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Direct evidence for the role of microbial community
composition in the formation of soil organic matter
composition and persistence
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The largest terrestrial carbon sink on earth is soil carbon stocks. As the climate changes, the rate at which the Earth’s climate warms
depends in part on the persistence of soil organic carbon. Microbial turnover forms the backbone of soil organic matter (SOM)
formation and it has been recently proposed that SOM molecular complexity is a key driver of stability. Despite this, the links
between microbial diversity, chemical complexity and biogeochemical nature of SOM remain missing. Here we tested the
hypotheses that distinct microbial communities shape the composition of SOM, and microbial-derived SOM has distinct
decomposition potential depending on its community of origin. We inoculated microbial communities of varying diversities into a
model soil matrix amended with simple carbon (cellobiose) and measured the thermal stability of the resultant SOM. Using a Rock-
Eval® ramped thermal analysis, we found that microbial community composition drives the chemical fingerprint of soil carbon.
While diversity was not a driver of SOM composition, bacteria-only communities lead to more thermally labile soil C pools than
communities with bacteria and fungi. Our results provide direct evidence for a link between microbial community structure, SOM
composition, and thermal stability. This evidence demonstrates the relevance of soil microorganisms in building persistent SOM
stocks.

ISME Communications; https://doi.org/10.1038/s43705-021-00071-7

INTRODUCTION
One of the grand challenge questions in microbiology is: when
and where does “who’s there” matter for ecosystem function-
ing [1]? It has been postulated that diversity and microbial
community structure matters for phylogenetically “narrow”
processes such as denitrification [2–4], but not so much for
phylogenetically-“broad” processes, such as carbon (C) cycling,
which are completed by the majority of community members.
However, recent work brings into question the assumption that
all steps of C cycling are independent of “who’s there” [5, 6].
Moreover, community composition rather than diversity can
have a wider impact on C cycling in soils [5–7]. Soil microbes
are diverse in their macromolecular structures and metabolites
[8] and therefore microbial-derived soil organic matter
(SOM) may reflect distinctions across communities. SOM by
its nature is molecularly diverse, and it was recently hypothe-
sized that more diverse SOM persists longer in soil [9]. Here we
provide empirical data to support the hypothesis that distinct
communities inoculated into a model soil shape the composi-
tion of SOM and that this microbial-derived SOM has distinct
decomposition potential depending on its community of
origin.

RESULTS AND DISCUSSION
Soil-derived microbial communities were subject to diversity
removal by treatments with dilution (D0 > D1 > D2), filtering
(bacteria predominantly “Bonly”), and heat (spore forming “SF”),
and incubated under different moisture and temperature in order
to generate distinct microbial communities in a model soil matrix
[6]. In a sibling study aiming to disentangle the biotic and abiotic
drivers of carbon use efficiency, we observed that the microbial
community characteristics, e.g. bacterial community structure,
bacterial diversity, fungi presence, and enzymatic activity influ-
enced microbial community carbon use efficiency [6]. Here, we
analyzed the formed SOM after four months of growth on
cellobiose, using a method commonly used to quantify thermal
stability and gradual stabilization of SOM [10]. The hydrocarbon
compounds released at each temperature for each sample during
the pyrolytic phase of Rock-Eval® was used to calculate the
Bray–Curtis-based chemical dissimilarity of the soil samples as a
proxy for soil C composition, and the and the Rock-Eval® thermal
stability index (R-index) was calculated as a proxy for C
persistence, as previously [10]. Bacterial or fungal diversity did
not drive SOM composition. However, the resultant NMDS and
analysis of similarity (ANOSIM) (R= 0.198, P < 0.0001) show that
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communities with distinct composition generated different SOM
(Fig. 1A). The SOM fingerprint reflected the bacterial community
composition (Fig. 1A, Procrustes statistics, cor = 0.2070, P=
0.0057) indicating that the bacterial community composition
drove the formation of SOM composition. Moreover, the ordina-
tion first axis was strongly correlated with the Rock-Eval® R-index
(ρ=−0.95, P < 0.0001) which quantifies the relative contribution
of thermally stable compounds [10] (i.e., compounds that require
higher activation energy for thermal-decomposition). Thus, this
suggests that distinct microbial communities produced SOM with
different degrees of thermal stability.

Interestingly, the fungal community composition seemed to be
less important in driving the SOM signature (Procrustes statistics;
cor = 0.143, P= 0.0782). However, fungal abundance was
positively related to the thermal stability of SOM (Fig. 1A and
cor = 0.44, t= 6.4248, df = 168, P < 0.0001), supporting the role of
fungi in overall community decomposition efficiency. This result
agrees with research suggesting that fungi are major drivers of C
cycling in soils [11]. Thus, while fungi were crucial for substrate
decomposition, the SOM formed in these soils was a reflection of
its bacterial community composition. Future studies can further
elucidate if fungi and bacteria might play complementary roles

R = − 0.781, p = 6.64e−06
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during the decomposition of thermally-labile compounds and
formation of more persistent SOM.
We next looked in more detail at the range of temperatures that

captured the variation observed within the SOM ordination axes
(Fig. 1B) and the biological community characteristics that drove
the differences in the fingerprint of SOM (Fig. 1C). The signal
captured across the temperature range reflected different aspects
of the microbial community biological characteristics. While we
previously reported that bacterial community diversity showed a
positive saturating relationship with carbon use efficiency in these
soils [6], our new results suggest a limited impact of diversity on
driving SOM composition compared to microbial community
structure and other community characteristics (Fig. 1A–C). For
example, communities that grew more efficiently (i.e., high CUE) at
the end of the incubation were also associated with more
thermally stable SOM (Fig. 1A–C). This is consistent with the theory
stipulating that high growth efficiency is ultimately associated
with greater soil carbon retention [12–14]. Communities depleted
of fungi were characterized by low growth efficiency and low
biomass in these soils, and also had some of the most thermally
labile SOM (Fig. 1A). Although low biomass was a predictor of the
SOM signature (Fig. 1A–C), this was not due to residual added
sugar. Indeed, the patterns of lower SOM thermal stability in lower
diversity communities held even when the lowest temperature,
predominantly sugar-rich peak [14] was removed and the
statistical analysis repeated (Supplementary material). Therefore,
community composition acts independently of efficiency and
biomass to drive SOM composition.
Using variance partitioning we investigated the drivers of

R-index (Supplementary material). Notably, microbial activity
variables explained most of the R-index variance. This suggests
that microbial activity and the by-products of their metabolism,
such as extracellular enzymes, drove the formation of more
thermally stable SOM. This agrees with the idea that microbial
processing of C contributes to the formation of more persistent
SOM pools [13].
Fungi and bacteria are considered to play different roles in soil

C cycling [15, 16]. Accordingly, we observed distinct extracellular
enzymatic dynamics in microcosms dominated by bacteria
(“Bonly”) compared to microcosms with bacteria and fungi growing
concomitantly (“D0”). Bonly microcosms showed a reduced
maximum enzymatic activity (Fig. 1D) (Vmax) (P < 0.0001, F=
16.43, df = 136) and Michaelis constant (Km) (P < 0.01, F= 5.195, df
= 136) compared to treatments in which fungi were present,
which should result in a smaller uptake of C and reduced microbial
turnover of SOM [12, 15]. This could indicate that additional
transformations of SOM occurred in the communities with
bacteria and fungi compared to “bacteria-only” communities.

These results highlight the potential loss in soil C cycling due to
fungal exclusion and the relevance of fungi for soil functioning
[6, 11, 15, 16]. Moreover, the bacterial communities may have
benefitted from by-products of fungal growth and metabolism
[16, 17]—leading to increasingly thermally stable SOM. While
previous findings suggest that decomposition of fungal residues is
an important regulator of C accumulation in soils [11], our results
highlight the need of future studies elucidating if fungal ↔
bacterial interactions play an important role in this process.
Finally, to verify if more thermally stable SOM results in less

available substrate to microorganisms, we conducted a follow-up
experiment by inoculating a subset of microcosms from the first
experiment with a diverse soil microbial inoculum similar to our
D0 treatment and measured cumulative respiration as a proxy for
potential decomposition of microbially-derived SOM. As we
predicted, we observed a negative relationship between thermal
stability and cumulative respiration (Fig. 1E). This suggests that
more thermally stable C is less biodegradable and more likely to
become part of more persistent soil–carbon stocks. Future studies
should evaluate if this relationship changes under longer-time
scales.
Model soils can be used to increase our understanding of major

microbial ecology questions as it provides a single platform able
to isolate specific components from confounding factors com-
pared to natural soils [6, 18]. Here, by using a model soil, we show
that microbial community composition and community character-
istics drove the signature of the SOM and its thermal stability.
Altogether, our results highlight the need for future studies
investigating the role of fungal ↔ bacterial interactions for the
decomposition efficiency and the formation of microbial-derived
persistent SOM.

DATA AVAILABILITY
The data and code supporting the findings presented here are available from the
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