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Metagenome-assembled genomes (MAGs) have revealed the hidden diversity and functions of uncultivated microbes, but
their reconstruction from metagenomes remains a computationally difficult task. Repetitive or exogenous sequences, such as
ribosomal RNA and horizontally transferred genes, are frequently absent from MAGs because of misassembly and binning
errors. Here, we report that ribosomal protein genes are also often absent from MAGs, although they are neither repetitive nor
exogenous. Comprehensive analyses of more than 190,000 MAGs revealed that these genes could be missing in more than
20–40% of near-complete (i.e., with completeness of 90% or higher) MAGs. While some uncultivated environmental microbes
intrinsically lack some ribosomal protein genes, we found that this unexpected absence is largely due to special evolutionary
patterns of codon usage bias in ribosomal protein genes and algorithmic characteristics of metagenomic binning, which is
dependent on tetranucleotide frequencies of contigs. This problem reflects the microbial life-history strategy. Fast-growing
microbes tend to have this difficulty, likely because of strong evolutionary pressures on ribosomal protein genes toward
the efficient assembly of ribosomes. Our observations caution those who study genomics and phylogeny of
uncultivated microbes, the diversity and evolution of microbial genes in the central dogma, and bioinformatics in
metagenomics.

ISME Communications; https://doi.org/10.1038/s43705-022-00204-6

INTRODUCTION
Reconstructing metagenome-assembled genomes (MAGs), also
known as genome-resolved metagenomics, has significantly
expanded our knowledge of microbial diversity and function.
Notable examples include the discovery of major phylogenetic
groups without precedent isolates, namely Candidate Phyla
Radiation bacteria, DPANN archaea [1–3], and crAssphage [4], as
well as the identification of comammox bacteria [5, 6]. Further-
more, mining public metagenomic databases has generated
myriads of MAGs and expanded our knowledge of the diversity
and potential functions of environmental microbes [7, 8].
There are many bioinformatic tools that enable fast and

memory-efficient reconstruction of MAGs [9–13]. Reconstructing
MAGs involves two main processes: (1) assembling short and
fragmented reads into long contigs and (2) binning contigs from
the same species. Both processes are computationally difficult,
and the accuracy of MAGs has been repeatedly discussed [14].
First, misassemblies frequently occur in repetitive sequences, such
as ribosomal RNA genes. Many prokaryotes harbor multiple copies
of ribosomal RNA operons with highly similar nucleotide
sequences, which can be erroneously merged during the
assembly process [15]. Long repeat sequences also produce
similar problems and are difficult to assemble [14]. Second,

binning errors frequently arise in exogenous sequences, such as
plasmids and genomic islands [16]. One straightforward approach
to cluster contigs is to put together contigs with similar
sequencing depths, but this cannot distinguish microbes existing
in similar amounts. Therefore, popular binning tools, such as
MetaBAT [11], MaxBin [10], and CONCOCT [17], use tetranucleotide
frequencies to cluster contigs, including those without marker
genes, in addition to sequence depths information. This strategy is
based on the empirical knowledge that a tetranucleotide
frequency is a suitable fingerprint representing prokaryotic
phylogeny [18]. However, plasmids and genomic islands are
transferred from one cell to another and bear little hallmark of the
host prokaryotes.
Here, we report another unnoticed hotspot of systematic errors

in MAG reconstruction: ribosomal protein genes. Comprehensive
analyses of tens of thousands of MAGs, as well as those of single-
cell amplified genomes (SAGs) and unassembled metagenomic
sequences, have revealed that ribosomal protein genes are
frequently absent from MAGs, although they are neither repetitive
nor exogenous. We also found that distinct tetranucleotide
frequencies around ribosomal protein genes caused frequent
losses during the binning process, and bacterial life-history
strategies affected this tendency.
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METHODS
MAG and SAG datasets
We used six datasets of MAGs reported in previous studies, encompassing
various types of environments (Table 1). Four datasets consisted of MAGs
reconstructed from Illumina short-read sequencing of diverse environ-
ments, namely seawater [7], the human gut [8], the chicken gut [19], and
the rice phyllosphere [20]. We obtained another dataset from the Genomic
catalog of Earth’s Microbiomes (GEM) [21]. In contrast to the above four
datasets, the GEM contains MAGs from various types of sequencers,
including long- and short-read sequencers. To compare MAGs recon-
structed with and without long-read sequencers, we also used a catalog of
wastewater MAGs reconstructed by hybrid assembly of long-read (Oxford
Nanopore) and short-read (Illumina NextSeq) sequences [22].
We referred to the JGI Genome Online Database [23], NCBI Sequence

Read Archive [24], and supplemental tables attached to the above-
mentioned literature to identify the types of sequencing platforms used for
reconstructing each MAG. Some MAGs in the GEM lacked available records
of sequencing platforms or were reconstructed from Sanger sequencing,
and they were excluded from this study. The remaining MAGs were
classified into two groups: ones reconstructed from short-read sequences
only and ones reconstructed using long-read sequences (i.e., hybrid
assembly or long-read assembly).
Each of the six datasets was accompanied by completeness and

contamination scores calculated using CheckM v1.0.7–13 [25] and
taxonomic assignments based on the Genome Taxonomy Database
(GTDB) [26] except for the human gut dataset. MAGs from the human
gut dataset were taxonomically annotated using GTDB-Tk v2.1.0 [27–32].
Only bacterial genomes were analyzed in this study. Genomes annotated
as archaeal or without valid domain-level annotations (according to GTDB-
Tk) were excluded. Table 1 summarizes the number of genomes, versions
of CheckM and GTDB-Tk, and the assembly and binning methods.
To compare the MAGs with genomes free of metagenomic binning, we

also analyzed SAGs from seawater (n= 12,715) and mouse gut (n= 31)
samples [33, 34]. Five SAGs from seawater were unavailable in GenBank
and were not used in this study. Qualities of the SAGs were assessed using

CheckM v1.1.3 [25] (“lineage_wf” command and default parameters), and
those with completeness scores of >90% were used.
Protein-coding sequences (CDSs) on the MAGs and SAGs were predicted

using Prodigal v2.6.3 [35] and subsequently annotated using KofamScan
v1.3.0 [36] with KOfam profiles version 2021-04-01 (the same applies
below). FASTQ and FASTA files were formatted using SeqKit [37] where
needed.

Core ribosomal protein and single-copy gene datasets
We downloaded 3315 bacterial genomes as the genomes of mostly pure
isolates from RefSeq [38] as of April 8, 2022. We randomly sampled one
genome from each genus and discarded any genome without solid
annotations at the genus level. CDSs on these genomes were predicted
and annotated using Prodigal and KofamScan, respectively. From these
3315 genomes, we randomly sampled one genome per class (93
genomes). We identified 42 core ribosomal protein genes and 32 other
single-copy genes (Supplementary Table S1), each of which existed exactly
one copy in >95% of the 93 genomes.

Shotgun metagenome analysis
To examine if MAGs lacking some ribosomal protein genes are artifacts
in the bioinformatic processes or not, we compared frequencies of
ribosomal protein genes in MAGs and (pre-assembly) raw reads from
shotgun metagenomics. We downloaded 11 shotgun metagenomic
datasets from agricultural soil, seawater, and the human gut [39–41]
(Supplementary Table S2). All data were generated by short-read
Illumina sequencing. Paired-end reads were merged using the “fas-
tq_mergepairs” command of USEARCH v11.0.667 [42] for the soil and
seawater metagenomes, with the options “-fastq_maxdiffs 5 -fastq_mi-
novlen 15 -fastq_allowmergestagger.” The inserted library size of the
human gut metagenomes was too long for the paired-end reads to be
merged, and read1 was used for further analysis. Sequences with
expected errors of >0.5 bases were removed using the “fastq_filter”
command in USEARCH.

Table 1. Description of six MAG datasets used in this study.

Dataset name Number of
genomesa

Taxonomic
annotation

Assembly Binning Quality check Reference

Seawater MAGs Short-
read: 47,120

GTDB-Tk v1.3.0 MEGAHIT v1.1.4 MaxBin v2.2.6
MetaBAT v2.12.1
CONCOCT v1.0.0
Ensembled using
MetaWRAP v1.2.1

CheckM v1.0.13 [7]

Human gut MAGs Short-
read: 90,301

GTDB-Tk
v2.1.0b

MEGAHIT v1.1.3 MaxBin v2.2.4
MetaBAT v2.12.1
MetaBAT1
Ensembled using
MetaWRAP v1.0

CheckM v1.0.7 [8]

Chicken gut MAGs Short-
read: 12,232

GTDB-Tk;
version not
disclosed

MEGAHIT v1.1.3 MaxBin v2.2.6
MetaBAT v2.12.1
CONCOCT v1.1.0
Ensembled using
MetaWRAP v1.2.1

CheckM v1.0.12 [19]

Rice
phyllosphere MAGs

Short-
read: 503

GTDB-Tk v1.4.1 MEGAHIT; version
not disclosed

MaxBin v2.2.7
MetaBAT v2.12.1
Vamb v3.0.2
Ensembled using
DASTool v1.1.1

CheckM v1.0.13 [20]

Genomic catalog of
Earth’s
Microbiomes (GEM)

Short-
read: 45,695
Long-read or
hybrid: 369

GTDB-Tk;
version not
disclosed

Not standardized MetaBAT v0.32.4/5 CheckM v1.0.11 [21]

Wastewater long-
read MAGs

Hybrid: 1080 GTDB-Tk v1.0.2 CANU v1.8 MetaBAT v2.12.1
MaxBin v2.2.7
Ensembled using
DASTool v1.1.1

CheckM v1.0.11 [22]

aNumber of bacterial MAGs.
bAnnotated in this study.
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The processed reads were functionally annotated using DIAMOND
v2.0.14 [43] and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (obtained from the KEGG FTP service, as of April 10, 2022) [44].
We performed a two-step homology search [45] to reduce computational
cost. First, we mapped all query sequences onto a small database
consisting of core gene sequences (options: “blastx --sensitive -e 1e-5”).
Queries with any hit in the first step (translated sequences) were then
subjected to a homology search against the full KEGG database (options:
“blastp --sensitive -e 1e-10 -k 200”). We obtained 200 hits and extracted the
top hit among them for downstream analysis to mitigate the inaccuracy
induced by DIAMOND heuristics. The number of reads encoding each
KEGG ortholog group was converted to reads per kilobase per million
reads (RPKM) to normalize the effect of each KEGG ortholog group’s
length. The average length of sequences belonging to each KEGG ortholog
group was used to calculate the RPKM. The Brunner–Munzel test was used
to test the null hypothesis that RPKMs of ribosomal protein genes are not
significantly different from those of the other single-copy genes.
Next, using those metagenomic sequences, we examined if ribosomal

protein genes are often absent in MAGs because those MAGs are
insufficiently assembled or not. Three subsets of reads with different
depths (2 × 106 reads, 4 × 106 reads, and 1 × 107 reads) were generated
from each sample, amounting to 33 datasets. Each dataset was
independently assembled using two assemblers (MEGAHIT v1.2.9 [9] and
metaSPAdes v3.15.4 [13]), producing 66 sets of contigs. MEGAHIT was run
with the options “--k-min 41 --k-max 121 --k-step 10”, whereas metaSPAdes
was run with the default parameters under the “--meta” flag. The CDSs on
the contigs were predicted and functionally annotated using Prodigal and
KofamScan, respectively. Contigs with one or more ribosomal protein gene
were selected, and their N50, N90, and median lengths were calculated
using SeqKit v2.2.0. Similarly, contigs bearing a CDS with any K number
assignment were selected, and their N50, N90, and median lengths were
determined.

Tetranucleotide frequency analysis
To investigate if tetranucleotide frequency biases around ribosomal
protein genes can lead to binning errors and frequent losses of ribosomal
protein genes from MAGs, we used the 3315 RefSeq genomes (one
genome per genus). For each genome, the contigs were randomly sorted,
concatenated in tandem, and split into multiple subsequences
(25,000–26,000 bases each, based on the N50 statistics of short-read
MAGs (Table 1, corresponding to the 57.1–58.1 percentile). We obtained
7–526 subsequences (mean: 157.1 subsequences) per genome.

Tetranucleotide frequencies were calculated for each subsequence and
its reverse complement. Here we considered the fact that the frequencies
of 44 (=256) patterns of tetranucleotides are not independent of each
other. For example, the frequencies of reverse complement sequences
(e.g., ATTC and GAAT) are exactly the same. In addition, for example, the
frequencies of CAAA and AAAT are interdependent with each other,
because both of them must correlate with the frequency of AAA. To
eliminate such redundancy, we used the frequencies of 103 tetranucleo-
tides (Supplementary Table S3) that can be regarded as independent [46].
CDSs on these subsequences were predicted and functionally annotated

using Prodigal and KofamScan, respectively. For each genome, a weighted
network of the subsequences was constructed, where the vertices are the
subsequences and the weight of each edge is 1–d, where d is the
Euclidean distance between their tetranucleotide frequencies. It should be
noted that MetaBAT and MaxBin also used the Euclidean distance between
tetranucleotide frequencies [10, 11]. We calculated the degree centrality
(i.e., the sum of all the edge weights) of each vertex as a metric of the
typicalness of that subsequence (i.e., whether that subsequence presented
typical or atypical tetranucleotide frequencies within the genome). We
calculated the percentile ranks of the degree centralities of subsequences
that coded ribosomal protein genes (Supplementary Table S1), clustered
regularly interspaced short palindromic repeat (CRISPR)-related genes
(KEGG orthologs with annotations containing the word “CRISPR” or
“CRISP”), transposon-related genes (KEGG orthologs with annotations
containing the word “transpos*”), and glycolysis genes (KEGG orthologs
marked as such in KEGG Pathway) among all the subsequences. Only
orthologous groups present in >10% of the 3 315 genomes were used.

Analysis of ribosomal protein gene distributions in bacterial
genomes
We downloaded five phylogenetically distant and complete bacterial
genomes (i.e., genomes assembled into single contigs) from the KEGG
database (T00007 [Escherichia coli str. K-12 substr. MG1655], T00010
[Bacillus subtilis subsp. subtilis 168], T00015 [Mycobacterium tuberculosis str.
H37Rv], T00035 [Pseudomonas aeruginosa sp. PAO1], and T00109
[Bradyrhizobium diazoefficiens str. USDA 110]), and visualized the distribu-
tions of ribosomal protein genes on them. The positions of ribosomal
protein genes on each genome were retrieved using the KEGG FTP service.
We also examined the hypothesis that ribosomal protein genes encoded

in long operons are more likely to be absent from MAGs. Ribosomal
protein genes whose start-codon positions are within 1000 bases of those
of the adjacent genes were regarded to be on the same operon. For each

Fig. 1 Proportion of MAGs harboring each ribosomal protein ortholog from five MAG datasets reconstructed using only short-read
sequences. Each point represents one ribosomal protein ortholog (listed in Supplementary Table S1). Lines within each box and whiskers
indicate three quartiles and the maximum/minimum values, respectively. Orange bands indicate the value ranges that could be expected
from completeness of MAGs. Panels A and B show the results for all the bacterial MAGs with 90–100% and 80–90% completeness, respectively.
Panels C and D show the results of MAGs with 90–100% completeness classified as class Gammaproteobacteria and phylum Bacteroidota,
respectively. The definition of each phylum/class is slightly inconsistent between the five sets of MAGs because different versions of the GTDB
were used for taxonomic annotations (Table 1).
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ribosomal protein gene, an average operon length on the five genomes
was calculated. Those lengths were compared with proportions of MAGs
harboring those genes for each of the five MAG datasets (short-read
MAGs only).

Analysis of CRISPR and transposase genes
We then compared the frequencies of the losses of ribosomal protein genes
and the amount of other known hotspots of binning errors (i.e., CRISPR and
transposase genes) in MAGs. Each MAG with >90% completeness from
seawater, the human gut, and the GEM was coupled with a phylogenetically
close genome from RefSeq to compare MAGs and genomes from pure
isolates. Seawater and human gut MAGs were coupled with GTDB genomes
closest toMAGs as determined by GTDB-Tk. The MAGwas excluded from this
analysis if the coupled GTDB genome was unavailable in RefSeq (note that
GTDB contains GenBank genomes that were ruled out from RefSeq).
Regarding MAGs in GEM, counterpart genomes were determined based on
the genomic operational taxonomic units defined in the GEM. The
operational taxonomic units in the GEM consisted of one or more genomes
from MAGs and RefSeq. For each MAG, one RefSeq genome, if any, was
randomly selected from the same operational taxonomic unit. Otherwise, the
MAG was not used in the analysis.
We predicted CRISPRs in each pair of MAG and its counterpart RefSeq

genome using CRISPRCasFinder version 4.2.20 [47] with default parameter
settings. We counted the number of CRISPR sequences with evidence
levels of three or higher. We also predicted genes encoding transposases
using Prodigal and KofamScan in these genome pairs. We did not compare
ribosomal protein genes between the MAGs and RefSeq genomes because
RefSeq excludes genomes lacking ribosomal protein genes (https://
www.ncbi.nlm.nih.gov/assembly/help/anomnotrefseq/; accessed August
2, 2022).

Bacterial growth-rate analysis
We hypothesized that tetranucleotide frequencies of ribosomal protein
genes become more atypical when they are more actively translated and
that their translation activities physiologically reflect bacterial growth speed.
To this end, bacterial doubling time data were obtained from an integrated
database of bacterial phenotypes [48]. Each entry in this database was
assigned to a RefSeq genome using NCBI taxonomy IDs [49] at the species
level. We used TaxonKit [50] to manage NCBI Taxonomy IDs. When multiple
RefSeq genomes were available for one species, one genome was selected
based on the following criteria. The reference genome was selected when
available. Otherwise, a representative genome was selected for analysis. If
both were unavailable, one genome was randomly chosen. When multiple
pairs of genomes and data records belonged to one genus, one was
randomly selected, and the others were discarded to mitigate phylogenetic
biases. The CDSs of each genome were predicted and annotated using
Prodigal and KofamScan, respectively. We calculated the tetranucleotide
frequencies of CDSs encoding core ribosomal protein genes (Supplementary
Table S1), the whole genome, and the Euclidean distances between them.
The correlation between this distance and doubling time was tested using
Spearman’s test in R version 4.0.5 (R Core Team, 2021).

RESULTS AND DISCUSSION
Unexpected absence of ribosomal protein genes from MAGs
We observed that the core ribosomal protein genes were absent
in significantly more MAGs than expected by chance (e.g., MAGs
with 90–100% completeness possessed less than 90% of the core
ribosomal protein genes on average) in four of the five MAG
datasets from different environments (Fig. 1A, B). This frequent

Fig. 2 Frequencies of reads coding ribosomal protein genes and other widely conserved single-copy genes in unassembled short-read
shotgun metagenomes. Each panel indicates one metagenomic sample, and each dot in a panel represents the RPKM of one ortholog (i.e.,
the number of reads normalized by the length of that ortholog and sequencing depth). Statistical significance (Brunner–Munzel test with
Bonferroni’s correction) is shown at the top of each panel. Panels A–E, F–H, and I–K are the results from human gut metagenomes, seawater
metagenomes, and soil metagenomes, respectively. N.S. not significant, Ribo ribosomal protein genes.
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absence of ribosomal protein genes was observed across distinct
clades, and class Gammaproteobacteria and phylum Bacteroidota
showed the strongest trends (Fig. 1C, D). It should be noted that
CheckM (the software used for assessing genomic completeness)

avoids redundant counts of adjacent ribosomal protein genes [25]
and can regard genomes lacking many ribosomal protein genes as
high quality.
We formulated two possible hypotheses for the unexpected

absence of ribosomal protein genes in MAGs. The first hypothesis
was that many environmental bacteria actually lack more
ribosomal protein genes than cultivated bacteria, whose genomes
are used as references [38]. The second hypothesis was that MAG
assembly and binning processes could technically miss ribosomal
protein genes, although they are neither repetitive nor exogenous.
The first hypothesis may align with the fact that some

uncultivated prokaryotes, such as Candidate Phyla Radiation
bacteria, lack some ribosomal protein genes [3, 51]. However,
our quantitative analysis of 11 metagenomic short-read datasets
from three different environments did not support this hypothesis.
The RPKMs of ribosomal protein genes (i.e., numbers of raw reads
normalized by the length of each ortholog group annotated as
ribosomal protein genes) were slightly higher than or not
significantly different from those of the other widely conserved
single-copy genes (Fig. 2: P < 0.05, for two samples, P > 0.05 for the
others, with Bonferroni’s correction). This indicates that the core
ribosomal protein genes exist in equimolar or slightly higher
amounts, just as other single-copy genes do, and most bacterial
cells harbor one copy each. Congruent with this estimation, SAGs
obtained in previous studies [33, 34] showed little tendency to
lack ribosomal protein genes beyond their completeness scores.
All the core ribosomal protein genes were present in 89.1–97.6%
of SAGs with >90% completeness. Altogether, the systematic lack
of ribosomal protein genes in MAGs is likely due to a technical
artifact, even if environmental Candidate Phyla Radiation and
other bacteria with small ribosomes may also contribute to this
result, at least partially [51].
Notably, among the five short-read MAG datasets, the GEM

dataset did not show a lack of ribosomal protein genes (Fig. 1).
Additionally, some bacterial clades, such as Planctomycetota,

Fig. 3 Distribution of ribosomal protein genes in assembled
contigs. The relationship between N50 of all the contigs bearing any
KEGG ortholog and N50 of the contigs bearing at least one
ribosomal protein ortholog. Each point represents one assembly
and is colored according to the source material of metagenome. The
dotted line indicates y= x, where two N50 values are equal. B Same
as A, although N90 was used instead of N50. C Same as A, although
the median length of the contigs was used instead of N50.

Fig. 4 Enrichment of orthologs in subsequences with typical and atypical tetranucleotide frequencies. Each column summarizes the
distribution of each ortholog among subsequences. The colors (range from blue, white, to orange) indicate the proportion of gene copies
found on subsequences with specific typicalness ranks. For example, if cells in deep orange are aggregated in upper rows, that ortholog is
enriched in subsequences with highly atypical tetranucleotide frequencies. TNF tetranucleotide frequency.
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Verrucomicrobiota, and Acidobacteriota, did not exhibit this trend
(Supplementary Fig. S1). Among the ribosomal protein genes, rplM
(subunit L13, K02871), rplS (subunit L19, K02884), rplT (subunit L20,
K02887), rplU (subunit L21, K02888), rpmA (subunit L27, K02899),
rpmE (subunit L31, K02909), rplI (subunit L9, K02939), rpsA (subunit
S1, K02945), rpsO (subunit S15, K02956), rpsP (subnit S16, K02959),
rpsB (subnit S2, K02967), rpsT (subunit S20, K02968), rpsF (subunit
S6, K02990), and rpsI (subunit S9, K02996) showed modest
tendencies to be absent from the MAGs (Supplementary Fig. S2).
Also, the lack of ribosomal protein genes was not observed among
MAGs reconstructed using long-read sequences (Supplementary
Fig. S3). While we will discuss these results later, here we would
like to note that the fact that different MAG datasets show
different results also supports the second hypothesis: the lack of
ribosomal protein genes is likely based on technical reasons and
not their intrinsic absence from environmental bacterial genomes.

Binning errors likely cause the absence of ribosomal protein
genes from MAGs
We hypothesized that the unexpected absence of ribosomal
protein genes from MAGs was due to poor metagenomic

assembly, binning errors, or both. We assembled the 11 shotgun
metagenomic datasets (used for the raw-read analysis above) with
three different sequencing depths using two renowned software
packages to examine the first possibility. We obtained 66
assemblies, each consisting of 3813–93,182,511 contigs of various
lengths. Soil metagenomes showed the shortest contig lengths,
whereas the human gut metagenomes were assembled into
longer contigs, congruent with the different alpha-diversities of
these samples.
We found that the N50 statistics of contigs bearing prokaryotic

ribosomal protein genes were substantially larger than those of all
the CDS-harboring contigs (Fig. 3A), regardless of environmental
origins of samples, sequencing depths, and assemblers. This trend
was consistent for the other two metrics, namely N90 and the
median contig lengths (Fig. 3B, C). Therefore, a failure in
metagenomic assembly is unlikely to cause the absence of
ribosomal protein genes in MAGs.
Thus, we assumed that binning errors caused the absence of

ribosomal protein genes in MAGs. As mentioned previously, most
metagenomic binning tools harness the tetranucleotide frequen-
cies of contigs [12] based on empirical knowledge that

Fig. 5 Distribution of CRISPR, transposase genes, and glycolysis genes among phylogenetically close MAGs and RefSeq genomes. The
number of CRISPRs or each ortholog was counted for each MAG and phylogenetically close RefSeq genome pair. A yellow or blue bar
indicates the number of pairs where the RefSeq genome or the MAG had a higher number of CRISPRs (or the ortholog), respectively (left axis).
A red circle (for CRISPRs and transposase genes only) represents the ratio of these two (the former divided by the latter) (right axis, log scale).
Three panels indicate the results for three different MAG datasets: seawater (A), the human gut (B), and the GEM (C).
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tetranucleotide frequencies are congruent with genomic phylo-
geny [18]. We split each of the 3315 RefSeq bacterial genomes
that represent high-quality genomes of bacterial isolates into
subsequences of 25,000–26,000 bases. Then, we calculated the
tetranucleotide frequency of each subsequence to examine if
tetranucleotide frequencies around ribosomal protein genes
deviated from those of the whole genomic bin. As expected,
most subsequences from the same genome had similar
tetranucleotide frequencies. However, some presented distinct
tetranucleotide frequencies, and those atypical subsequences
often contained ribosomal protein genes. For example, 48.0% of
the large ribosomal subunit protein gene L23 (rplW; K02892)
were distributed in subsequences with the top 10% atypical
tetranucleotide frequencies. Likewise, many ribosomal protein
genes were enriched in these atypical subsequences. This
enrichment level was comparable to those of exogenous
sequences, such as CRISPRs and transposons (Fig. 4), which tend
to be absent in MAGs with >90% completeness, compared with
phylogenetically close genomes in RefSeq (i.e., genomes
obtained from pure isolates), regardless of their source environ-
ments (Fig. 5). By contrast, glycolysis genes, which are non-
exogenous housekeeping genes, were overall equally present in
RefSeq genomes and MAGs (Fig. 5). CRISPR-related genes are

often adjacent to phage-derived sequences. The genomic
elements around transposons tend to be unstable and prone
to duplication, deletion, or horizontal gene transfer [52–54].
Conjugal transfer genes, which originate from transferrable
plasmids, were also enriched in atypical subsequences (Table 2)
[55]. Thus, we concluded that atypical tetranucleotide frequen-
cies around ribosomal protein genes led to binning errors and
their absence from the MAGs. For comparison, such enrichment
of atypical subsequences was not observed for glycolysis genes,
which are neither exogenous nor encoded near ribosomal
protein operons (Fig. 4).
We also observed that some ribosomal protein genes were not

enriched in subsequences with atypical tetranucleotide frequen-
cies (Fig. 4). Interestingly, these genes were less frequently absent
from the MAGs with >90% completeness (Supplementary Fig. S2)
and were sparsely distributed in the bacterial genomes, unlike the
other ribosomal protein genes (Supplementary Fig. S4) [56]. In
fact, genes encoded in long operons tended to be more
frequently absent from MAGs compared with those encoded in
small operons (Supplementary Fig. S5). In other words, ribosomal
protein genes encoded in smaller operons were less prone to
binning errors because of more typical contig tetranucleotide
frequencies. In line with this discussion, we also note that MAGs
reconstructed using long-read sequencers are less prone to the
lack of ribosomal protein genes (Supplementary Fig. S3). We
assume that this is because the use of long-read sequencers
provides longer contigs and weakens the impact of tetranucleo-
tide frequencies of ribosomal protein operons on those of the
whole contigs.

Bacterial life-history strategy affects the absence of ribosomal
protein genes in MAGs
We then investigated why ribosomal protein genes tend to have
atypical tetranucleotide frequencies, although they do not have
exogenous origins. Ribosomal protein genes are characterized by
low mutation rates owing to strong evolutionary constraints
[57, 58]. We focused on the fact that they have unique codon
usage patterns optimized for rapid translation [59, 60]. Impor-
tantly, ribosomal protein genes of fast-growing bacteria are
strongly influenced by the codon usage bias compared to those
of slow-growers [60].
Thus, we examined whether fast-growing bacteria have more

atypical tetranucleotide frequencies around ribosomal protein
genes than slow-growing bacteria. We combined the genomic
tetranucleotide frequency data with bacterial doubling time data.
We found that Euclidean distances between tetranucleotide
frequencies in the whole genome and its ribosomal protein genes
significantly correlated with the doubling time of the bacterium
(Spearman’s ρ= –0.37, P < 7.9 × 10–12) without any phylogenetic
constraint signals (Fig. 6). In conclusion, bacterial ribosome protein
genes have atypical tetranucleotide frequencies, likely because of
evolutionary pressures, which are especially strong in fast-growing
bacteria and lead to binning errors in the MAG reconstruction.
We can make two predictions based on this conclusion. Firstly,

MAGs of bacterial groups with many slow growers should less
frequently lack ribosomal protein genes. We observed that
ribosomal protein genes were usually present in MAGs of
Planctomycetota, Verrucomicrobiota, and Acidobacteriota, which
contain many slow growers [61–63] (Supplementary Fig. S1).
Consistent with this prediction, ribosomal protein genes were
frequently absent from MAGs of Gammaproteobacteria and
Bacteroidota (Fig. 1C, D), which are known to contain many fast
growers [64, 65]. The second and related prediction is that MAGs
from environmental samples that include many slow-growers
and/or show low species richness (i.e., easy to conduct metage-
nomic binning) would lack ribosomal protein genes less
frequently. We argue that the GEM dataset fulfills these two
conditions because it comprises MAGs from putatively

Table 2. Ortholog groups that were enriched into subsequences of
top 5% atypical tetranucleotide frequencies within each genome.

K number Odds ratio Definition (obtained from KEGG)

K12063 10.8 conjugal transfer ATP-binding
protein TraC

K13012 9.45 O-antigen biosynthesis protein WbqP

K03205 9.42 type IV secretion system protein
VirD4 [EC:7.4.2.8]

K07590 8.45 large subunit ribosomal protein L7A

K02892 8.22 large subunit ribosomal protein L23

K02926 8.20 large subunit ribosomal protein L4

K02946 8.14 small subunit ribosomal protein S10

K02886 8.02 large subunit ribosomal protein L2

K02906 8.01 large subunit ribosomal protein L3

K02965 8.00 small subunit ribosomal protein S19

Ten entries with highest odds ratio are presented. Those associated with
conjugal transfer are indicated in bold letters.

Fig. 6 Correlation between bacterial doubling time and the
degree of tetranucleotide frequency anomalies in ribosomal
protein genes. The result of Spearman’s correlation test is indicated
at the bottom right.
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oligotrophic, low biomass, and low biodiversity samples, such as
hot springs and deep subsurfaces [21].

Conclusion and outlook
In this study, we showed that bacterial MAGs tend to lack
ribosomal protein genes, in addition to well-known ribosomal RNA
genes and exogenous genetic sequences. Distinct tetranucleotide
frequencies around ribosomal protein genes likely cause binning
errors, particularly in the genomes of fast-growing bacteria. Our
conclusion cautions those who study genomics and phylogeny of
uncultivated microbes, the diversity and evolution of microbial
genes in the central dogma, and bioinformatics in metagenomics.
For example, ribosomal protein genes form the basis of genome-
based phylogeny [1].
We envision four experimental and computational solutions for

this problem. First, as we saw in this study, single-cell genomic
methods, which do not require a binning process, would
effectively overcome this issue. However, reconstructing near-
complete genomes from single cells is still difficult. Also, single-
cell genomics requires costly and cumbersome cell sorting and is
not readily applicable to diverse environmental samples. Second,
also as we saw in this study, long-read sequencers may be used to
produce long contigs. Long contigs with ribosomal protein genes
contain genes with typical tetranucleotide frequencies,
which enable reliable binning. Third, we may add a computational
step to filter contigs with ribosomal protein genes before
tetranucleotide-based binning. These contigs with ribosomal
protein genes can be subsequently merged into tetranucleotide-
based genomic bins by referring to the phylogenetic positions of
their single-copy genes. Fourth, metagenomic binning algorithms
may also be modified to give more weights on sequence depths
than tetranucleotide frequencies when they deal with ribosomal
protein genes.

DATA AVAILABILITY
All genomic and metagenomic data used in this study are publicly available in peer-
reviewed literature and NCBI RefSeq, as indicated in Table 1 and Supplementary
Table S2.
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