [87], it is
unsurprising that genetic horizons explained a greater proportion
of the variation in microbial community composition than depth.
It is also possible that genetic horizon explained a greater
proportion of the variation than depth because, unlike depth,
horizon is a categorical variable. Categorical variables can better
describe often observed nonmonotonic changes in the relative
abundance of microbial taxa with depth (Fig. S7), whereas
continuous variables better describe linear patterns.
The differences in climate exhibited in this study are relatively

greater than what is expected within the next century due to
climate change [88]. However, these observational findings corro-
borate recent experimental findings suggesting that the microbial
response to increased temperatures is subdued at depth [26].
Additionally, unlike experimental warming, these results incorporate
the longer-term nature of climate effects, including both the direct
and indirect (i.e., changes in soil chemistry and vegetation) effects of
increased temperatures. Bradford et al. [89] proposed that microbial
temperature acclimation might mitigate enhanced microbial
respiration due to increased temperatures with climate change.
However, our main finding that the direct impacts of climate are
reduced at depth suggests that deep soil microbial communities
may lag in their acclimation to new temperatures, potentially
allowing for continued enhanced microbial respiration rates that
further increase atmospheric CO2 levels.

DATA AVAILABILITY
All sequence data can be accessed through the sequence read archive under
Bioproject PRJNA743681. Soil chemistry and extracellular enzyme data is archived in
the Dryad repository (https://doi.org/10.6071/M3XM3S).
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