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iVirus 2.0: Cyberinfrastructure-supported tools and data
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Microbes drive myriad ecosystem processes, but under strong influence from viruses. Because studying viruses in complex systems
requires different tools than those for microbes, they remain underexplored. To combat this, we previously aggregated double-
stranded DNA (dsDNA) virus analysis capabilities and resources into ‘iVirus’ on the CyVerse collaborative cyberinfrastructure. Here
we substantially expand iVirus’s functionality and accessibility, to iVirus 2.0, as follows. First, core iVirus apps were integrated into
the Department of Energy’s Systems Biology KnowledgeBase (KBase) to provide an additional analytical platform. Second, at
CyVerse, 20 software tools (apps) were upgraded or added as new tools and capabilities. Third, nearly 20-fold more sequence reads
were aggregated to capture new data and environments. Finally, documentation, as “live” protocols, was updated to maximize user
interaction with and contribution to infrastructure development. Together, iVirus 2.0 serves as a uniquely central and accessible
analytical platform for studying how viruses, particularly dsDNA viruses, impact diverse microbial ecosystems.
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Microbiome researchers are revealing the power of microbes that
live in, on, and around us to shape human health and Earth’s
diverse ecosystems [1, 2]. These advances have been aided by
myriad analytical capabilities and platforms that help researchers
better “see” microbes using gene marker and metagenomic
sequencing data (see Supp. Table 1). Though there is much to
learn, it is increasingly clear that viruses modulate these microbial
impacts. For example, in the oceans, every day viruses lyse one in
three cells, transfer 10729 genes from one host to another [3-5],
and alter global biogeochemical cycles through lysis products,
virus-encoded auxiliary metabolic genes that impact photosynth-
esis [6, 7], carbon [8, 9]/nitrogen [10, 11]/sulfur cycling, and
metabolic reprogramming [12]. Similar anecdotes of virus
ecosystem impacts are emerging in soils where viruses infect
key carbon cyclers and encode genes that modulate carbon
cycling [13, 14], and extreme environments where viruses can
encode genes that alter their microbial host’s abilities to survive
such stressful environments [15-18]. As a field, we are on the cusp
of a great leap forward in understanding viral roles across diverse
ecosystems, with conceptual formulations already emerging
[19, 20], and large-scale datasets emerging that are ripe for deep
virus-focused exploration [13, 21-24].

Problematically, two key bottlenecks currently prevent research-
ers wanting to more broadly understand virus impacts in their
ecosystem of choice: a) the toolkit for viruses is different to that of

microbes, and b) even if a virus toolkit exists, it may not be as
mature as for other ecosystems [25]. The main challenges are that
viruses lack hallmark genes, have different and more complex
taxonomies, and are less well represented in databases. Fortu-
nately, at least for dsDNA viruses, these issues are being resolved
as follows: (i) quantitative metagenomic approaches are now
available [26, 27], (i) community consensus [28, 29] and tools
[30-33] are emerging for genome-based taxonomy, and (iii) larger
datasets with improved analysis methods techniques are expand-
ing coverage of sequence space [29]. Given the importance of
viruses and the rapid and growing advances in the emergent field
of “virus ecogenomics”, users need access to virus-specific
analytical tools, data, and cyberinfrastructure capabilities.

To this end, we developed iVirus as a simplified, user-friendly,
publicly accessible resource that is linked to “living” documenta-
tion allowing for community feedback and consensus-building
[34]. iVirus was originally launched as a limited set of virus
ecology-specific apps and datasets deployed on the CyVerse
cyberinfrastructure (formerly the iPlant Collaborative) to provide
free access to computing, data management, storage, and analysis
toolkits [35]. iVirus developers built custom apps and adapted
publicly available tools for use in CyVerse along with depositing
diverse virus datasets into the CyVerse Data Store. Alongside
CyVerse resources, iVirus made several protocols available on the
“live protocols for the life sciences” protocols.io website [36] with
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Table 1.

Pros

CyVerse + Large number and wide selection of available apps

- File storage “structure” is similar to most user operating systems
+ Access to large-scale HPC resources at TACC, access to huge-

memory (>1 TB) nodes
+ Low developer cost to app development
+ Datasets can be assigned DOls

KBase + Narratives provide clear experimental history

* Intuitive app organization

+ User-friendly sharing capabilities of Narratives

* Robust Software Development Kit (SDK) for developers
+ Narratives can be assigned DOls

Broad comparison between CyVerse and KBase Cyberinfrastructures.

Cons

+ Difficult to identify app function and only Agave-based apps
are organized

» Documentation is scattered and exists at several locations

* App documentation is often limited, relying heavily on
developer good will

* Analyses cannot be shared, though their underlying data can

+ Limited ability to intuitively search, organize, and browse
through data

+ Limited app selection for various analysis steps
+ High developer cost to app development
» Limited resources are bottleneck for heavy memory-using apps

To provide an overview of the two cyberinfrastructures used for iVirus, we have collated user-informed lists of pros and cons of each. Depending on user

experience and skillset, several pros and cons may be reversed.

screenshots, notes, and insights for step-by-step use of each app.
This version 1 iVirus effort offered 7 apps, numerous data projects
(75 viromes and 121 virus genomes totaling 1 Tb of data), and 5
“live” protocols. Together this iVirus implementation provided
researchers—from beginners to experts—the ability to process
virus sequencing datasets from raw reads to taxonomically-
classified virus genomes, and establish baseline ecological insights.
Further, researchers have had unique and varied opportunity to
grow and mature the field through feedback venues including (i)
the “live protocols”, (ii) international viromics training workshops
(https://u.osu.edu/viruslab/viromics-workshop/), and (iii) VERVE-net
community networking efforts [37]. Since its launch, iVirus has
grown into a unique and valuable community resource as a ‘top
10" bioinformatic protocol at protocols.io (~30 K unique views) and
thousands of users running iVirus apps at CyVerse. Though other
online platforms offer partially overlapping capabilities, these tend
to focus specifically on phage genomics (e.g, PHASTER [38],
PhageWeb [39], and phage.ai [40]) or were pioneering efforts in
this space that are currently under-supported or discontinued (e.g.,
VIROME [41], Metavir [42]). Thus, iVirus stands as the most
comprehensive analytical option for virus ecogenomics.

Not surprisingly, virus ecogenomics has advanced rapidly since
iVirus's introduction in 2017. Beyond new analytical capabilities and
data resources, there are also additional cyberinfrastructures of
relevance, in particular the Department of Energy’s (DOE) Systems
Biology KnowledgeBase (“KBase”) whose goal is to “meet the grand
challenge of systems biology—predicting and designing biological
function on a range of scales, from the biomolecular to ecological”
[43]. While KBase is powerful in the microbiome space, with over 160
apps, until 2019, it lacked any specific for viruses, which limits KBase
users studying viruses to non-specialized tools and/or shuffling data
between KBase and other tools.

Here we present iVirus 2.0, which offers the first integration of virus
ecogenomics tools in KBase, as well as upgrading and expanding
CyVerse capabilities with 20 new and updated apps, datasets, and
protocols. We continue to provide extensive documentation and
seek community feedback, as this motivates iVirus improvements,
and helps us assist virus-interested researchers.

TOWARDS DIVERSIFYING CYBERINFRASTRUCTURES TO
BROADEN COMMUNITY CAPABILITIES AND ACCESS

We first implemented several core iVirus apps on KBase [43] to
empower KBase researchers with virus analytics. Both the KBase
and CyVerse cyberinfrastructure platforms share some features,
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including the following: (i) free to use, (ii) hundreds of apps within
user-friendly interfaces, (iii) mechanisms for reproducible infor-
matic research, and (iv) committed funding. However, there are
differentiating features that might drive researchers towards one
platform or another depending upon preferred modes of
interaction (summarized in Table 1). Briefly, CyVerse takes a
traditional operating system approach with apps, data, and
analyses treated as separate entities and currently has more virus
analytics available, whereas KBase is designed to encapsulate
entire methodological pipelines (apps, data and research notes)
into notebooks to be shared publicly or with collaborators, akin to
a digitized research paper methods section and which currently
include a basic virus workflow (specifics below). From here, we
seek to walk readers through virus ecogenomic analyses and the
upgraded and new capabilities available on these platforms.

IVIRUS APP DEVELOPMENTS

When a researcher has new microbiome sequence data, whether
virus-targeted or microbial, much of the front-end processing is
identical. These include read quality control, assembly, gene
calling and annotation, sequence alignments, and diverse file
manipulations including compression, splitting paired-end reads,
and converting between various file formats. As of March 2021,
more than 1020 CyVerse and 220 KBase apps, respectively, can be
leveraged with these goals in mind (see http:/tinyurl.com/
4ndkt4n2 and https://kbase.us/applist/, respectively). For iVirus
development, we sought to complement these with virus-specific
apps and resources to maximize virus inference in complex
communities, with a focus to date on dsDNA viruses.

Initially, as implemented in 2017, iVirus created a minimal
working pipeline of seven apps that allowed researchers to
process a virus metagenome from raw sequencing reads to
assembly and conduct analyses via identification, classification,
and ecology measured at the level of genes [34]. Specifically, these
seven original apps allowed researchers to identify viruses
(VirSorter [44]), taxonomically classify them (vConTACT [45]),
estimate their abundances (BowtieBatch/Read2RefMapper [34]),
cluster open reading frames into protein clusters (PCPipe [34]),
and perform read-based community comparisons (Fizkin [46]). In
iVirus 2.0, 12 apps have been added to the original 7 (see Table 2),
more than doubling the number of apps available to a total
of 19 apps. Beyond expanding analytical capabilities—including
archaeal and RNA virus identification, genome annotation, virus
AMG curation and host prediction— these additional apps also
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Table 2. iVirus-powered apps on KBase and CyVerse.

App name Virus ecogenomics processing stage
vConTACT? Virus Classification
vConTACT-PCs Virus Classification
vConTACT2 Virus Classification
BowtieBatch Read mapping
Read2RefMapper Read mapping
VirSorter Virus Identification
VirSorter 2 Virus Identification
PCPipe Protein clustering
Fizkin Community profiling
CheckV Virus analysis
MArVD Virus identification
MArvVD2 Virus identification

Cenote-Taker2 Annotation

MetaPop Population genetics

VirMatcher Virus-Host prediction

DRAM-v AMG identification and annotation
WisH Virus-Host prediction
DeepVirFinder Virus Identification

VIBRANT® Virus Identification

MARVEL Virus Identification

Availability iVirus Version Reference
CyVerse 1,2 Bolduc [45]
CyVerse 1,2 Bolduc [34]
CyVerse/KBase 2 Jang [30]
CyVerse 1,2 Bolduc [34]
CyVerse 1,2 Bolduc et al. [45]
CyVerse/KBase 1,2 Roux [44]
CyVerse 2 Guo [47]
CyVerse 1,2 Hurwitz [46]
CyVerse 1,2 Hurwitz [46]
CyVerse 2 Nayfach [60]
CyVerse 2 Vik [53]

In development 2 Vik [54]
CyVerse 2 Tisza [55]
CyVerse 2 Gregory [22]
KBase 2 Gregory [63]
KBase 2 Shaffer [57]
CyVerse 2 Galiez [59]
CyVerse 2 Ren [48]
CyVerse 2 Kieft [51]
CyVerse 2 Amgarten [49]

#vConTACT is comprised of several apps, including *-Gene2Genome, and *-prePCs.
PNot integrated by the iVirus team, but included due to its relevance for virus ecogenomics.

provide choice(s) at each “stage” of the virus ecogenomic pipeline.
Below, we describe the newly added and/or updated apps on
CyVerse, as well as provide an overview of virus pipeline
capabilities currently available for each of the CyVerse and KBase
cyberinfrastructures.

CyVerse

Figure 1 provides an overview of the updated “iVirus at CyVerse”
pipeline, including relevant aspects of the CyVerse Discovery
Environment and virus and microbial tools available.

Virus identification (updated). The first step that is unique to
viromics is to take quality-controlled and assembled contigs and
identify those contigs that are viral. Originally, we provided
VirSorter for this task, which was one of the first virus identification
tools to handle fragmented genomes and sequences not closely
associated with virus reference sequences [44]. As a major
upgrade, we have now added VirSorter2 [47] to iVirus, which
uses more genomic features, and applies machine learning to
identify virus sequences with improved accuracy along with
multiple classifiers (machine learning models) to extend its
identification outside of dsDNA phages to include giant viruses
(i.e., viruses belong to Nucleocytoviricota, also known as
nucleocytoplasmic large DNA viruses (‘NCLDVs'), virophages,
ssDNA and RNA viruses.

Virus identification (new). To offer users more choices in this
critical first step in the virus ecogenomics workflow, we added
several new apps. First, DeepVirFinder (DVF), a deep-learning
based virus identification tool, which was the first such tool to
employ deep learning [48]. Unlike the features used in VirSorter 1
and 2 and in MARVEL [49], DVF relies on features that allow
predictions for contigs of lengths as small as 300 bp, and is overall
the superior method for identifying smaller virus contigs [50] (e.g.,
3-kb or lower). Second, we added MARVEL to CyVerse. Concep-
tually, MARVEL [49] is another virus identification tool that uses
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genomic features to identify viruses and, like VirSorter2, MARVEL
uses a machine-learning classifier. Benchmarks show similar
specificity and improved sensitivity against VirSorter1, but lower
than VIBRANT and VirSorter2 [47]. Though MARVEL requires
individual fasta files for each genome, we adapted the MARVEL
CyVerse app for scalability by allowing a concatenated input file
that our app splits, processes, and then concatenates the
separated outputs (with temporary file clean-up). Third, VIBRANT
[51] is now integrated. VIBRANT, which stands for Virus Identi®ca-
tion By iteRative ANnoTation, uses neural networks with HMMs
from a variety of databases (e.g., KEGG, Pfam, VOG), along with a
“v-score” to identify a diverse range of viruses, including dsDNA,
ssDNA and RNA viruses. For sequences 1 kb or larger and with at
least four genes, benchmarking [50] showed VIBRANT out-
performing VirSorter 1, VirFinder and MARVEL, while being
comparable to VirSorter2. Additionally, VIBRANT also characterizes
metabolic pathways to identify virus-encoded auxiliary metabolic
genes (AMGs, see below). While VIBRANT was integrated by
external researchers outside our iVirus team, it is described here
because of its relevance to the field as an additional available virus
identification tool.

Archaeal virus identification (new). Because most genome-
sequenced archaeal virus isolates derive from extreme environ-
ments, these viruses remain difficult to identify from “normal”
environments—even when archaea are abundant (e.g., the deep
ocean [52]). To help with identification of mesophilic archaea
viruses, MArVD, the Metagenomic Archaeal Virus Detector [53],
and its most recent machine-learning-powered version, MArVD2
[54], are available in CyVerse.

Virus genome annotation (new). Once virus contigs have been
identified, researchers seek to annotate them to understand
identifiable functional capacity. In the original iVirus release,
no such tools were available beyond standard microbial tools
that predicted open reading frames and searched databases

SPRINGER NATURE
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Fig. 1

Overview of the iVirus ecosystem of apps and workflow available on the CyVerse Discovery Environment. Within this CyVerse

environment, users will upload and process their data (red) through the iVirus apps (blue), and output in a result directory (green). The middle
window depicts the main dashboard, from where users can select which task they want to perform (e.g., check a job, access results directory).

one at a time. Since that time, however, two options have

Virus-Host identification (new). Accurately predicting the host(s)

emerged with specific value for viruses — Cenote-Taker [55, 56]
and DRAM-v [57].

The first, Cenote-Taker [55], was designed to primarily identify
and characterize circular DNA viruses (primarily focused on ssDNA
virus discovery from animal samples), through the detection of
circular sequences via direct terminal repeats (DTR), overlapping
ends, and comparisons to known viruses in public databases. It
also provided extensive processing of ORFs and output annotated
genomes in GenBank-compliant files. The second version of
Cenote-Taker [56] added flexibility to discover and annotate all
virus classes with DNA or RNA genomes (via hallmark gene
models), genome annotation maps, and prophage detection—
though performance benchmarks are not available. Because
Cenote-Taker has extensive database and software dependencies,
local installs are challenging and costly to maintain, which makes
it ideal on a cyberinfrastructure like CyVerse.

The second tool, DRAM, represents a different annotation
strategy [57]. Specifically, DRAM offers a scalable means to
annotate metagenome-assembled genomes, or MAGs, from a
pathways perspective that distills resultant gene lists into path-
ways to better resolve metabolic context. Additionally, a suite of
scoring and flagging features comprise a virus-specific portion of
this tool, DRAM-v. These help semi-automate identification of
virus-encoded AMGs and, critically, curate against functionally
interesting metabolic genes that are cellular- rather than virus-
encoded (conceptual guidelines and recommendations for this are
also available [50]). To promote inter-operability, VirSorter2 offers
compatible output for DRAM.

Beyond these two tools, as mentioned above, VIBRANT also
includes AMG annotation capabilities. Specifically, VIBRANT uses
KEGG annotations to identify novel functions in the new viruses it
identifies, though no flagging features are implemented to
evaluate certainty around the putative AMG being virus-encoded.

SPRINGER NATURE

of an uncultivated virus using only genome information remains a
major challenge with several approaches currently used to link
viruses to their hosts including tRNAs, the presence of prophage
genes, shared genes between viruses and hosts (e.g., AMGs),
CRISPR spacer matches, and k-mer based signatures [58]. Among
these, the latter method of using k-mer similarity comparisons
between virus and host genomes, has been automated via a tool
called WisH [59] (Who Is the Host), which we have now integrated
into CyVerse. Another host prediction tool incorporating WIsH,
VirMatcher, is available as a KBase app (see below).

Virus genome quality control (new). A long-standing problem in
virus ecogenomics has been how to determine completeness and
purity of newly discovered viruses. For this task, CheckV [60] was
recently developed and integrated into CyVerse. Briefly, CheckV
assesses single-contig virus genome quality, including identifica-
tion of host contamination for integrated proviruses, estimating
completeness for genome fragments, and identifying closed
genomes, and then summarizes this for each genome using the
community established MIUVIiG (Minimum Information about an
Uncultivated Virus Genome) quality standards [29]. Though
CheckV is a major step forward, estimating the completeness of
divergent and/or novel viruses remains challenging due to the
requirement for “closely related” reference genome sequences.

Virus clustering and classification (updated). Once new viruses are
discovered, they need to be taxonomically classified, which is a
major challenge for viruses since they lack any universal gene
markers. Fortunately, a population genetic grounded biological
species definition of 95% average nucleotide identity across
shared genes and 85% coverage along the shorted contig was
established and confirmed for several marine viruses [21, 61], and
now largely adopted as virus operational taxonomic units or

ISME Communications
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Fig. 2 Overview of the iVirus ecosystem of apps and workflow available on KBase. The left window depicts the main dashboard, broadly
divided into “Data” (red), “Commentary” (pink), “Apps” (blue), and “Results” (green).

“vOTUs" by the virus ecogenomics community [29]. In iVirus, users
can dereplicate observed virus genomes in their data into vOTUs
using the clustering tool ClusterGenomes (https://bitbucket.org/
MAVERICLab/stampede-clustergenomes). Complementarily, higher-
level taxonomy can be resolved using gene-sharing network
approaches that result in virus clusters (or VCs) that are remarkably
concordant with the genera defined by the International Committee
on the Taxonomy of Viruses. As such, unknown viruses can be
classified with a relative confidence close to ICTV accuracy, at scale.
The tool for this, vConTACT [45], was implemented in the original
iVirus, and has now has been upgraded to vConTACT2 [30], which
offers a new clustering algorithm, confidence metrics, and improved
scalability.

Population genetics (new). As sequencing and assembly algo-
rithms have advanced, virus ecogenomics researchers are now able
to advance from gene- to population-based studies [62]. With this
advance, there is a need to understand variation both between
(macro-diversity) and within (micro-diversity) populations. To this
end, MetaPop was integrated into iVirus as it offers a simplified
analytical and visualization pipeline for population-based infer-
ences in both microbial and virus communities [63]. Specific
MetaPop outputs include alpha- and beta-diversity metrics for
macrodiversity, as well as microdiversity metrics including the
identification of single nucleotide polymorphisms (SNPs; notably
including codon-constrained linkages of SNPs), nucleotide diversity
(pi and theta), selective pressure (pN/pS, Tajima’s D), and genomic
differentiation (Fst) between populations.

KBase

To increase the accessibility of virus ecogenomics analyses, we
have added basic virus ecogenomic functionality to the KBase
platform (overview in Fig. 2). We chose to duplicate the core iVirus
apps from CyVerse to KBase due to the complementarity of the
two platforms, with KBase in particular including a unique
interface, distinct user base, and unique microbiome and
experimental tracking capabilities (Table 1). KBase also includes
a unique virus—host prediction tool, VirMatcher.

Virus identification (new). Currently only VirSorter 1, described

above and which performs well for dsDNA phages, has been
integrated into KBase.
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Virus-Host identification (new). As mentioned above, in silico
virus-host predictions remain challenging in virus discovery, and
each available tool tends to rely on distinct genomic features for
its predictions. Often, however, host prediction results between
tools can differ for the same virus sequence, and cross-validation
among thousands of predictions is currently a manual process.
Thus, we developed VirMatcher, a taxon-aware virus-host pre-
dictor that aggregates results from all these methods and uses
previous benchmarking experiments to assign a best host
prediction and provide a confidence score for each prediction.
While the tool is unpublished, its methodology was used to
predict nearly 50% of hosts from 33,242 virus genomes for the
human gut virome database [22].

BEYOND THE APPS—IVIRUS DATA RESOURCES AND
DOCUMENTATION

Beyond keeping pace with updated and novel capabilities in virus
ecogenomics, recent iVirus upgrades include growing the under-
lying datasets available. Currently, large databases of virus
genomes extracted from metagenomes such as IMG/VR [23] have
been collected from large-scale mining of publicly available
(mostly) microbial metagenomes. As a complement to these
efforts, iVirus 2.0 focused on core virus-targeted datasets with high
level of curation and ecological context for iVirus-powered
analyses. To this end, we mined the literature to capture and
aggregate smaller, relevant virus datasets and made them
available to download via the CyVerse Data Store. This grew
available “virus” data ~20-fold (from 5.5 to 109 billion reads) to
now over 10 TB of sequencing data (see Supp. Table 2). These
datasets exist as “flat files”, downloadable via CyVerse's HTTPS
endpoint, as well as the Discovery Environment, with the former
requiring no logins. Included are sequencing data from global
ocean sampling, increasingly diverse soil datasets, the human lung
and gut, as well as specialty environments like glacial ice,
hypersaline brines, and hydrothermal vents. Additionally, where
possible, both raw datasets and curated data products are made
available, and many datasets have a static, unchangeable,
permanent identifier—a DOl—that can be used for data citation
with or without a publication (though DOIs are not required). We
provide guidance on how anyone can contribute their own data,
detailed below.
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Table 3. Comparative overview between platforms to analyze virome data.
Category Capability
data Private upload
Public release
Search and integrate in analysis
Virus apps Can add new apps

Cloud-based only?

Virome analysis Contig annotation/AMGs

Virus detection
Population genetics
Taxonomy

To maximize iVirus apps and data resource accessibility, we also
provide extensive and regularly updated documentation via “live
protocols”-powered community resources at protocols.io. For
iVirus 2.0, we updated our five original protocols and added
three more to now provide documentation for an end-to-end virus
ecogenomics pipeline and development stage updates. The “live
protocol” capabilities maximize user feedback, which with such an
active user community quickly identifies issues and needs. Further,
the protocols.io shared community experience is invaluable for
establishing consensus and best practices in a nascent field such
as virus ecogenomics. Thus, we have a built-in software
development life cycle that helps iVirus best serve the research
community. Lastly, yearly hands-on international viromics meet-
ings university-specific microbiome informatics courses provided a
critical venue for gathering user feedback, comments and
suggestions.

Finally, we revamped our website (https://ivirus.us) as yet
another means to disseminate information on protocols, work-
shops, research, apps and data resources. Complementing this, we
maintain technical documentation at bitbucket (https://bitbucket.
org/MAVERICLab/ivirus), and have established Singularity and/or
Docker containers for all iVirus apps, which allows research labs to
run analyses on their own resources, independent of either
cyberinfrastructure if preferred.

LIMITATIONS AND FUTURE OPPORTUNITIES
Though we have sought to develop iVirus through an extensive
community-engaged design cycle with specific capabilities for
(dsDNA) virus researchers, there are other options available for
analyzing virus sequencing datasets. For example, for researchers
that have already identified virus contigs in their dataset, stand-
alone or web-based platforms exist for analysis (summarized
comparative feature sets in Table 3). From these tools one could
assess and visualize gene content and sequence variation across
populations using tools such as Anvi'o [64], or leverage key
comparative genomic and contextualization features available
from microbiome-centric platforms including Mgnify [65] and
IMG/VR [23]. As described above, IMG/VR is notable for providing a
curated set of virus sequences that has been taxonomically
classified and assessed for quality, and users can submit their
sequences for standardized annotation and analysis. Across all
these platforms, iVirus is unique in that it provided virus-centric
tools and a modular set of apps across multiple platforms, where
users control the specifics of their processing pipeline. This
allows flexibility in the tools each user wants to use as the field
advances, and to facilitate community awareness of the best
practices, benchmarking, and consensus guidelines described
above [27, 50, 66].

While iVirus 2.0 provides unique and state-of-the-art capabilities
for virus ecogenomics analyses, it does carry some limitations.
First, virtually all the analytics are for dsDNA viruses; future work
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CyVerse Kbase MGnify IMG/VR
X X X X

X X X X

X X X X

X X

X X X X

X X X

X X

X

X X

will benefit from integrating ssDNA- and RNA- virus-specific
analytics and workflows, such as those accumulating through
efforts by the European Virus Bioinformatic Center (http://evbc.
uni-jena.de/). Second, iVirus data repositories are currently “flat
files” that will benefit from more sophisticated focus on best
database management system practices to better serve these data
and automate data acquisition from decentralized data reposi-
tories. Finally, as apps, data, and platforms grow, documentation
and app integration, management and maintenance become
challenging, which will undoubtedly require a distributed co-
laboratory community effort moving forward [67].

Though work remains to feed the appetites of a growing virus
ecogenomics community, iVirus 2.0 offers choice in platform
(KBase and CyVerse cyberinfrastructures or Singularity containers
for local or private cluster set-up), a centralized and modernized
set of virus ecogenomic apps and data resources, and mechan-
isms for usage and community feedback (documentation via “live
protocols” at protocols.io and workshops). Collectively, we hope
that these efforts will empower dsDNA, and eventually all, virus
research across diverse systems.
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