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The many microbial communities around us form interactive and dynamic ecosystems called microbiomes. Though concealed from
the naked eye, microbiomes govern and influence macroscopic systems including human health, plant resilience, and
biogeochemical cycling. Such feats have attracted interest from the scientific community, which has recently turned to machine
learning and deep learning methods to interrogate the microbiome and elucidate the relationships between its composition and
function. Here, we provide an overview of how the latest microbiome studies harness the inductive prowess of artificial intelligence
methods. We start by highlighting that microbiome data – being compositional, sparse, and high-dimensional – necessitates special
treatment. We then introduce traditional and novel methods and discuss their strengths and applications. Finally, we discuss the
outlook of machine and deep learning pipelines, focusing on bottlenecks and considerations to address them.
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INTRODUCTION
All around us, microbial communities are at work. These commu-
nities contribute to biogeochemical cycles [1], augment or buffer
environmental shifts [2], and are essential to understand disease
and health of humans and other organisms [3–6]. Characteristic
microbial communities and their metabolites form a dynamic and
interactive micro-ecosystem that we call the microbiome [7].
Insights into the workings and relations in these networks hold
promise for sustainable agriculture [4, 8], disease prevention and
treatment [9], and anthropogenic impact evaluation [10]. A frontier
in microbiome research is microbiome engineering to establish a
microbiome that supports a desired outcome, be it better health or
a higher crop yield [11]. Nevertheless, successful engineering
requires knowledge about what constitutes the functioning of a
given microbial community, whether certain species within the
microbiome are more important than others, and how and to what
degree composition and function can be manipulated.
To untangle the complexity of the microbiome, researchers

have turned to artificial intelligence. Owing to their powerful
predictive and informative potential, machine learning and deep
learning have emerged as key tools to advance microbiome
research. In this review, we present an overview of how these
novel techniques can be used to study the interplay of the
microbiome constituents and its links to phenotype.

MICROBIOME DATA TYPES
Even though only a fraction of microbial species can be described
through traditional isolation and cultivation approaches [12],
advances in omics and high-throughput sequencing have opened

the door to a comprehensive description of themicrobiome and the
generation of large-scale microbiome datasets [13, 14]. The most
commonly used methods to analyze the microbiome are amplicon
and metagenomic sequencing. In the amplicon methodology,
samples are characterized using the reads of specific taxonomic
marker genes like the evolutionarily conserved 16 S rRNA gene [15]
or the ITS region [16]. Typically, a predefined identity threshold
roughly delineates prokaryotic taxa and creates clusters known as
operational taxonomic units (OTUs) [17]. Amplicon sequence
variants (ASVs) are a newer analog to OTUs. ASVs are generated
by a denoising approach and do without an arbitrary dissimilarity
threshold, thus allowing resolution of even rare members of the
community [18]. In contrast, shotgun metagenomics comprehen-
sively catalogs the totality of genomes within a sample by non-
specific sequencing [19]. Through different algorithms, shotgun
metagenomic reads can be aligned to curated databases for
functional or taxonomic annotation [14]. Furthermore, shotgun
metagenomics enables the recovery of metagenome-assembled
genomes (MAGs) from the communities using binning strategies
such as MetaBAT2 [20] and VAMB that resolve genomes by contig-
clustering [21]. Latest advances have even made it possible to
characterize the virome, allowing a more comprehensive character-
ization of the microbiome using shotgun data [22].
These approaches produce feature tables, in which each cell

represents the abundance or presence of a specific taxon or
function per sample. Whether taxonomic or functional profiles
provide a better discriminatory power in downstream analysis is
subject to debate [23–25]. In any case, it is due to acknowledge
the particularities and challenges related to this data type. Firstly,
feature tables are compositional. Compositional data describes
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relationships between its components, so its parts are not
independent and their sum is arbitrary [26, 27]. In addition,
feature tables are usually sparse, having excessive zero counts
[28], and are high-dimensional, with a larger number of features
per sample. This subjects downstream analysis to the curse of
dimensionality. The curse is two-fold: a high number of features
inflates the computational cost, while a relatively low number of
samples impoverishes generalization to other datasets [29].
Different strategies are used to deal with microbiome data.

Since common distance and association measures are invalid for
compositional data, statistical methods such as log-ratio transfor-
mations [26], staying-in-the-simplex approach [30], and calculating
component ratios [31] have been established. Traditional log-ratio
transformation methods cannot deal with sparsity, so the data is
oftentimes imputed; commonly zeros are replaced with pseudo-
counts [32]. On the other hand, feature selection and extraction
techniques can help overcome the curse of dimensionality.
Feature selection entails selecting an optimal subspace of relevant
and non-redundant features [33, 34]. In contrast, feature extraction
attempts to reduce the dimensionality of a dataset by building a
compressed representation of the input features (see examples in
further sections). Altogether, the nature of microbiome data
demands pre-processing steps that have profound implications on
differential feature analysis; arguably, this is bound to affect the
performance of machine learning methods [35, 36].

MACHINE LEARNING
Machine learning (ML) is a subset of artificial intelligence (AI)
methods, which leverage large datasets to recognize, classify, and
predict patterns [37]. In microbiome research, ML has been
applied to tackle tasks such as phenotyping (namely, predicting an
environmental or host phenotype), microbial feature classification
(i.e., determining the abundance, diversity, or distribution of the
microbiota), studying the complex physical and chemical interac-
tions between the microbiome’s components, and monitoring for
changes in the composition of the microbiome [9, 10]. In Table 1,
we enumerate select examples of each of these tasks.

Classical methods
Among the classical ML methods, linear regression models, random
forests (RFs), and support vector machines (SVMs) have been found
to performwell onmicrobiome data [38, 39]. However, the latter has
fallen into disuse in recent studies, relegated to benchmarking.
Linear regression methods like lasso and elastic nets model an
output, such as a phenotype, as a linear combination of inputs

making the interpretation of these methods straightforward. These
methods have been recently used in host dysbiosis prediction
studies, with comparable results to other methods such as RF [40].
RFs aggregate decision trees, flowchart-like structures constructed
bymaking decisions on how to split a dataset into similar groups. By
growing multiple trees from randomly-sampled feature subsets,
one can assemble an RF, which has an improved performance over
a singular tree [41]. Using microbiome census data, RFs have
resolved the symbiont density of sponges [42], predicted maize
productivity [43], and differentiated between individuals with or
without a substance use disorder [44].

Dimensionality reduction techniques
Unsupervised ordination methods reduce dimensionality and
simplify data for human interpretation. These algorithms are apt for
creating visualizations or so-called projections. By computing a linear
or non-linear combination of the existing features, these methods
generate a compressed representation of the input data. Linear
methods, like principal component analysis (PCA) and principal
coordinate analysis (PCoA), are popular tools to visualize and contrast
microbial communities, such as identifying the habitat or geographic
origin of microbiota samples [45, 46]. Methods like t-stochastic
neighbor embedding (t-SNE) and uniform manifold approximation
and projection (UMAP) faithfully capture and reveal local and non-
linear relationships in complex microbiome datasets, but their tuning
is finicky [47–49].

DEEP LEARNING
Deep learning (DL) is a class of ML algorithms that involves
various artificial neural network architectures. DL models rely on
nodes (also called neurons or units), which are functions that
transform inputs and forward the outputs to other nodes. The
connections between nodes result in a network consisting of
multiple layers (hence the name deep neural networks),
which can be connected and organized in different layouts, or
architectures.
The most basic neural network architecture is the fully-

connected neural network (FCNN), in which the nodes from one
layer are fully connected to every node from the subsequent layer.
Lo and Marculescu [50] employed this architecture to predict host
phenotype from raw metagenomic count data, obtaining better
classification accuracy over traditional methods across different
datasets. While the FCNN is an effective standalone model, it is
most often the basic building block of more complex
architectures.

Table 1. Examples of common tasks and ML methods used in microbiome research.

Task Predictive goal Method Reference

Phenotyping Sponge bacterial density Random forests Moitinho-Silva et al. [42]

Phenotyping Crop productivity Random forests Chang et al. [43]

Phenotyping Food allergy Recurrent neural
network (LSTM)

Metwally et al. [56]

Phenotyping Disease (inflammatory bowel disease) Random forests, lasso,
elastic nets

Wirbel et al. [40]

Phenotyping Disease (e.g., cirrhosis, type 2 diabetes,
inflammatory bowel disease)

Convolutional neural networks Sharma et al. [53], Reiman
et al. [54, 55]

Microbial feature
classification

Microbiome composition Autoencoder García-Jiménez et al. [93]

Microbial feature
classification

Metabolic profile Autoencoder Le et al. [73]

Interaction analysis Microbe-metabolite interactions Embedding Morton et al. [65]

Interaction analysis Microbe co-ocurrence patterns Embedding Tataru and David [66]

Monitoring composition Response to diet change Autoencoder Reiman and Dai [61]
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Picturing microbiomes
Researchers have found creative ways to enrich OTU abundance
matrices with spatial information (such as that inherent in
phylogenetic trees). By doing so, they can leverage the inductive
capabilities of convolutional neural networks (CNNs). CNNs excel at
summarizing local structure in their input; thus, they are well-suited
to handle data conveying spatial information, such as images.
Nguyen et al. [51, 52] rendered an OTU table into an image by
reshaping each sample into a square, where each pixel was colored
based on the abundance or presence of microbial taxa (Fig. 1A).
taxoNN rearranges an OTU table based on its inherent phylogenetic
information [53], whereas PopPhy-CNN [54, 55] populates a
phylogenetic tree with OTU abundances, and then transforms the
tree into a two-dimensional matrix (Fig. 1B). Generally, these
approaches have outperformed their benchmarks (both traditional
ML methods and FCNNs) in the task of host phenotype prediction.

Examining patterns in temporal data
Recurrent neural networks are mostly used to explore sequential
or historical patterns. These architectures are oftentimes chain-
like, consisting of loops that pass the information from one point
in time to the next. In microbiome studies, RNNs allow the
prediction of temporal dependencies and dynamic patterns.
Metwally et al. [56] were one of the first to build a predictive
model based on longitudinal microbiome profiles. Based on data
from a study tracking infants’ allergic phenotype over three years,
their model was built to predict food allergy, outperforming
traditional ML models and FCNNs, but not reaching a performance
suitable for clinical utilization. phyLoLSTM [57], an RNN-based
framework, improves on previous classification accuracy by using
taxoNN for feature extraction. Around the same time, Chen et al.
[58] proposed a different time-aware framework, combining
imputation of inconsistent temporal data and feature engineering
to enrich the input tables with phylogenetic information. Their
method was tested on multiple longitudinal microbiome datasets,
with the task to predict different host statuses: such as type of
diet, nationality, food allergy, disease, and drug use.

Unveiling latent information
For the sake of computational cost and efficiency, it is often
beneficial to reduce the dimensions of microbiome feature tables.

In DL, this low-dimensional latent representation is called an
embedding, and it is often created with an autoencoder [59]. The
autoencoder architecture consists of an encoder network that
learns a latent representation of the supplied input and a decoder
network that tries to reconstruct the input from this representa-
tion. By minimizing the difference between original and recon-
structed data, the network learns to faithfully compress
information. DeepMicro [60] presents multiple autoencoder
variations and how each different latent representation improves
prediction of irritable bowel syndrome and type 2 diabetes.
The modularity of autoencoders enables multimodal-data inte-

gration, holding promise for better and more comprehensive
models. As presented by Reiman and Dai [61], a bimodal
autoencoder can integrate diet and microbial composition to
predict the microbial dynamics response to dietary change. Grazioli
et al. [62] introduce a disease prediction model that relies on the
product-of-experts approach to integrate the information from two
autoencoders, each expert on a different modality: abundance
(species-level) and presence (strain-level) features, respectively.
Other algorithms that produce embeddings draw inspiration

from word processing methods, such as word2vec [63] and GloVe
[64]. These methods can create dense embeddings that capture
co-occurrence patterns [65, 66]. Such representations summarize
the relations in the microbiome samples (e.g., microbe-metabolite
interactions) and are useful for host-phenotype classification tasks.

OUTLOOK
Bottlenecks for further applications
Even though ML was promised as a powerful predictive tool in
microbiome research, it is challenged by various obstacles that
limit its wide and readily application [67]. Common limitations
have to do with interpretability, data hungriness, and model
evaluation and selection. Plainly, ML empirically establishes a link
between an input and a response without any mechanistic
understanding of the underlying logic behind such a relationship.
This has led to ML models being generally regarded as black
boxes with inexplicable innards. The issue becomes evident, for
instance, in clinical decision-making, where mechanistic insight is
instrumental to trust causal inference [67]. Although the concept
of interpretability is ill-defined, there is growing interest in
interpretable ML [68]. For instance, the deep forest algorithm
ranks features by importance and has already been explored in
microbiome-wide association studies [69, 70]. Zhu et al. also
proposed an approach to embed a microbial interaction network
into an FCNN, thus constraining the learning process with a priori
knowledge [71]. Other frameworks, such as DeepCoDA [72],
prioritize feature attribution by relying on linear transformations,
whereas SparseNED, an encoder-decoder model, has been used to
capture microbe-metabolite relationships associated with inflam-
matory bowel disease through a sparse and interpretable latent
space [73]. More generally-applicable ways to open the black box
are thoroughly reviewed by Guidotti et al. [74].
The second hurdle is the dearth of voluminous, high-quality,

and correctly-labeled data required to reliably train ML models
[75–78]. Adadi [78] highlights strategies to tackle the issue of data
availability of ML, including data augmentation, non-supervised
learning, transfer learning, and hybrid models. Data augmentation
comprises a set of practices to create synthetic samples. Lo and
Marculescu [50] modeled and sampled microbiome profiles from a
negative binomial distribution to enlarge their training dataset
and improve the host phenotype classification performance of
their FCNN model. Sayyari et al. [79] addressed the pervasive
limitation of low-sample numbers and under-represented classes
by introducing a tree-based associative data augmentation
(TADA) approach to generate new OTU samples from an
inferred phylogenetic tree. The non-supervised learning paradigm
encompasses semi- and unsupervised learning approaches (think
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Fig. 1 Examples of CNN image inputs generated from OTU tables.
A The image is filled with species abundances (left) or presences
(right). B For a single sample, the phylogenetic tree is constructed,
populated with species abundances, and rearranged into a matrix.
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autoencoders), which are less reliant on labeled samples. Transfer
learning and hybrid learners are yet to be explored in the context
of microbiome research.
A paramount consideration is data quality, and, as such, our

advice is to be aware of the source, deficiencies, and biases of the
microbiome dataset [80]. Techniques to curb this obstacle include
deduplication, class balancing, outlier removal, and imputation.
These techniques influence a model’s performance, as noted by
Chen et al. [58], who assay the effect of different imputation
techniques on longitudinal microbiome data. Even though the
collection of large and properly-annotated sample sizes is difficult
to overcome in the microbiome setting, researchers can (after
ensuring samples are collected and processed under the same

regime) aggregate data from multiple studies, allowing the study
of cohort-dependent effects [40, 81]. In any case, we stress that ML
models are tightly dependent on their training dataset, so special
attention should be paid to the data that feeds them.
An additional challenge microbial ecologists face has to do with

the evaluation, selection, and tuning of the appropriate ML model
for a given task. While choosing among the many models and
fishing for a set of suitable hyperparameters seems like a daunting
task, we encourage aspiring ML partakers to take advantage of the
fertile ML ecosystem. Implementation has been facilitated by
continuous development of Python and R libraries, such as scikit
[82], PyTorch [83], Tensorflow [84], and mlr3 [85]. Moreover, high-
level frameworks, like FastAI [86], PyTorch Lightning [87], and Keras
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[88], make implementation even more approachable. Tuning and
developing ML models should also take advantage of existing
frameworks for generating synthetic microbiome datasets like those
provided by the CAMI consortium [89]. Not only will synthetic and
pre-labeled microbiomes help guide the choice of hyperparameters
and model design, but it also provides a basis for benchmarking and
comparison. Comparison across multiple datasets enables assessing
the robustness of ML methods, but, as remarked in neutral
benchmarking studies [90], the selection of a reference dataset is
critical to ensure fair comparisons.
Lastly, we summarize the key steps of ML-assisted microbiome

analysis in Fig. 2, and provide the following quick tips and heuristics:

1. Get familiar with the dataset. An early inspection of the
input data can help gauge the size of the feature space,
identify whether the dataset contains unbalanced classes, or
determine if imputation or feature engineering is an option.

2. Set up a model selection and benchmarking strategy. Either
split the dataset into training, validation, and test subsets (in
the case of a large dataset) or plan for cross-validation (for
smaller datasets). Select appropriate metrics to compare
models and estimate their performance.

3. Choose the appropriate method. Although the choice is data-
and task-dependent, traditional ML algorithms are good
starting points, as they require minimum tuning and are
relatively easy to implement. If large-scale or multi-modal data
is available, consider a DL approach like an autoencoder to
incorporate all data facets into informative embeddings. In the
case of sequential data with a longitudinally-profiled micro-
biome, try an RNN framework that is suitable for capturing
temporal dependencies. If spatial information can be
embedded into the input such as a phylogenetic tree that
can be decomposed into a 2D matrix, consider CNNs.

Novel techniques to keep on the watchlist
A comprehensive evaluation of DL models by LaPierre et al.
suggests that it is likely that the upper limits on predictive accuracy
from only metagenomic data have been reached [91]. Nonetheless,
previous research has demonstrated improved predictive power
can be attained by marrying different data modalities, such as
microbiome, genetic, and environmental data [92]. For instance,
García-Jiménez et al. [93] implemented a concept of multimodal
embedding by minimizing the distance between the two latent
spaces created by the separate encoders of two modalities
(environmental variables and microbial composition). A lineage of
work on multimodal variational autoencoders investigates the most
suitable way of combining the latent spaces of individual modalities
depending on the dataset properties [94–99]. Although multimodal
VAEs [96] have been used to analyze single-cell multi-omics data
[100], to the best of our knowledge, this kind of learner has not yet
been applied to multi-omics microbiome data.

CONCLUSIONS
The study of microbial communities is lush. Amplicon and
metagenomic sequencing produce feature tables that taxonomically
or functionally describe a microbiome, and that, with appropriate
labels, can fuel ML and DL-based methods. DL models are powerful
tools with a wide array of applications in the field of microbiome
research. Notably, these methods enable linking specific taxa to a
host phenotype or monitoring the dynamics and host response to
changes in the composition of the microbiome. Although different
configurations of ML and DL models exist, the choice is task and
input-dependent. In this review, we have not only provided
examples of applications of AI in the realm of microbiome research
but also presented a list of considerations to heed when using these
models. Further research into the current bottlenecks of data

availability and model interpretability will further propel the use of
DL in microbiome studies and expand our understanding of the
microbial interactions that shape our world.
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GLOSSARY
Architecture Organization and size of the layers of a neural network.
Autoencoder A neural network consisting of an encoder-decoder pair.

The encoder reduces the dimensionality of the input,

thus creating a so-called latent representation; whereas,
the decoder is tasked with generating a reconstruction of
the original input from such latent space.

Benchmarking The practice of comparing the performance of different
approaches using a reference dataset.

Compositional
data

Data with the following characteristics: the total sum of
each component is defined by the sampling technique
(such as the capacity of a high-throughput sequencing
instrument), and the difference between values is only
meaningful proportionally (that is, values are relative to
an arbitrary total and not independent).

Convolution A mathematical operation between an input matrix and
filter matrix of the same rank, consisting of multiplication
between a slice of the input and a filter and subsequent
summation of the resulting product.

Convolutional
layer

A layer that uses the convolution operation. They are
widely used to capture spatial relationships within a
sample’s features and are suited for image classification.

Elastic net A linear regression method with regularization that
shrinks both irrelevant and outlier coefficients towards
zero. Such shrinkage prevents overfitting, making the
model more generalizable to other datasets.

Embedding Typically, a low-dimensional continuous-valued represen-
tation of the feature space.

Feature An input variable of a model.
Fully-connected
layer

An abstraction of a matrix multiplication between an
input matrix and a weight matrix, representing a
connection between every input and output node.

Label A categorical or binary output of a model.
Lasso A linear regression method with regularization to shrink

irrelevant coefficients towards zero. This regularization is
useful to handle highly-sparse datasets.

Layer An abstraction of a numerical transformation.
Machine learning
paradigm

A machine learning pattern. There are two main
paradigms used in microbiome research: unsupervised
learning (learning from unlabelled data) and supervised
learning (learning from labeled data). Other paradigms
include semi-supervised learning and transfer learning.

Random forest An aggregated collection of independently-trained deci-
sion trees, where each decision tree is trained on a
randomly-sampled subset of the training dataset.

Recurrent layer An extension of the fully connected layer that is looped
multiple times. As each run feeds from a previous state,
this layer excels at capturing time dependencies present
in sequential or longitudinal data.
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