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Saprotrophic fungal diversity predicts ectomycorrhizal fungal
diversity along the timberline in the framework of island
biogeography theory
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Island biogeography theory (IBT) is one of the most fruitful paradigms in macroecology, positing positive species-area and negative
species-isolation relationships for the distribution of organisms. Biotic interactions are also crucial for diversity maintenance on
islands. In the context of a timberline tree species (Betula ermanii) as “virtual island”, we surveyed ectomycorrhizal (EcM) fungal
diversity along a 430-m vertical gradient on the top of Changbai Mountain, China, sampling fine roots and neighboring soils of
B. ermanii. Besides elevation, soil properties and plant functional traits, endophytic and saprotrophic fungal diversity were assessed
as candidate predictors to construct integrative models. EcM fungal diversity decreased with increasing elevation, and exhibited
positive diversity to diameter at breast height and negative diversity to distance from forest edge relationships in both roots and
soils. Integrative models further showed that saprotrophic fungal diversity was the strongest predictor of EcM fungal diversity,
directly enhancing EcM fungal diversity in roots and soils. Our study supports IBT as a basic framework to explain EcM fungal
diversity. The diversity-begets-diversity hypothesis within the fungal kingdom is more predictive for EcM fungal diversity within the
IBT framework, which reveals a tight association between saprotrophic and EcM fungal lineages in the timberline ecosystem.
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INTRODUCTION
Ectomycorrhizal (EcM) fungi are an important functional guild
amongst the soil biota of temperate and boreal forest soils.1 They
form mutualistic symbioses with fine roots of plants, facilitating
seedling establishment and conferring stress resistance.2 External
EcM mycelium extracts nutrients from organic materials, such as leaf
and root litter by Fenton reaction or Mn-peroxidase activities.3

Furthermore, EcM fungi can substantially modify forest tree
coexistence.4,5 Therefore, EcM fungi play a pivotal role in above-
ground production enhancement and belowground nutrient cycling
in forest ecosystems. Better understanding of EcM fungal diversity
will enable us to estimate the effects of global change on forests.6

Altitudinal gradients reflect horizontal distribution of biodiver-
sity at a finer spatial scale.7 Altitudinal gradients of EcM fungal
diversity have revealed four types of patterns: (1) monotonic
decrease;8 (2) unimodal;9 (3) monotonic increase;10 (4) no
significant change.11 The climate-driven hypothesis12,13 is most
often used to explain the decreasing biodiversity with increasing
elevation. A hydrothermal gradient is the basis of the climate-
driven hypothesis, e.g., higher fungal diversity occurs in warm and
wet rather than cold or dry conditions.14,15 However, multi-
collinearity among elevation, temperature and precipitation
makes it difficult to disentangle the relative effects of elevation
and climate on diversity,8,16 and the climate-driven hypothesis

hardly explains other types of elevation patterns. Soil properties
may be alternative or complementary to explain EcM fungal
diversity along altitudinal gradients. Soil C/N ratio has been found
to correlate with EcM fungal diversity along altitudinal gradi-
ents.9,10 In addition, plant species identity17 and root traits18 vary
across altitude and may influence EcM fungal diversity along
altitudinal gradients. By confining studies to a single tree species,
we may avoid the confounding impacts of host species and co-
occurring plants on EcM fungal diversity.19,20

Island biogeography theory (IBT) is one of the core paradigms of
macroecology, positing positive species-area and negative
species-isolation relationships for plant and animal distributions
on islands.21 Species-energy theory embodies higher species
diversity with increasing available energy, which was thought as a
desirable extension of species-area relationship.22 Whether IBT
fully applies to microbial biogeography is still on debate.23 Diffuse
populations of EcM trees, as ‘virtual islands’, may provide natural
laboratories to testify the application of IBT to EcM fungi.24 In
coastal pine forests in California, EcM fungal diversity significantly
increased with increasing tree island area (<1 to >10 000 m2) that
explained nearly 74% of the variation in the formula of species-
area relationships.25 In the same sites, when considering each tree
individual as an independent island, they proposed that distance
to mature forests predicted nearly half of the variation in EcM
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fungal diversity.26 In subalpine pine forests in Gaylor Lake Basin,
USA, researchers also observed a strong positive species-area and
negative species-isolation relationships for EcM fungal diversity;
the two relationships cumulatively predicted more than one-third
of variation in diversity.27 The above cases reflect the high
universality of IBT on EcM fungal ecology.
EcM fungi co-occur with pathogenic, endophytic, and sapro-

trophic fungi in belowground ecosystems of natural forests,28

forming complex interaction networks.29,30 Saprotrophic fungi
contribute to a large proportion of soil heterotrophic respiration
and obtain C from organic material, which is quite different from C
nutrition of EcM fungi.3 Most EcM fungal lineages have evolved
independently from saprotrophic fungi (i.e., the evolutionary source
effect).2,31 This evolutionary source effect is assumed to form a
positive diversity relationship between EcM and saprotrophic fungi,
particularly in a local isolated relict environment. Recently, a large-
scale genome sequencing study revealed a transitional process of
EcM fungi from saprotrophy to symbiosis and contrasting, lineage-
dependent underlying mechanisms.32 In addition, a microcosm
experiment has shown that various basidiomycete wood-decay
fungi can establish facultative biotrophic relationships with EcM
plant roots without causing any disease symptoms,33 which
indicates the possibility of complementary functioning and co-
occurrence between saprotrophic and biotrophic fungi in the root
niche. Endophytic fungi are commonly termed as a fungal guild that
inhabit plants without causing visible disease symptoms.34,35 Some
EcM fungal species in Sebacinales and Helotiales may have arisen
from endophytic ancestors.36 Both EcM and endophytic fungi
constitute the dominant symbionts in cold and high-elevation
regions.37,38 Yet, the relationship between diversities of endophytic
and EcM fungi is unclear.
Here, we examined EcM fungal diversity in roots and soils of a

single EcM tree species (Betula ermanii) along a 430-m vertical
gradient of Changbai Mountain, China. By using integrative
modeling (sensu39), we assessed the causal mechanisms controlling
EcM fungal diversity along the timberline, involving the climate-
driven hypothesis, IBT, biotic interactions, and effects of soil
properties and root biochemical traits. On the basis of multilevel
predictors and different ecological frameworks, we hypothesized
that (1) IBT is the primary mechanism to predict variation in EcM
fungal diversity in the timberline ecosystem, i.e. EcM fungal diversity
increases with increasing tree size (diameter at breast height; DBH)
and decreasing distance to forest edge (DFE); (2) biotic interactions
are an equally important mechanism to predict EcM fungal diversity,
i.e., saprotrophic or endophytic fungal diversity directly drive EcM
fungal diversity according to the evolutionary source effect. In that
case, there would be more EcM fungal species and lineages
whenever there are more saprotrophic or endophytic fungal taxa.

MATERIALS AND METHODS
Host and site
B. ermanii Chamiss, a deciduous broad-leaved tree species, occurs naturally
in open spaces within subalpine and boreal forests in Northeast China,
Japan and the Russian Far East.40–42 B. ermanii is also a typical tree species
of the timberline, because it can resist to severe frost, strong wind and low
temperature by ecophysiological and ecomorphological flexiblity.43–45 In
addition, a rich mycobiome of B. ermanii has been reported,16,46,47 which
may facilitate the survival and spread of the host plant.
On the northern slope of Changbai Mountain, Northeast China, B.

ermanii grows over a broad elevation range from ca. 1700 to 2100m a.s.l.,
and forms pure stands along >300m vertical belt below the timberline.42,48

The establishment of Changbai Nature Reserve (CNR) in 1960 gave strict
protection to the Erman’s birch (B. ermanii) forests.49 All our sampling was
located within the core region of the CNR. The region has a typical
continental temperate monsoon climate, with higher elevations experien-
cing lower temperature and greater precipitation.50 Soils of the Erman’s
birch forests are Permi-Gelic Cambosols, whereas the soils beyond the
upper and lower limits of B. ermanii zone are Permafrost cold Cambosols

and Umbri-Gelic Cambosols, respectively. Climate change, particularly
rising temperature, threatens the populations of B. ermanii and the whole
Erman’s birch forest ecosystem in Changbai Mountain.50,51

Field sample collection
We sampled fine roots and neighboring soils for B. ermanii individuals at six
elevation-related habitats of B. ermanii on 2–8 September, 2018 (Fig. 1a).
These six elevation habitats include the upper limit (2069–2116m), tree
islands (1997–2042m), treeline (1949–1992m), pure stands (including two
sub-sites isolated by over 2 km; 1900–1926m), ecotone of dark coniferous
forests and Erman’s birch forests (1742–1765m) and lower limit (sparse
individuals in coniferous forests; 1688–1706m), respectively. In each habitat,
14 trees were randomly selected, and all trees were located more than 20m
apart from other sampled trees to ensure independence of each sample.
Neighboring soils and fine roots were collected according to the protocols of
Yang et al.28 and Lankau and Keymer,52 respectively. Briefly, with the trunk as
center and the DBH as distance from the stem, we collected four soil cores
(diameter= 3.5 cm, depth= 10 cm) after removal of litter and mixed them as
a single composite soil sample (Fig. 1b). We excavated surface soils near the
base of trees and traced roots from the base to terminal fine roots in three
directions. The fine roots of three directions were combined as a
composite fine root sample, and each raw sub-fine-root section was nearly
6 cm wide and 8 cm long (Fig. 1c, d). All the samples were brought back to
the laboratory with ice bags within 8 h. Soil was sieved through a 2-mm
mesh and divided into two subsamples: one was stored at 4 °C to determine
the soil properties, whereas the other was stored at −40 °C for subsequent
DNA extraction. Fine roots were rinsed with sterile water and cut into 1.5-cm
segments: one subsample (ca. 80%) was stored at 4 °C to determine root
biochemical traits, and the other subsample (ca. 20%) was stored at −40 °C
for subsequent DNA extraction. In the field, tree height, canopy diameter,
DBH, elevation, slope, latitude, and longitude of each sampled tree were
recorded. In total, 84 fine roots and 84 neighboring soils were collected.

Measurement of soil properties and root traits
We measured 28 soil properties, including soil pH, moisture, conductivity,
dissolved organic carbon, dissolved organic nitrogen (DON), ammonium
nitrogen, nitrate nitrogen, total carbon, total nitrogen, total phosphate,
total potassium, total calcium, total magnesium, total manganese, total
iron, total aluminum, available phosphate, available potassium, available
calcium, available magnesium, available manganese, available iron,
available aluminum, C/N ratio, C/P ratio and the proportions of clay, silt
and sand. The measurement methods of soil pH, moisture, ammonium
nitrogen, nitrate nitrogen, total carbon, total nitrogen and total content of
other elements followed our recent study.28 In addition, soil conductivity
was determined with a soil to water ratio of 1:5 by conductivity meter
(Mettler Toledo FE30, Shanghai, China). Mehlich 353 and three-acid-system
(nitric acid, perchloric acid, and hydrofluoric acid) were used to extract the
available and total content of elements, respectively. Total and available
content of phosphate, potassium, calcium, magnesium, manganese, iron,
and aluminum were measured using an ICP Optima 8000 (Perkin-Elmer,
Waltham, MA, USA). The proportions of clay, silt, and sand were measured
by Laser Particle Sizer LS13320 (Beckman, Brea, CA, USA).
Eighteen root traits, including root total carbon (RTC), root total nitrogen

(RTN), root phosphate, root potassium, root calcium, root magnesium, root
manganese, root iron, root aluminum, root C/N ratio, root N/P ratio, lignin,
cellulose, hemicellulose, soluble sugar, soluble protein, free amino acid
(FAA) and free fatty acids (FFA), were also measured. Specifically, RTC and
RTN were determined with a carbon–hydrogen–nitrogen (CHN) elemental
analyzer (2400 II CHN elemental analyzer; PerkinElmer, Boston, MA, USA).
Root phosphate, root potassium, root calcium, root magnesium, root
manganese, root iron, and root aluminum were measured in ICP Optima
8000 (Perkin-Elmer, Waltham, MA, USA). Soluble protein was measured by
a dye-binding assay.54 FAA was analyzed by the amino acid analyzer L-
8800 (Hitachi, Tokyo, Japan) with leucine as the standard sample. FFA was
determined by NEFA FS kits (Diasys, Holzheim, Garman) and the automatic
biochemical analyzer AU680 (Olympus, Tokyo, Japan). The measurement
methods of lignin, cellulose, hemicellulose, and soluble sugar followed that
of our previous study.16

Calculation of distance to forest edge
The location of each tree individual was determined by latitude and
longitude. A high-resolution map (treecover2000) on global forest cover at
a spatial resolution of 30m was used as a base map.55 In the map, the
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areas where forest cover was more than 30% were defined as the
“mainland” in the IBT framework and shown as the green grids in ArcGIS
(Fig. S1). This standard referred to the proposal of Convention on Climate
Change Kyoto.56 Then, we calculated the minimum distance of each tree to
the neighboring forest edge (i.e., green grids) by using the function Near of
the Proximity tool box in ArcGIS 10.0 (ESRI, Redlands, CA, USA).

Sequencing and bioinformatics
Soil total DNA was extracted from 0.5 g of soil by using FastDNA® Spin kit
for Soil (MP Biomedicals, Solon, Ohio, USA). Total DNA of fine roots was
extracted from 0.3 g of plant tissue by using Qiagen Plant DNeasy kits
(Qiagen, Hilden, Germany). PCR procedures, including primers (ITS1-F:
CTTGGTCATTTAGAGGAAGTAA, ITS2: GCTGCGTTCTTCATCGATGC) and con-
ditions were described in our previous studies.16,28 The PCR products of all
samples were normalized to equimolar amounts and sequenced on the
Illumina MiSeq PE300 platform of the Majorbio Company, Shanghai, China.
We first merged the paired-end reads using FLASH.57 QIIME 1.9.058 and

Cutadapt 1.9.159 were applied for quality filtering, trimming, and
chimera removal. Altogether 8,238,146 sequences passed quality filtering
(parameters: minlength= 240; maxambigs= 0; phred quality threshold=
30). ITSx 1.0.11 was used to remove the flanking small ribosomal subunit
(SSU) and 5.8 S genes,60 leaving the ITS1 region for further analyses. The
putative chimeric sequences were removed using a combination of de
novo and reference-based chimera checking, with the parameter
–non_chimeras_rentention= union in QIMME.61 The remaining sequences
were then clustered into operational taxonomic units (OTUs) at 97%
similarity threshold by using USEARCH.62 Singletons were also removed
during the USERCH clustering process. Fungal taxonomy was assigned to
each OTU by using the Ribosomal Database Project Classifier with
minimum confidence of 0.8.63 The UNITE v.8.0 (http://unite.ut.ee) release
for QIIME served as a reference database for fungal taxonomy.64 The OTU
table was then curated with LULU, a post-clustering OTU table curation
method, to improve diversity estimates.65

After removing non-fungal sequences, the final data set included
7,849,126 fungal sequences covering 6663 OTUs in 168 samples

(minimum 4662; maximum 70,779; mean 46,721 sequences per sample).
The rarefaction curves of the average observed OTU number are shown
in Fig. S2. FUNGuild was used to assign each OTU to a putative functional
guild, and the assignments with confidence ranking “possible” were
assigned as “unknown” as recommended by the authors.66 We further
modified the assignment of EcM fungi (the subject in the present study)
and their lineages according to.31 For some OTUs that were simulta-
neously assigned to endophytic, saprotrophic, or pathogenic fungi, we
considered these as endophytes in roots and saprotrophs in soil
samples.

Statistics
All statistical analyses were conducted in R 3.5.267 and AMOS 21.0 (AMOS
IBM, New York, USA). In order to analyze the alpha diversities of soil fungi
and the three most dominant guilds (viz., EcM, endophytic and
saprotrophic fungi) at the same sequencing depth, the data set was
subsampled to 4662 reads with 30 iterations. The mean number of
observed OTUs was used to represent the diversities of total fungi, EcM
fungi, endophytic fungi, and saprotrophic fungi, as previously implemen-
ted in.15,68 Numbers of EcM fungal lineages and saprotrophic genera,
families, orders, and classes of each sample were also calculated based on
the same subsampling.
First, linear and quadratic regression models were used to determine the

effect of elevation on diversities of total fungi, EcM fungi, endophytic fungi,
and saprotrophic fungi. The model with lowest Akaike’s information
criterion (AIC) value was selected. In order to account for spatial effects,
linear mixed-effects models (LMMs) were fitted using the lme4 package69

to analyze the variation in diversities of total fungi, EcM fungi, endophytic
fungi, and saprotrophic fungi along the elevation gradient with latitude
and longitude as random factors. Corrected Akaike Information Criterion
(AICc) for small data sets was used to identify the best mixed-effects model
from linear and quadratic polynomial models. The significance of each
LMM was tested by the function Anova in the car package.70 Marginal (m)
and conditional (c) R2 were calculated by the function r.squaredGLMM in
the MuMIn package.71 Marginal R2 (R2m) represents the variance explained

Fig. 1 Sampling map and procedures in this study. a Sampling map in the core region of CNR: the icons with different colors represent the
tree individuals of B. ermanii. Contours were fitted in a map of Google Earth. b The sampling procedure of neighboring soils: each red point
represent one soil core with depth 0–10 cm and diameter 3.5 cm. c The sampling procedure of fine roots: each red square (nearly 6 × 8 cm)
represent a sub-fine-root system (namely, d).
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by fixed effects, whereas conditional R2 (R2c) represents the variance
explained by both fixed and random effects.
Second, to test the application of IBT on EcM fungal diversity, DBH and

RTC of B. ermanii were chosen as proxies of island area and energy,
respectively, whereas DFE was chosen as the proxy of island isolation (i.e.,
island distance to mainland). Linear regression models were used to assess
the species-area, species-energy, and species-isolation relationships. In
order to account for spatial effects, LMMs were also used for these
independent relationships with latitude and longitude as random factors
as described above. Classical power-law function models were used to
identify the species-area relationship for EcM fungal diversities in roots and
soils using z-values in the formula S= CAz 72 to compare EcM fungi with
macroorganisms in previous studies. Furthermore, ordinary least squares
(OLS) multiple regression models were performed to identify the relative
contributions of DBH, RTC, and DFE on pattern of EcM fungal diversity
when considering other predictive variables. Here, five spatial vectors
(PCNM1-5) with significant positive spatial autocorrelation (Fig. S3) were
obtained by the principal coordinates of neighbor matrices (PCNM)
method,73 and added into OLS multiple regression models to consider the
possible geographic effect. EcM fungal diversities in roots and soils, 28 soil
properties, 18 root traits, elevation, slopes, DBH, tree height, canopy
diameter, and DFE were standardized (average= 0 and SD= 1) before the
OLS multiple regression analysis. AIC was used to identify the best OLS
multiple regression model, as implemented in the MASS package.74

Variance inflation factor (VIF) was calculated for each model by the
function vif in the car package. We used the criterion VIF < 3 to adjust to
multicollinearity of predictive variables. The function forward.sel in the
packfor package75 was implemented to estimate the relative contributions
of each predictive variable on the variation in EcM fungal diversity. The
best OLS multiple regression models in this step are called as OLS multiple
regression models #1 to distinguish these from the following models.
Third, to test the possible effect of biotic interactions on EcM fungal

diversity, diversities of endophytic and saprotrophic fungi in soils and roots
were added into the OLS multiple regression models. These resulted in
best OLS multiple regression models #2. The significant differences
between OLS multiple regression models #1 and #2 were identified by
the function anova in the stats package.67 In addition, partial least squares
regression (PLSR) was performed to identify the effect of biotic interactions
(i.e., saprotrophic fungal diversity) on EcM fungal diversity, as implemented
in the pls package.76 In order to test the evolutionary source effect within
the fungal kingdom, PLSR was also used to identify the relationships
between EcM fungal lineages and saprotrophic fungal taxa at the genus,
family, order, and class levels, respectively.
Finally, we used the integrated model (i.e., structural equation modeling

(SEM)) to combine different ecological frameworks, including IBT, biotic
interactions, the climate-driven hypothesis and effects of soil properties
and root traits, to predict EcM fungal diversity along the timberline.

Specifically, (1) we built a SEM theoretical model on EcM fungal diversity
(Fig. S4), in which elevation, island isolation, island area, island energy,
biotic interactions, and soil properties acted as ‘predictive aspects’. (2)
Based on the best fitted models among OLS multiple regression models #1
and #2, we added the corresponding predictive variables to SEM: Our first
step was to assign the predictive variables from OLS multiple regression
models to each ‘predictive aspects’ in SEM by 1:1 (e.g., DFE as island
isolation and DBH as island area). Because there were more than one of soil
properties and root traits screened in the best OLS multiple regression
models, we then continued to add other predictive variables into SEM
stepwise. (3) AIC was used to screen the best SEM model among
alternative models. The total, direct and indirect effects of each ‘predictive
aspects’ were interpreted by summing the standardized path coefficient
(SPC). Alternatively, variation partitioning analysis (VPA) was performed to
identify the shared and independent contributions of IBT, biotic
interactions, and other predictors (i.e., elevation and soil properties) on
EcM fungal diversity by the function varpart in the vegan package.77

RESULTS
Data characteristics
In total, 7,849,126 high-quality sequences from 168 samples (incl.
84 roots and 84 soils) were obtained and clustered into 6663
fungal OTUs. Of these, 3204 OTUs were assigned to three
dominant guilds (viz., EcM, endophytic and saprotrophic fungi),
which accounted for 75.3% of total sequences (Table S1). In EcM
fungi, 1,344,174 sequences (793 OTUs) and 1,952,644 sequences
(1015 OTUs) were assigned to 35 and 38 lineages in roots and
soils, respectively. The /russula-lactarius (55.0%), /tomentella-
thelephora (12.9%) and /piloderma (11.7%) were dominant EcM
fungal lineages in roots, whereas /russula-lactarius (43.3%),
/tomentella-thelephora (9.7%) and /cortinarius (9.0%) were
dominant lineages in soils (Table S2). Based on the rarefied data
set, diversity of total fungi, EcM fungi, and saprotrophic fungi per
sample was significantly higher in soils than in roots (Fig. S5).
Community composition of total fungi, EcM fungi, endophytic
fungi, and saprotrophic fungi was significantly differentiated
between roots and soils (Fig. S6).

Diversity patterns along the elevation gradient
Diversity of total fungi in roots declined monotonically with
increasing elevation, whereas diversity of total fungi in soils did
not vary significantly with elevation (Fig. 2). Diversity of EcM fungi
decreased significantly with increasing elevation in roots and soils,

Fig. 2 The elevation pattern in diversities of total fungi, EcM fungi, endophytic fungi, and saprotrophic fungi in roots and soils. The solid
red lines indicate statistical significance for the relationships of diversities and elevation, and the shaded areas show the 95% confidence
interval of the fit. n= 84 in either roots and soils.
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with quadratic models fitting better than linear models (Fig. 2,
Table S3). Beyond the treeline (ca. 1950 m a.s.l.), EcM fungal
diversity dramatically decreased with increasing elevation in roots
and soils (Fig. 2). Diversity of saprotrophic fungi in soils
significantly increased with increasing elevation, whereas diversity
of saprotrophic fungi in roots significantly decreased with
increasing elevation (Fig. 2). Diversity of endophytic fungi in soils
showed a U-shaped pattern with increasing elevation, whereas
diversity of endophytic fungi in roots did not vary significantly
with elevation (Fig. 2). LMMs showed the same elevation pattern
for diversities of total fungi, EcM fungi, and saprotrophic fungi, as
described above, when accounting for spatial effects (Table S4).

Application of IBT on EcM fungal diversity
Out of 52 candidate variables (incl. soil properties, roots traits,
DBH, tree height, canopy diameter, elevation, slope, and DFE),
DBH and RTC were most strongly correlated with EcM fungal
diversity in roots and soils, respectively (Table S5). EcM fungal
diversity monotonically increased with increasing DBH and RTC
but declined with increasing DFE in both roots and soils (Fig. 3).
LMMs showed the same diversity-DBH, diversity-RTC, and
diversity-DFE relationships for EcM fungi when accounting for
spatial effects (Table S6). Here, DBH, RTC, and DFE represented the
area, energy, and isolation of “virtual islands”, respectively, based
on the IBT framework. In addition, the variation of EcM fungal
diversity in relation to DBH more strongly conformed to power
functions in roots and soils (Roots: S= 13.2709A0.3085, Soils: S=
37.2492A0.1965, Fig. S7).
According to the OLS multiple regression models #1, DBH

(positive effect: Estimate= 0.28, R2adj.partial= 0.243), FFA (positive
effect: Estimate= 0.20, R2adj.partial= 0.049), conductivity (negative
effect: Estimate=−0.28, R2adj.partial= 0.028) and available Mn
(positive effect: Estimate= 0.19, R2adj.partial= 0.029) were the best
predictors of EcM fungal diversity in roots, cumulatively explaining
34.9% of the variation (AIC=−31.27). RTC (positive effect:
Estimate= 0.25, R2adj.partial= 0.285), cellulose (positive effect:

Estimate= 0.30, R2adj.partial= 0.086), PCNM5 (negative effect:
Estimate=−0.22, R2adj.partial= 0.037) and conductivity (negative
effect: Estimate=−0.21, R2adj.partial= 0.025) were the best pre-
dictors of EcM fungal diversity in soils, cumulatively explaining
43.3% of the variation (AIC=−42.79; Table 1).

Biotic interactions among fungal guilds
After adding diversities of endophytic and saprotrophic fungi as
the candidate predictors, OLS multiple regression models #2
explained more variation in EcM fungal diversity with significant
lower AIC values (Roots: R2adj.cum= 0.514, AIC=−55.76; Soils:
R2adj.cum= 0.621, AIC=−74.74; Table 2). In roots, saprotrophic
fungal diversity individually explained 31.3% of the variation in

Fig. 3 Island biogeography theory applies to EcM fungal diversity in roots and soils. The solid red lines indicate statistical significance for
the relationships of EcM fungal diversity and island area (i.e., DBH), island energy (i.e., RTC) and island isolation (i.e., DFE), respectively, and the
shaded areas show the 95% confidence interval of the fit. n= 84 in either roots and soils.

Table 1. Summary of the best ordinary least squares (OLS) multiple
regression models #1 for the effects of environmental variables and
elevation gradient on EcM fungal diversity in roots and soils.

Predictors Estimate t value P value VIF R2adj.cum
Roots: df= 79, R2adj = 0.349, SEresid= 0.807, P < 0.001, AIC=−31.27

DBH 0.28 2.40 0.019 1.75 0.243

FAA 0.20 2.00 0.049 1.25 0.292

Conductivity −0.28 −2.41 0.018 1.75 0.320

Available Mn 0.19 2.16 0.034 1.07 0.349

Soils: df= 79, R2adj = 0.433, SEresid= 0.753, P < 0.001, AIC=−42.79

RTC 0.25 2.40 0.019 1.57 0.285

Cellulose 0.30 3.04 0.003 1.44 0.371

PCNM5 −0.22 −2.57 0.012 1.03 0.408

Conductivity −0.21 −2.11 0.038 1.48 0.433

Notably, PCNM1-5, as the proxies of geographic effects, are also added in
the models.
AIC Akaike’s information criterion, VIF variance inflation factor.
n= 84 samples in either roots and soils.
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EcM fungal diversity (positive effect: Estimate= 0.45, R2adj.partial=
0.313). Similarly, soil saprotrophic fungal diversity strongly
affected the variation in EcM fungal diversity in soils (positive
effect: Estimate= 0.48, R2adj.partial= 0.088). The significant differ-
ences of OLS multiple regression models #1 and #2 were also
corroborated by ANOVA tests (P < 0.001). Furthermore, PLSR
analyses showed that increasing saprotrophic fungal diversity
significantly enhanced EcM fungal diversity in roots and soils
when accounting for all other significant predictive variables
(Fig. 4). Similarly, greater number of EcM fungal lineages occurred
with greater saprotrophic fungal richness at the genus, family,
order, and class levels (Fig. S8).
In addition, OLS multiple regression models showed that EcM

and endophytic fungal diversities can positively affect sapro-
trophic fungal diversity in both roots and soils (Table S7).

Saprotrophic fungal diversity can positively affect endophytic
fungal diversity in roots and soils, respectively (Table S8).

Integrated effects revealed by SEM
Based on the SEM theoretical model (Fig. S4), we built two and
four SEM models for roots and soils, respectively. Although adding
more predictors from OLS multiple regression models #2 into SEM
enhanced predictive power of EcM fungal diversity, it notably
increased AIC values by at least 12.10 and 9.36 in roots and soils,
respectively (Figs. 5 and S9). Therefore, the best SEM models were
the simplest models with lowest AIC values, which revealed the
integrated effects of elevation, island area (i.e., DBH), island energy
(i.e., RTC), island isolation (i.e., DFE), soil properties and biotic
interactions (i.e., saprotrophic fungal diversity) on EcM fungal
diversity. The best SEM models explained 50% and 56% of the
variation of EcM fungal diversity in roots and soils, respectively
(Fig. 5).
The positive or negative effect of each predictor in the best SEM

models were the same as that in OLS multiple regression models
and PLSR (Table 3). In both roots and soils, saprotrophic fungal
diversity exhibited the strongest direct and total standardized
effect on EcM fungal diversity (Roots: SPC= 0.470; Soils: SPC=
0.570). In addition, island isolation showed the strongest indirect
effect on EcM fungal diversity in roots (SPC=−0.290), while
elevation showed the strongest indirect effect on EcM fungal
diversity in soils (SPC=−0.335). According to VPA, the indepen-
dent effect on EcM fungal diversity was also strongest for
saprotrophic fungal diversity either in roots or in soils (Fig. S10).

DISCUSSION
Elevation pattern of fungal diversity is niche- and guild-
dependent
Along the 430-m vertical gradient, diversity of total fungi in roots
decreased monotonically with increasing elevation, whereas
diversity of total fungi in soils did not vary (Fig. 2). With increasing
elevation, content of several nutrients in fine roots significantly
decreased, for example cellulose (Pearson r=−0.69), hemicellu-
lose (Pearson r=−0.78), and soluble sugar (Pearson r=−0.77).
Smaller root systems predominated at the higher elevation sites.
The reduced provision of nutrients and ‘shelters’ at higher
elevations may lead to the monotonic decrease in total fungal
diversity observed in roots but not in soils.
Saprotrophic fungal diversity monotonically increased with

increasing elevation in soils (Fig. 2). Previously, at the similar
elevation sites, we also observed that diversity of foliar fungal
endophytes of B. ermanii significantly increased with increasing

Table 2. Summary of the best ordinary least squares (OLS) multiple
regression models #2 for the effects of environmental variables,
elevation gradient, and biotic interactions on EcM fungal diversity in
roots and soils.

Predictors Estimate t value P value VIF R2
adj:cum

Roots: df= 79, R2adj = 0.514, SEresid= 0.697, P < 0.001, AIC=−55.76

Diversity of
saprotrophic
fungi in roots

0.45 5.66 <0.001 1.07 0.313

DBH 0.26 2.66 0.009 1.69 0.457

Conductivity −0.27 −2.73 0.008 1.70 0.486

Available Mn 0.19 2.36 0.021 1.06 0.514

Soils: df= 77, R2adj = 0.621, SEresid= 0.616, P < 0.001, AIC=−74.74

RTC 0.23 2.55 0.013 1.71 0.285

Diversity of
saprotrophic
fungi in soils

0.48 6.14 <0.001 1.36 0.373

Conductivity −0.49 −5.28 <0.001 1.92 0.532

Cellulose 0.25 3.05 0.003 1.46 0.571

DON 0.21 2.89 0.005 1.16 0.599

PCNM5 −0.16 −2.32 0.023 1.08 0.621

Notably, PCNM1-5, as the proxies of geographic effects, are also added in
the models.
AIC Akaike’s information criterion, VIF variance inflation factor.
n= 84 samples in either roots and soils.

Fig. 4 Relationships between EcM and saprotrophic fungal diversities in roots and soils when accounting for the effects of soil
properties, roots traits, DBH, tree height, canopy diameter, elevation, slope, DFE, and spatial vectors. The residues of EcM and
saprotrophic fungal diversities are fitted by PLSR. The solid red lines indicate statistical significance for the relationships, and the shaded areas
show the 95% confidence interval of the fit. n= 84 in either roots and soils.
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elevation.16 When leaves of B. ermanii fall, most endophytic fungi
continue functioning as saprotrophs in litter and upper soil layers
that may enhance the soil saprotrophic fungal diversity at higher
elevations. Also, the higher diversity of herbaceous plants at the
higher elevation habitats (data not shown) possibly contributed to
the higher diversity of soil saprotrophic fungi by providing more
diverse habitat and plant chemical inputs (i.e., the plant ‘Zinke’
effect).78 EcM fungal diversity significantly decreased with
increasing elevation in both roots and soils (Fig. 2). This is
consistent with studies in Hyrcanian forests of northern Iran and
the Front Range of the Canadian Rockies,8,79 where climate factors
were proposed as the primary mechanism to explain the variation.
Like the responses of plant and animal diversities, harsher climate
conditions such as lower temperature, stronger wind and
associated seasonal water-deficiency may decrease EcM fungal
diversity at higher elevations. Here, quadratic regression models
better explained EcM fungal diversity than linear models
(Tables S3, S4), and EcM fungal diversity decreased sharply
beyond the treeline (Fig. 2), suggesting that alternative mechan-
isms may predict EcM fungal diversity besides the climate-driven
hypothesis.

Predicting EcM fungal diversity using the IBT framework
Consistent with our first hypothesis, EcM fungal diversity
significantly increased with increasing DBH and RTC, but

decreased with increasing DFE in both roots and soils (Fig. 3).
These relationships remained when accounting for spatial effects
(Table S6). DBH and RTC were also the strongest predictors of EcM
fungal diversity in roots and soils, respectively, as revealed by
Pearson correlation analyses (Table S5) and OLS multiple
regression models #1 (Table 1). DBH is commonly used as a
surrogate for tree size,4,80 and greater DBH reflects larger root
systems of individual trees belowground.81

In terms of EcM fungal diversity in soils, RTC (rather than DBH)
was the strongest predictor in the best OLS multiple regression
model, exclusively explaining 28.5% of the variation (Table 1). The
magnitude of island energy effect was much stronger than that of
island area effect on EcM fungal diversity in neighboring soils.
Wright (1983) proposed that species-energy theory, as the
extension of IBT, could explain ~70–80% of the variation in
diversities on islands.22 Interestingly, we also observed the
correspondence of species-energy theory to foliar fungal endo-
phytic diversity of B. ermanii in the same study area. In particular,
diversity of foliar fungal endophytes strongly increased with
increasing leaf total carbon content.16 These results collectively
highlight the tight linkage between vegetation carbon pools and
symbiotic fungal diversity within this timberline ecosystem, both
aboveground and belowground.
In the present study, we showed the prevalence of IBT in

predicting EcM fungal diversity along the timberline. Over the last

Fig. 5 The best integrated SEM models revealing the direct and indirect effects of elevation, island isolation, island area, island energy,
biotic interactions, and soil properties on EcM fungal diversity in roots and soils. DFE (distance to forest edge), DBH (diameter at breast
height), RTC (root total carbon) and SAP.D (saprotrophic fungal diversity) in the diagrams served as proxies for island isolation, area, energy,
and biotic interactions, respectively. The paths of direct effects on EcM fungal diversity are in bold, and only significant paths are retained. Blue
color indicates the positive effect, while red color indicates the negative effect. SPC is shown near each corresponding path. GFI goodness of
fit index, RMSEA root mean square error of approximation, ECM.D EcM fungal diversity. n= 84 in either roots and soils.

Table 3. Summary of the magnitude of each predictor on EcM fungal diversity by standardized path coefficient (SPC) in SEM models.

Roots Soils

Direct Indirect Total Direct Indirect Total

Elevation ✗ −0.268 −0.268 ✗ −0.335 −0.335

Island.I ✗ −0.290 −0.290 ✗ −0.327 −0.327

Island.A 0.250 0.189 0.439 0.260 0.054 0.314

Island.E ✗ ✗ ✗ 0.330 ✗ 0.330

Soil.P −0.240 ✗ −0.240 −0.430 0.137 −0.293

Biotic.I 0.470 ✗ 0.470 0.570 ✗ 0.570

Island.I, Island.A, and Island.E are represented by DFE, DBH, and RTC, respectively; Soil.P and Biotic.I are represented by soil conductivity and saprotrophic
fungal diversity, respectively. These five variables and elevation consist of the best SEM models (Fig. 5), which explain the large variation of EcM fungal
diversity. Here, ‘total’ indicates standardized total effect, which is summed by direct and indirect effects, and the symbol ‘✗’ indicates no significant effects.
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several decades, some studies have used IBT to predict diversities
of plant-associated fungi, e.g., phyllosphere fungi,82 nectar-
inhabiting fungi,83 and AM fungi.84 Coincidentally, diversity of
EcM fungi fitted well into the framework of IBT, exhibiting strong
species-area and species-isolation relationships.25–27 This is partly
attributed to the relatively strong dispersal limitation and high
reliance of EcM fungi on plant carbon sources compared with
other fungal guilds.85 In addition, we found that the relationship
of EcM fungal diversity with DBH more strongly conformed to
power functions, with the z-values (i.e., species-area slope) 0.31
and 0.20 in roots and soils, respectively (Fig. S7). These values are
within the range reported for various macroorganism groups21

and agree with the values reported for EcM fungi previously.25

Furthermore, these values imply that EcM fungal diversity varies
more in roots than that in soils with increasing island area. EcM
fungal diversity in soils seems to be more affected by the island
energy effect, in particular RTC and cellulose content (Tables 1
and S5).

The positive effect of saprotrophic fungal diversity on EcM
fungal diversity
Consistent with our second hypothesis, biotic interactions strongly
contributed to predicting EcM fungal diversity in roots and soils.
The OLS multiple regression models #2 and PLSR showed that
saprotrophic fungal diversity significantly enhanced EcM fungal
diversity in roots and soils when accounting for the effects of soil
properties, roots traits, DBH, tree height, canopy diameter,
elevation, slope, DFE, and spatial factors (i.e., PCNM1-5) (Table 2,
Fig. 4).
Recently, intense competition between EcM fungi and sapro-

trophic fungi for nitrogen in organic materials (i.e., Gadgil effect)
has been addressed.86,87 As such, limited shared resources and
competitive exclusion are supposed to restrict the number of
fungal taxa coexisting in the same niche. In this study, we
observed a strong positive association between EcM and
saprotrophic fungal diversities—increasing saprotrophic fungal
diversity exclusively explained 31.3% and 8.8% of the increase in
EcM fungal diversity in roots and soils, respectively (Table 2). We
assume that it may be primarily attributed to the evolutionary
source effect, as EcM fungi independently evolved ~60 times from
different free-living saprotrophic fungal lineages.2 Here, the
increasing numbers of saprotrophic fungal genera, families,
orders, and classes also significantly enhanced the numbers of
EcM fungal lineages in roots and soils (Fig. S8). It implies that the
more lineages of saprotrophic fungi occur, the more lineages of
EcM fungi are accompanied through the long evolutionary history,
and this evolutionary association may reinforce co-dependencies
in biodiversity.88

In the best OLS multiple regression models with saprotrophic
fungal diversity as a response variable, increasing EcM fungal
diversity similarly explained 31.3% and 4.9% of the increases in
saprotrophic fungal diversity in roots and soils, respectively
(Table S7). The reverse SEM models (Fig. S11) assuming that
EcM fungal diversity directly affects saprotrophic fungal diversity
also fitted equally well as the best SEM models (Fig. 5), with the
difference of AIC values less than 2. That means that we cannot
determine which direction of this biotic interaction is better, and
the diversities of EcM and saprotrophic fungi may affect each
other. Anyway, the determination on biotic interaction directions
was out of the scope of this study based on the present data.

Integrative modeling: comprehensive understanding with
multilevel frameworks
As the integrative modeling in this study, SEM revealed the
significant effects of elevation, elements within IBT (i.e., island
area, energy, and isolation), biotic interactions and soil properties
on EcM fungal diversities in roots and soils (Fig. 5). Furthermore,
SEM discerned the direct and indirect effects of multilevel

predictors and their relative contributions, respectively (Table 3).
In particular, the integrative modeling reveals some cryptic
mechanisms that are hardly found by simple models (e.g.,
traditional bivariate analyses). One study on relationships between
plant richness and productivity detailed the advantages of
integrative modeling and pointed out a strong and consistent
enhancement of productivity by richness that was in striking
contrast with the superficial data patterns.39 In our study, the
effect of saprotrophic fungal diversity on EcM fungal diversity was
not seen in soils by bivariate regressions (R2adj= 0.012, P= 0.163).
However, SEM clearly showed that this effect of saprotrophic
fungal diversity was direct and strongest in soils (Table 3). In
addition, SEM revealed the indirect effects of elevation and DFE in
roots and soils, although these two effects were absent in the best
OLS multiple regression models (Table 2).
One of the major findings revealed by SEM may be the

extremely strong and direct effect of saprotrophic fungal diversity
on EcM fungal diversity in both roots and soils. This implies the
pronounced role of biotic interactions in predicting EcM fungal
diversity pattern in this relict and timberline environment, and
diversities of saprotrophic and EcM fungi rely on each other that
may be through a complex ecological and evolutionary linkage.
Nonetheless, there were still fine-scale distinctions in the relative
contributions of different predictors between roots and soils. For
example, island isolation showed the strongest indirect effect on
EcM fungal diversity in roots, while elevation showed the
strongest indirect effect on EcM fungal diversity in soils; island
area was the second strongest factor in terms of direct effect in
roots, while soil properties was the second strongest factor in soils
(Table 3). Similarly, VPA showed that elevation and soil properties
accumulatively explained 39.7% of the variation in EcM fungal
diversity in soils, while they only explained 24.3% of the variation
in roots (Fig. S10). Climate and soil factors seem to be more
important in affecting EcM fungal diversity in soil environment
than fine roots.

CONCLUSION
By means of integrative modeling and multiple models compar-
isons, we revealed the consistent and pronounced effects of both
the elements within IBT and saprotrophic fungal diversity on EcM
fungal diversity of B. ermanii in both roots and soils. Recently, the
concept has emerged that regional EcM fungal diversity pattern
will be deeply impacted by warming of forests in future,89 and low
diversity and availability of EcM fungal taxa beyond the range
edge of host plant may conversely limit the range expansion of
that plant under climate change scenario.52 Considering the
warming-induced upwards migration of treeline on Changbai
Mountain,51 EcM fungal diversity of B. ermanii will suffer from a
dramatic shift across this subalpine landscape in future. Our
findings suggest that their shift will strongly depend on the
diversities of other fungal guilds (e.g., saprotrophic fungi in soils)
and vary between different niches (fine roots vs. neighboring
soils), together giving a feedback to climate change and landscape
vegetation dynamics through fungal-associated biogeochemical
processes.90,91
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