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Soil microbial trait-based strategies drive metabolic efficiency
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Trait-based approaches provide a candidate framework for linking soil microbial community to ecosystem processes, yet how the
trade-offs in different microbial traits regulate the community-level metabolic efficiency remains unknown. Herein we assessed the
roles of the microbial taxa with particular trait strategies in mediating soil microbial metabolic efficiency along an altitude gradient
on the Tibetan Plateau. Results showed that soil microbial metabolic efficiency declined with increasing altitude, as indicated by the
increasing metabolic quotient (microbial respiration per unit biomass, qCO2) and decreasing carbon use efficiency (CUE). Both qCO2

and CUE were predominantly predicted by microbial physiological and taxonomic attributes after considering key environmental
factors including soil pH, substrate quantity and quality. Specifically, the reduced metabolic efficiency was associated with higher
investment into nutrient (particularly for phosphorus) acquisitions via enzymes. Furthermore, we identified key microbial
assemblies selected by harsh environments (low substrate quality and temperature) as important predictors of metabolic efficiency.
These results suggest that particular microbial assemblies adapted to nutrient limited and cold habitats, but at the expense of lower
metabolic efficient at higher altitude. Our findings provide a candidate mechanism underlying community-level metabolic
efficiency, which has important implications for microbial-mediated processes such as carbon dynamics under global climate
changes.

ISME Communications; https://doi.org/10.1038/s43705-021-00076-2

INTRODUCTION
Soil microorganisms are critical drivers of the global carbon (C)
cycle because of their roles in both soil organic C (SOC)
decomposition and formation, regulating major C flux between
soil and atmosphere [1, 2]. Soil C stock is determined by the
balance between microbial organic matter decomposition and
biomass build-up [3]. Therefore, the metabolic efficiency of
microbial community such as metabolic quotient (microbial
respiration per unit biomass, qCO2) and C use efficiency (CUE)
are fundamental for the rates of ecosystem C storage [3–5]. Recent
studies suggest that the inclusion of metabolic efficiency into
existing models improves the prediction of soil C cycling under
global changes [6, 7]. The metabolic efficiency of microbial
communities can vary with environmental conditions, and are
known to be influenced by abiotic factors (primarily climates and
substrate quality) [4, 8]. Moreover, previous studies indicated that
altered environmental conditions also induced changes in
microbial community structure and physiological attributes
[9, 10], which may also contribute to changes in community-
level metabolic efficiency [11]. However, despite the acknowl-
edgment that intrinsic properties of microbial community are
critical to ecosystem functions [12, 13], how these multiple
physiological traits inherent to complex microbial community
regulate their energy efficiency remains unclear.

A recent trait-based conceptual framework suggests that the
trade-offs between multiple physiological traits play fundamental
roles in governing soil C cycling under environmental changes [3].
Microbial community is assumed to be inefficient in soils with low
substrate quality (i.e., higher soil C:N and C:P ratio) [8, 14], as
physiological traits related to resource acquisition (e.g., enzyme
secretion) are energetically expensive [15]. Moreover, harsh
environments like extreme low temperature and drought could
also reduce microbial growth rate and enhance the C cost of
maintenance [11, 16]. The trade-offs between different traits could
potentially influence the partition of detrital C into biomass
production vs. maintenance respiration, causing changes in
metabolic efficiency of microbial community as a whole, with
important implications for C cycling under global climate changes.
Given that different microbial taxa have distinct physiological

trait combinations, community-level physiological changes may
be a consequence of shifts in the relative abundance of specific
taxa [11, 17]. Interpreting microbial taxonomic composition under
the concept of trait-based ecology may hint at a way to further
clarify the underlying mechanisms for regulating community-level
metabolic quotient in the context of next-generation sequencing
and big data. This topic was moved forward by grouping microbial
taxa into different life-history strategies according to their growth
vs. adaptation strategies, such as r- (fast-growing opportunistic
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species) and K-strategists (slow-growing equilibrium species) [18]
and the further defined Yield (growth yield)-Acquisition (resource
acquisition)-Stress (stress tolerance) strategies [3]. For instance, β-
Proteobacteria and Bacteroidetes are commonly classified as r-
strategists, while Acidobacteria are K-strategists [18, 19]. However,
the classification based on high phylogenetic levels (such as at the
order or phylum levels) should be used with caution, because
microbial taxa with similar functions are commonly phylogeneti-
cally diverse and taxonomically associated strains may also have
different physiological traits [20, 21]. Microbial community could
also be grouped into different functional assemblies based on the
co-occurrence or association patterns from networks, offering new
insights into complex microbial community structure and soil
functioning [10, 22]. Yet, we know little about the effects of shifts
in microbial assemblies with different functional traits on the
metabolic efficiency of microbial community.
Altitude gradient provides a “natural” setting to test the effects

of environmental changes on ecosystem processes, because of the
drastic changes in climate, biotic and abiotic attributes over short
distances within a landscape. Previous studies have reported that
low temperature at higher altitude commonly leads to accumula-
tion of soil organic matter with low substrate quality (i.e., higher
soil C:N and C:P ratios) [23]. Moreover, soil microbial community
composition shifted significantly along altitude gradients [9]. We
assumed that (1) the metabolic efficiency of microbial community
would be low at higher altitude due to the likely higher energy
investments into resource acquisition; (2) the shifts in microbial
assemblies with distinct trait strategies may contribute to changes
in community-level metabolic efficiency. To test our hypotheses,
we collected soil samples from 28 sites along an altitude gradient
on the Tibetan Plateau. This region is the highest and largest
plateau and has been declared as the “Third Pole” due to its harsh
alpine environments [24], providing ideal platform for exploring
the trade-offs between different physiological trait-based strate-
gies. We investigated the associations between microbial meta-
bolic efficiency (including qCO2 and CUE) and resource acquisition
strategies (soil enzymes and ecoenzymatic stoichiometric ratios).
Furthermore, we conducted network analysis to explore key
microbial functional assemblies that affect the community-level
physiological traits and metabolic efficiency.

MATERIALS AND METHODS
Site and sampling
This study was conducted along an altitude gradient (ranging from 2974 to
3558m) at Mount Segrila (29° 34′–29° 37′ N, 94° 19′–94° 22′ E) on the
southeastern part of the Tibetan Plateau (Fig. S1). The mean annual
temperature (MAT) declines significantly (R2= 0.989) from approximately
8.6 to −0.7 °C as the altitude increased, with a decreasing rate of
temperature at 0.54–0.73 °C per 100m [25, 26]. The mean annual
precipitation (MAP) ranges between 680 and 1134mm, with over 80% of
the precipitation occurring during the growing season (between May to
September) [25]. The MAT and MAP at the elevation above 3100m are less
than 4.2 °C and more than 1000mm, respectively, indicating that
temperature instead of water availability is the dominant growth-limiting
factor for biology [27, 28]. Both microbial biomass and the associated
functions were maximum during the growing season [29]. The surface soils
begin to freeze at the end of October and start to thaw at the beginning of
the next March [25]. The dominant vegetation types shift from temperate
coniferous and broadleaved mixed forests to frigid dark coniferous forests
as the altitude increased [9]. The predominant soil type is Luvisols and
Cambisols according to World Reference Base for Soil Resources [30].
Twenty-eight representative sites were selected in August 2018,

covering the dominant vegetation types along the altitude gradient. At
each site, five 1 m × 1m sub-plots were located at each corner and the
center of a 50m × 50m area. Five replicate soil samples (0–10 cm) were
collected from the understory or adjacent open grasslands in each site.
After removing visible stones, roots and plant materials, collected soil
samples were homogenized. Soil samples were kept on ice when
transporting to the laboratory and then divided into two sub-samples.

One subsample was stored at −20 °C for the analyses of microbial
community (i.e., DNA extraction and MiSeq Illumina sequencing). The other
subsample was stored at 4 °C for the analyses of biological activities such
as enzyme activities and microbial metabolic efficiency.

Measurement of soil chemical properties
Soil pH was measured with a glass electrode with a 1:2.5 soil/distilled water
ratio. SOC was determined by K2CrO7 oxidation titration method [31]. Soil
total N (TN) was quantified by an elemental analyzer (Vario PYRO Cube,
Elementar, Germany). Soil total P (TP) was measured using a digestion
method [32]. Soil dissolved organic C and N were extracted with deionized
water at a ratio of 1:4 (w/v) and determined using a TOC analyzer (vario
TOC, Elementar, Germany). Soil NH4

+ and NO3
− were determined by a

colorimetric method using a continuous flow analyzer (AA III, BRAN+
LUEBBE GmbH, Germany) after being extracted with 2 M KCl. Soil available
P was measured by the Olsen bicarbonate method [33].

Analysis of soil bacterial and fungal communities
Soil DNA was extracted using the MoBio PowerSoil DNA Isolation Kit
(MoBio Laboratories, Carlsbad, CA, USA) according to the manufacturer’s
instructions. The diversity and composition of bacterial and fungal
communities were measured by amplifying the V3–V4 region of the 16S
rRNA gene with primer pairs 338F/806R [34], and the ITS gene with primers
ITS1F/ITS2R [35], respectively. The purified amplicons were mixed
equimolarly, and 2 × 300 bp paired-end sequencing was conducted using
an Illumina Miseq sequencer (Illumina Inc., San Diego, USA). We used the
UPARSE approach to cluster Operational Taxonomic Units (OTUs or
phylotypes) with a picking strategy at 97% sequence similarity. The
taxonomic information for bacterial and fungal OTUs were assigned using
the SILVA and Unite ribosomal RNA gene database, respectively [36]. The
α-diversity (i.e., Shannon index) and community composition for bacteria
and fungi were calculated based on 97% OTU similarity of obtained
sequences. Amplicon sequencing approach has been widely applied to
characterize microbial community composition, although some identified
taxa may be inactive or dormant [34, 35].

Analysis of the putative microbial physiological traits
Physiological traits involved in microbial resource acquisitions were
assessed by potential extracellular enzyme assays [3]. All enzyme
measurements were conducted using sieved soil (<2mm) at field moisture
within one week after sampling. Soil extracellular enzyme activities related
to C (α-1,4-glucosidase [AG], β-1,4-glucosidase [BG], cellobiohydrolase
[CBH] and xylanase [XYL]), N (N-acetyl-β-D-glucosaminidase [NAG] and
leucine aminopeptidase [LAP]) and P (acid phosphatase [AP]) acquisitions
were measured by fluorimetric methods [37]. Briefly, 0.50 g of fresh soil
was mixed with 50mL of deionized water and stirred vigorously using a
magnetic stir plate for 15min. Then, 50 μL of soil homogenate, 100 μL of
fluorometric substrate solution (200 μmol L−1) and 50 μL of acetate buffer
(0.2 mol L−1, pH 5.5) were mixed and incubated at 30 °C for 3 h [37]. The
released fluorescence was measured using a multifunctional microplate
reader (Tecan Spark™ 10M, Männedorf, Switzerland) at 360 nm excitation
and 450 nm emission wavelengths. Extracellular enzyme activities were
expressed as nmol h−1 g−1 soil.
Additionally, specific enzyme activities were calculated by normalizing

activities to units per mg MBC, in order to avoid the variations induced by
biomass change. Ecoenzymatic vector length (Vlength, relative C: nutrient-
acquiring ratio) and angle (Vangle, relative P: N-acquiring ratio) created by
the plot of proportional enzymatic C:N and C:P ratios were further
calculated to illustrate the relative microbial resource acquisition strategies
[38]. Higher Vlength indicates relatively higher C vs. nutrient acquisition
strategies, and higher Vangle suggests higher P vs. N acquisition efforts.
Soil Vlength and Vangle were calculated using Eqs. (1) and (2), respectively:

Vlength ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
(1)

Vangle ðdegreeÞ ¼ degrees ðatan2ðx; yÞÞ (2)

where atan2 represents the four-quadrant inverse tangent, x and y
represent the relative C:P and C:N acquiring enzyme ratios, respectively.

Evaluations of metabolic efficiency
Microbial metabolic efficiency was evaluated using both qCO2 and CUE, in
which lower qCO2 and higher CUE indicate higher metabolic efficiency
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[5, 39]. Microbial respiration was estimated by an incubation method
[40, 41]. The soils were incubated aerobically in 250mL incubation bottles
at 20 °C for 14 days. We chose 20 °C for incubation according to the
averaged ground temperature in the growing season along the altitude
gradient [25]. The short-term (14 days) aerobic incubations were selected
to minimize the effects of changes in soil labile substrate and microbial
community on soil respiration [42]. The bottles were sealed using parafilms
with small holes that enable the exchange of gas, but minimized
evaporation and soil water loss [40]. During incubation, 60% of water
holding capacity was maintained by weighting the incubation bottles
regularly and adding distilled water to compensate for water loss. The
bottles were hermetically closed during the 2 h sampling period, and the
concentrations of respired CO2 were measured using a gas chromato-
graphy (Agilent 7890A, Agilent Technologies, USA). The rate of soil
respiration was quantified as mg CO2–C g−1 dry soil h−1. Soil microbial
biomass C (MBC) was determined by a chloroform fumigation-extraction
method [43]. Soil qCO2 was expressed as μg CO2–C μg−1 MBC h−1 [39].
Microbial CUE was calculated indirectly using the biogeochemical-

equilibrium model (Eqs. (3–5)) [44, 45]:

CUE ¼ CUEmax ´

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SC:N ´ SC:P

KC:N þ SC:Nð Þ ´ KC:P þ SC:Pð Þ

s
(3)

SC:N ¼ BC:N=LC:N ´ 1=EEAC:N (4)

SC:P ¼ BC:P=LC:P ´ 1=EEAC:P (5)

In these functions, EEAC:N was calculated as ln (BG)/ln(NAG + LAP), and
EEAC:P was calculated as ln (BG)/ln(AP). Molar C:X ratios of labile substrates
were used to estimate LC:N and LC:P. Labile C, N and P were DOC, inorganic
N (the sum of NH4

+ and NO3
−) and available P, respectively. BC:N and BC:P

were the molar ratios of microbial biomass C:N and C:P, respectively.
CUEmax was fixed to 0.60 and represented maximum microbial growth
efficiency according to thermodynamic constraints based on the saturating
Michaelis-Menten formulation. KC:X was the half-saturation constant (0.50).

Statistical analysis
We first identified the patterns of qCO2, CUE and microbial resource
acquisition strategies (including specific enzyme activities, Vlength and
Vangle) along the altitude gradient. Principal coordinate analysis (PCoA)
was conducted to evaluate variations in the taxonomic composition of
bacterial and fungal community. Statistical differences in the microbial
community composition were tested using the permutational multivariate
analysis of variance (PERMANOVA) by “vegan” package in R 4.0.2 (http://
cran.r-project.org/). We conducted a Random Forest analysis to identify the
statistically significant predictors of qCO2 and CUE using the “rfPermute”
package [46]. We compared the percentage increases in the mean squared
error (i.e., %IncMSE) to evaluate the relative importance of different
variables in predicting qCO2 and CUE.
We further conducted a co-occurrence network and identified main

ecological clusters (modules or assemblies) of strongly correlated OTUs. To
reduce rare OTUs, we removed OTUs with relative abundances less than
0.01% of bacterial and fungal sequences, respectively [22]. The co-
occurrence network was inferred according to the Spearman correlation
matrix calculated using the “WGCNA” package. The nodes in networks
represent OTUs and the edges connecting different nodes represent
correlations between OTUs. To reduce false positive results, we adjusted all
P-values for multiple correlations using Beniamini and Hochberg false
discovery rate (FDR) [47]. Robust correlations with the Spearman
correlation coefficients > 0.60 and FDR adjusted P-values < 0.01 were
selected to construct the co-occurrence networks. The network was
visualized with Gephi (http://gephi.github.io/). The relative abundance of
each module was calculated by averaging the standard relative
abundances (z-score) of all taxa belonged to each module [48].
To identify essential microbial assemblies affecting qCO2 and microbial

physiological traits, we further conducted a Random Forest analysis by
incorporating all bacterial and fungal modules into the model. The
relationships between the relative abundances of key microbial modules
and environmental factors and microbial physiological traits were
evaluated using Spearman’s rank correlation analysis. Similarly, we used
Spearman’s rank correlation analysis to evaluate the relationships of
different genus in key microbial modules with qCO2, CUE and microbial

physiological traits, in order to identify major taxa driving the linkages
between qCO2 and different physiological traits.

RESULTS
Microbial metabolic efficiency and resource acquisition traits
along the altitude gradient
Microbial metabolic quotient (qCO2) at a community level
increased (P < 0.01), while CUE decreased with increasing altitude
(P < 0.05, Fig. 1a). SOC, soil NH4

+ and NO3
− increased significantly

with increasing altitude, while there were no significant changes
in soil TP and available P as the altitude increased. Soil C:N:P
stoichiometric ratios shifted significantly, with soil C/N, C/P and N/
P ratios all increased with increasing altitude (Fig. 2b). Likewise,
there were significant shifts of microbial resource acquisition
strategies toward higher investments in nutrients compared to C
(i.e., declining Vlength) with increasing altitude (Fig. 1b). In
particular, specific AP activities that standardized by per unit MBC
enhanced significantly as the altitude increased (Fig. 2b). The
relative P vs. N-acquiring enzyme activities (i.e., Vangle) was
generally higher than 45°, but did not varied with increasing
altitude (Fig. 1b). The specific enzyme activities associated with C
(including AG, BG, CBH and XYL) and N (including NAG and LAP)
acquisitions showed no significant variations along the altitude
gradient (Fig. 2b).

Linking biotic and abiotic factors to metabolic efficiency
Both Random Forest and correlation analysis consistently showed
significant associations of microbial taxonomic and physiological
traits with metabolic efficiency (Fig. 2). Shifts in microbial resource
acquisition strategies (including Vlength and Vangle) and micro-
bial community composition were essential predictors of qCO2,
after considering essential abiotic attributes including soil pH,
substrate quantity and quality (Fig. 2a). Regression analysis further
indicated that qCO2 correlated negatively with Vlength and
specific N-acquiring enzyme activities (Fig. 2b). Likewise, CUE
could also be predicted by microbial taxonomic and physiological
attributes, including the first dimensional PCoA ordination of
bacterial community (B_PCoA1), Vlength and specific P-acquiring
enzyme activities (Fig. 2). Soil CUE showed positive relationships
with Vlength, but negative associations with specific P-acquiring
enzyme activities. In addition, soil abiotic factors such as SOC, TP,
C/N, C/P and available P were also significant predictors of
variations in metabolic efficiency. Soil qCO2 was positively related
to SOC, soil NH4

+, NO3
− concentrations and soil C/N, C/P and N/P

ratios. In contrast, CUE showed overall negative associations with
soil stoichiometric ratios (including soil C/N, C/P and N/P ratios),
but positive relationships with soil total P and available P (Fig. 2).

Specific microbial taxa drive changes in physiological traits
and metabolic efficiency
There were significant shifts in taxonomic composition for
bacterial community along the altitude gradient (PERMANOVA,
P < 0.05; Fig. S2). The relative abundance of Proteobacteria and
Acidobacteria increased, while that of Cyanobacteria declined with
increasing altitude (Table S1). Other dominant bacterial phyla,
including Actinobacteria, Chloroflexi, Bacteroidetes, Gemmatimona-
detes and Firmicutes, were independent of altitude (P > 0.05;
Table S1), although some of these phyla showed significant
associations with soil abiotic factors (Fig. S3). The overall fungal
community composition and the relative abundances of all the
dominant fungal phyla, including Ascomycota, Basidiomycota and
Mortierellomycota, showed no significant variations along the
altitude gradient (Table S1; Fig. S2). Among these microbial phyla
that varied with altitude, only Proteobacteria and Cyanobacteria
had significant associations with microbial physiological traits and
metabolic efficiency (Table S2).
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In contrast, results of network analyses showed significant
changes in the relative abundance of different microbial
assemblies (clusters of microbial phylotypes that highly correlated
with each other) along the altitude (Figs. 3 and S4). The soil
bacterial and fungal phylotypes could be grouped into four
(B_Mod#0-3) and eight (F_Mod#0-7) major microbial assemblies,
respectively. Over these assemblies, the abundances of phylotypes
belonging to B_Mod#0 and F_Mod#6 increased significantly with
increasing altitude, while those belonging to B_Mod#2 and
F_Mod#1 exhibited opposite patterns (Fig. S4). More importantly,
these shifted bacterial and fungal assemblies with altitude were
essential predictors of the variations in Vlength, qCO2 and CUE,
even considering multiple edaphic properties (Figs. 3 and S5).
Specifically, the relative abundance of B_Mod#0 was negatively
related to Vlength and CUE, but positively to qCO2 and
P-acquiring enzyme activity (Figs. 3 and S4). On the contrary,
the relative abundance of B_Mod#2 showed totally reversed
relationships with these potential resource acquisition strategies
and metabolic efficiency. For fungal community, the relative
abundance of F_Mod#1 showed generally positive relationships
with Vlength and CUE, but negatively with qCO2 and P-acquiring
enzyme activity. The proportion of F_Mod#6 correlated positively
with qCO2 and enzyme activities involved in C, N and P
acquirements (Figs. 3 and S4).
The proportion of most genera within B_Mod#0 and F_Mod#6

increased with increasing altitude, which also showed negative
relationships with Vlength and CUE, but positive relationships with
qCO2 (Fig. 4b). In contrast, the proportions of most genera within
B_Mod#2 and F_Mod#1 declined as the altitude increased, and
correlated positively with Vlength and CUE, but negatively with
qCO2. The key assemblies for bacterial community were domi-
nated by Proteobacteria, Actinobacteria, Acidobacteria and Chloro-
flexi (Fig. 4a). Most of the genera within B_Mod#0 belonged to the
Proteobacteria (57 out of 125) and Acidobacteria (18 out of 125)
(Table S2). For instance, genera Bryobacter, GAS113, Edaphobacter,
Roseiarcus, and Granulicella all showed significantly positive

associations with altitude and qCO2, but negatively with Vlength
and CUE (Table S2). The majority of genera within B_Mod#2
belonged to the Proteobacteria (77 out of 233) and Actinobacteria
(67 out of 233). In particular, genera such as Sphingomonas,
Nordella, Microlunatus, Rhizobacter and Lysobacter, all showed
negative relationships with altitude and qCO2, but positive
correlations with Vlength and CUE. For fungal community, most
of the phylotypes related to altitude were within Ascomycota, with
Coniochaeta, Neurospora, Epicoccum and Mortierella etc. as
essential genera predicting Vlength and metabolic efficiency
(Table S2).

DISCUSSION
Our study established empirical associations between shifts in
microbial community composition with different trait combina-
tions and metabolic efficiency, accounting for internal controls
over microbial metabolic efficiency and the associated ecosystem
functions. We show that increasing C cost of maintenance (i.e.,
qCO2) and decreasing CUE was linked to increasing nutrient
(particularly P) acquisition strategies along the altitude gradient.
These results indicate that in soils with lower substrate quality
(higher C:N and C:P ratios), resource limitations drive microbial
communities to invest more energy into resource acquisition
strategies that trade-off against growth yield at higher altitude.
Such a trade-off of physiological traits could be related to shifts in
microbial taxa with distinct trait-based strategies. In particular, the
shifted bacterial and fungal assemblies with altitude were also
essential predictors of microbial resource acquisition strategies
and metabolic efficiency. Based on the framework of trait-based
ecology, our data provide evidence for the linkages between shifts
in microbial community composition and community-level meta-
bolic efficiency along a broad environmental gradient. These
findings illustrate that the intrinsic properties of microbial
community play crucial roles in mediating the efficiency of
microbial processes such as CUE, highlighting that the
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incorporation of intrinsic microbial properties into models is
important to better predict biogeochemical cycles and their
feedbacks to climate changes.
Consistent with our first hypothesis, the metabolic efficiency of

microbial community was low (higher qCO2 and lower CUE) at
higher altitude, partly due to the higher energy investments in
nutrient acquisition strategies (Fig. 1; Table S1). At higher altitude
with lower substrate quality (higher soil C:N and C:P ratios), the
lower Vlength and higher specific P-acquiring enzyme activities
indicate that more energy are allocated to acquire the most
limited nutrients (N and P) under unbalanced resource stoichio-
metry [15]. The production of extracellular enzymes to acquire
nutrients from complex biomolecules is energetically expensive,
and thus may contribute to higher C cost of maintenance and
lower CUE at higher altitude [3]. In support of this, we found that
the specific P- acquiring enzyme activities correlated negatively
with CUE (Fig. 2), indicating that increasing microbial trait
strategies of resource (P) acquisition through enzymes reduced
metabolic efficiency at higher altitude. Similar relative nutrient (N
and P) constraints to microbial metabolism were also predicted in
high-latitude grasslands with low temperature using a new
enzymatic stoichiometric model [49]. Our results provide evidence
for a clear trade-off between community-level resource acquisition
potential and growth yield based on empirical relationships along
a highly heterogeneous environmental gradient.
Our study also presents that a large amount of variation in

metabolic efficiency was explained by altitude, which correlated
highly (R2 = 0.989) with temperature in these harsh alpine

environments [25, 26]. Therefore, it is plausible that growth traits
also trade-off with cold-stress tolerance strategies along the
altitude gradient in the highest plateau on Earth. Many previous
studies suggested that low temperature could inhibit the growth
and metabolic activity of microorganisms [50, 51]. Traits involved
in cold adaptions such as biofilm formation and membrane
modifications were favored under cold environments [52, 53],
which may contribute to the lower metabolic efficiency under cold
conditions. As such, the harsh environments (low substrate quality
and temperature) may induce trade-offs among multiple strate-
gies including growth yield, resource acquisition and stress
tolerance. Future works on physiological adaptions of microbial
communities to cold-stress tolerance and their effects on
microbial metabolic efficiency will consolidate our findings.
Additionally, microbial taxonomic variations were highlighted

as essential predictors of metabolic efficiency according to our
results of Random Forest analysis (Fig. 2). This supports previous
studies that community-level variations in physiological traits
mostly reflect the legacy effects of long-term environmental
changes on microbial community composition [12]. In this study,
soil samples were taken in the last month of the growing season,
when soil availability is high and the immediate freeze-thawing
effects can be disregarded. As such, our study could provide a
snapshot of shifts in microbial community composition and trait
strategies across a low temperature gradient with distinct changes
in abiotic factors (including soil pH, substrate quantity and
quality). Soils at higher altitude are likely to host microbial taxa
that adapted to low substrate quality and temperature [54, 55]. In
support of this, we observed increased abundance of Proteobac-
teria with increasing altitude, which is always dominant in cold
and oligotrophic conditions [52, 56, 57]. Furthermore, the relative
abundance of Proteobacteria associated positively with the
potential functions involved in nutrient acquisition (i.e., lower
Vlength) and qCO2 (Table S1), indicating that environmental
selection of specific taxa contribute to community-level changes
in physiological traits and metabolic efficiency [12]. However,
except for Proteobacteria, most dominant bacterial and fungal
phyla were independent of altitude and acted as weak predictors
of changes in physiological traits and metabolic efficiency. These
results indicate that microbial classification based on higher
phylogenetic levels (such as at the order or phylum levels) have
limitations in explaining community-level physiological strategies,
because taxonomically related strains can have divergent features,
while dissimilar strains may exhibit identical traits [20, 21].
Microbial community could also be grouped into assemblies

with particular trait combinations based on different co-
occurrence or association patterns, offering new insights into
complex microbial community structure and soil functioning
[10, 22]. Microbial assemblies within co-occurrence network are
significant predictors of microbial physiological traits, even
considering other key environmental attributes (Figs. 3 and S5).
In particular, the relative abundance of B_Mod#0 increased
significantly with increasing altitude (concurrent declining tem-
perature) and soil C:N and C:P ratios (Fig. S4), suggesting that
these taxa adapted to low temperature and substrate quality at
higher altitude. Interestingly, these adapted taxa within B_Mod#0
also showed significant associations with community-level micro-
bial nutrient acquisition traits, qCO2 and CUE, further indicating
that environmental selection of specific taxa drives changes in
physiological traits and the metabolic efficiency of microbial
community. Most of genera within B_Mod#0 were from Alpha-
proteobacteria and Acidobacteria, which were mostly K-strategists
(slow-growing equilibrium species) and also the main sources of
assumed cold-adaption genes such as those encoding OstA
(trehalose phosphate synthase), OstB (trehalose phosphatase) and
Fatty acid desaturases etc. [52]. In contrast, B_Mod#2 may be
mainly composed of microbial groups with low maintenance
efforts and weak adaption to low temperature and nutrient
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limitation, as illustrated by its negative relationships with altitude,
soil C:nutrient ratios and the associated physiological traits.
Therefore, the shift of bacterial assemblies from B_Mod#2 to
B_Mod#0 with different trait strategies appears to be an important
control on the increased C cost via maintenance and declined CUE
with increasing altitude.
Similarly, shifts of fungal assemblies could also contribute to the

variation in the metabolic efficiency along the altitude gradient.
Microbial taxa within F_Mod#6 may have slow-growing rates, as
these taxa generally showed positive associations with qCO2, but
negative relationships with CUE (Fig. 4b; Table S2). For instance,
genus Mortierella, as the keystone genus for F_Mod#6, were
reported as essential psychrophiles and could produce high
abundant trehalose and fatty acids to adapt to cold stress [51, 58].
In contrast, the keystone genus consisted of F_Mod#1, such as
genera Neurospora was reported to have fast-growing lifestyles
[59] and distributed mainly in warm regions like tropical and
subtropical areas [60]. Overall, it is plausible that microbial taxa
belonged to B_Mod#0 and F_Mod#6 adapted to low temperature
and resource quality conditions at higher altitude, but at the
expense of more C allocated to maintenance and lead to less
efficient microbial community at higher altitude. Our findings link
complex microbial community structure to functions under the
framework of trait-based ecology, and highlight the importance of
shifts in microbial functional groups with different traits for the
metabolic efficiency of microbial community (Fig. 5).
While our study provides the empirical evidence for the roles of

intrinsic properties of microbial community in regulating meta-
bolic efficiency, these effects of biotic properties may be conflated
with those of abiotic factors along the altitude gradient. For
instance, declined soil pH significantly enhanced qCO2 and
reduced microbial CUE, consistent with a recent study showing
that acidic soils had very slow microbial growth rates and low CUE
due to physiological constraints [61]. Moreover, higher qCO2 could
also be interpreted as more soil C (substrate) being available for

microbial respiration at higher altitude [4]. However, it should be
noted that biotic properties, particularly microbial resource
acquisition traits and essential microbial assemblies, were impor-
tant predictors of community-level metabolic efficiency even after
considering these key abiotic factors. Therefore, our findings
highlight that shifts in microbial assemblies with distinct life-history
strategies should be incorporated into current trait-based models
to better predict microbial community responses and the
associated ecosystem functions under environmental changes
(Fig. 5). Overall, microbial adaptions due to shifts in physiological
traits and community composition lead to less efficient microbial
community and lower energy investment into microbial growth
and biomass production, which may further reduce the rates of
essential ecosystem processes including soil organic matter
decomposition and nutrient turnover at higher altitude.

CONCLUSIONS
To conclude, our results demonstrate that shifts in microbial
assemblies with distinct physiological traits drive changes in
community-level metabolic efficiency along the altitude gradient.
At higher altitude, resource limitations drive microbial communities
to invest more energy into resource acquisition strategies that trade
off against growth yield, leading to higher metabolic quotient and
lower CUE. These different microbial physiological traits could
reflect the shifts in microbial functional groups with divergent
strategies for coping with environmental constraints. We suggest
that microbial taxa can adapt to nutrient limited and cold
conditions at higher altitude, but at the expense of more
maintenance efforts and lower metabolic efficiency. Our results
highlight the shifts in trait-based strategies and microbial functional
groups as essential factors regulating the metabolic efficiency of
microbial community. This work could have important implications
for C cycle in a changing world, and thus improve the predictive
understanding of soil C responses to future climate change.
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