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Abstract
Gastric cancer is the fifth most common malignancy and third leading cancer-
related cause of death worldwide. Helicobacter pylori is a Gram-negative bacterium 
that inhabits the gastric environment of 60.3% of the world’s population and 
represents the main risk factor for the onset of gastric neoplasms. CagA is the 
most important virulence factor in H. pylori, and is a translocated oncoprotein that 
induces morphofunctional modifications in gastric epithelial cells and a chronic 
inflammatory response that increases the risk of developing precancerous lesions. 
Upon translocation and tyrosine phosphorylation, CagA moves to the cell 
membrane and acts as a pathological scaffold protein that simultaneously 
interacts with multiple intracellular signaling pathways, thereby disrupting cell 
proliferation, differentiation and apoptosis. All these alterations in cell biology 
increase the risk of damaged cells acquiring pro-oncogenic genetic changes. In this 
sense, once gastric cancer sets in, its perpetuation is independent of the presence 
of the oncoprotein, characterizing a “hit-and-run” carcinogenic mechanism. 
Therefore, this review aims to describe H. pylori- and CagA-related oncogenic 
mechanisms, to update readers and discuss the novelties and perspectives in this 
field.
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Core tip: CagA is a translocated effector protein that induces morphofunctional modifications in gastric 
epithelial cells and persistent chronic gastric inflammation. Upon translocation, the bacterial oncoprotein 
acts as a promiscuous scaffold or hub protein, which is capable of disrupting multiple host signaling 
pathways, thereby inducing precancerous cellular alterations. This review aims to describe Helicobacter 
pylori- and CagA-related oncogenic mechanisms, as well as to discuss the novelties and perspectives in 
this field.
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INTRODUCTION
The multiple virulence mechanisms of Helicobacter pylori confer an ability to colonize the hostile gastric 
environment[1]. This pathogen infects > 50% of the global population and is a major health concern due 
to the serious repercussions related to its colonization[2]. Among the diseases predisposed by H. pylori 
infection, gastric adenocarcinoma is the fifth most common malignancy and third leading cancer-related 
cause of death worldwide[3]. Of note, the close relationship between H. pylori and gastric cancer has led 
the World Health Organization International Agency for Research on Cancer Working Group to 
consider the bacterium as a class 1 carcinogen based on epidemiological evidence and biological 
plausibility[4].

Various virulence factors contribute to successful H. pylori colonization and pathogenicity[5]. Among 
these factors is cagA, a well-known gene that encodes an oncogenic protein that seems to be a 
determining agent in H. pylori-related gastric carcinogenesis[6]. CagA seropositivity, regardless of H. 
pylori status, is associated with increased gastric cancer risk. The cagA gene is located in the 
pathogenicity island cag (cagPAI), a nucleic acid sequence that encodes the type IV secretion system 
(T4SS), which is a bacterial apparatus that delivers the CagA protein and peptidoglycans into gastric 
epithelial cells. Inside host cells, that virulence factor suffers phosphorylation at a Glu-Pro-Ile-Tyr-Ala 
(EPIYA) motif, a variable C-terminal region and, subsequently, promotes the activation of the SH2-
containing protein tyrosine phosphatase (SHP2)[7,8]. SHP2, in turn, triggers various mechanisms that 
lead to important cell changes, including alterations in cellular morphology through the disturbing of 
cell polarity, which leads to a “hummingbird” phenotype, as well as carcinogenesis-related changes in 
cytoskeleton[9].

Despite the extensive number of studies on the relationship between CagA and H. pylori infection, 
much still has to be done in order to better understand the role of this oncoprotein in gastric carcino-
genesis. Recent investigations have explored multiple host–pathogen interactions in this setting and 
found other CagA-triggered pathways that probably influence cancer development[10]. Moreover, the 
action of small RNAs in CagA post-transcriptional regulation has been investigated, showing a broad 
field to be explored[11]. This review aims to describe H. pylori- and CagA-related oncogenic 
mechanisms, and to discuss the novelties and perspectives in this field.

PATHOGENESIS OF H. PYLORI GASTRIC INFECTION
The capacity to resist severe stomach acid conditions is a notable aspect of H. pylori. To provide 
successful colonization, the pathogen uses various mechanisms, such as enhanced motility, adherence to 
gastric epithelial cells, enzymatic machinery, and virulence factors[12]. Besides that, the host immune 
system also plays an essential role during the infection, mainly by a Th1 response against the bacteria
[13].

The bacterial flagella are crucial for reaching the protective mucus layer at the exterior of the gastric 
mucosa. After entering the stomach, H. pylori uses its flagella for swimming in gastric content, allowing 
the pathogen to arrive at the mucus layer[14]. Some studies have shown that the ferric uptake regulator 
performs an important role in bacterial colonization, positively regulating the flagellar motility switch in 
H. pylori strain J99[15]. Another factor described as a motility modulator is HP0231, a Dsb-like protein. It 
cooperates in redox homeostasis and is fundamental for gastric establishment[16].
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H. pylori also depends on chemotaxis for its colonization. The essential pathogen chemoreceptors are 
T1pA, B, C, D, a CheA kinase, a CheY responsive regulator, and numerous coupling proteins, playing a 
pivotal role in bacteria pathogenesis[17]. The aggregation of the coupling proteins CheW and CheV1 
culminates in the formation of the CheA chemotaxis complex, activating CheA kinase and optimizing 
the chemotaxis function[18].

An ideal balance between nickel absorption and incorporation is indispensable for H. pylori 
colonization, since nickel is an essential metal for bacterial survival and infection[12,19]. This metal is a 
cofactor for two significant enzymes: urease and hydrogenase. Both of them have a role in gastric 
infection, contributing, respectively, to bacterial colonization and metabolism signaling cascade to 
produce energy[20,21].

Adherence and outer membrane gastric cell receptors are also relevant in bacterial pathogenesis. The 
blood group antigen binding adhesin (BabA) is the best-studied molecule of H. pylori[22]. This protein 
sequence affects acid sensitivity and plays a critical role in bacterial acid adaptation during infection
[12]. Pathogens with high BabA expression levels have increased virulence, leading to duodenal cancer 
and gastric adenocarcinoma[23]. Another adhesin has been described: HopQ. This molecule binds to cell 
adhesion molecules related to the carcinoembryonic antigen (carcinoembryonic antigen-related cell 
adhesion molecules, CEACAMs) 1, 3, 5 and 6, promoting cell signaling guided by this interaction, 
allowing the translocation of the oncoprotein CagA, the most important H. pylori virulence factor, and 
rising proinflammatory mediators in the infected cells[24,25].

Additionally, besides CagA, a wide range of virulence factors like vacuolating cytotoxin A (VacA), 
DupA and OipA have been reported as determinant molecules for H. pylori pathogenicity[26]. VacA, 
whose gene is found in most bacterial strains, promotes the formation of acidic vacuoles in gastric 
epithelial cells and modulate the immune response, leading to an immune tolerance and enduring H. 
pylori infection, due to its role in the activity of T cells and antigen-presenting cells [27,28]. These VacA 
functions can lead to gastritis and duodenal ulcer and gastric cancer development. The bacterial protein 
DupA provides acid resistance to the pathogen, and seems to cooperate with the production of 
interleukin (IL)-8, enhancing its levels in the gastric mucosa[29]. The outer membrane protein OipA 
contributes to the adhesion and activation of IL-8 production, increasing inflammation.  OipA is a 
significant virulence factor on the infection outcome, resulting in increased development of gastric 
cancer and peptic ulcers[30].

H. pylori infection produces complex host immune responses, through diverse immune mechanisms
[31]. During the first contact with the bacteria, a wide range of antigens like lipoteichoic acid and other 
lipoproteins bind to stomach cell receptors, known as Toll-like receptors (TLRs)[32]. After this 
interaction, NF-B and c-Jun N-terminal kinase activation takes place, among the proinflammatory 
cytokine release as signaling pathways[33]. Neutrophils and mononuclear cells infiltrate the gastric 
surface, producing nitric oxide and reactive oxygen species (ROS), and recruiting CD4+ and CD8+ T cells
[34]. Finally, a Th1-polarized response occurs, with enhanced levels of IFN-γ, IL-1β, Il-6, IL-7, IL-8, IL-10 
and IL-18[35,36].

A correlation has been shown between Th17 cells, a proinflammatory subset of CD4+ T cells, and their 
affiliated cytokines (IL-17A, IL-17F, IL-21, IL-22 and IL-26) in persistent H. pylori-mediated gastric 
inflammation and the subsequent gastric cancer development[36,37]. We have demonstrated in a 
previous study that an IL-17 T-cell response predominates in H. pylori-associated gastritis in adults, 
whereas, in children, there is predominance of a T regulatory (Treg) cell response. IL-17A is known to 
play an important role in the recruitment and activation of polymorphonuclear cells that are vital for H. 
pylori clearance. Treg and Th17 cells are mutually controlled. Therefore, these findings could explain the 
higher susceptibility of children to the infection and bacterial persistence[38].

IL-27 expression differs between H. pylori-related diseases. Accordingly, we have shown that there is 
a high expression of IL-27 in the gastric mucosa and serum of H. pylori-positive duodenal ulcer patients. 
In contrast, IL-27 is absent in the gastric mucosa and serum of patients with gastric cancer. Consistent 
with the immunosuppressive role of IL-27 in Th17 cells and IL-6 expression, we observed that 
expression of Th17-cell-associated cytokines was lower in the patients with duodenal ulcer, which 
secreted a large concentration of proinflammatory Th1 representative cytokines. We demonstrated that 
there is high levels of IL-1β, IL-6, IL-17A, IL-23, and transforming growth factor-β, involved in IL-17A 
expression, on the gastric mucosa and in the serum of gastric cancer patients. Therefore, IL-27 may be 
involved in the development of different patterns of H. pylori-induced gastritis and its progression. 
Taking into account that IL-27 has evident antitumor activity, our results point to a possible therapeutic 
use of IL-27 as an anticancer agent[39].

Recently, the role of the interaction between H. pylori infection and the gastrointestinal microbiome in 
gastric carcinogenesis has also been investigated. In this regard, researchers explored the diversity and 
composition of the gastric microbiome at different stages of disease, including normal gastric mucosa, 
chronic gastritis, atrophic gastritis, intestinal metaplasia, and gastric cancer[40]. A recent meta-analysis 
indicated that H. pylori-positive gastric samples exhibit reduced microbial diversity, altered microbial 
community, composition, and bacterial interactions. An increased abundance of opportunistic 
pathogens (e.g., Veillonella and Parvimonas) was observed concomitantly with a decrease in putative 
probiotics (e.g., Bifidobacterium) throughout the stages of disease progression[41]. Another study has 
suggested that successful eradication of H. pylori could reverse the tendency towards gastric microbiota 
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dysbiosis and show beneficial effects on the gastric microbiota[42]. The next step in this field could be to 
conduct a prospective, multicenter, crosscultural study to validate these results and explore the 
mechanisms underlying the H. pylori–gastric microbiota interaction and its role in gastric cancer 
development[43].

CAGA — H. PYLORI TRANSLOCATED ONCOPROTEIN
CagA is a translocated effector protein that induces morphofunctional modifications in gastric epithelial 
cells and inflammatory responses, whose balance allows successful colonization of the acidic stomach 
environment[44,45]. The CagA gene is located in the cagPAI; a 40-kb DNA fragment that contains about 
31 genes and confers virulence to some strains of H. pylori. Some genes of the island encode proteins that 
form a T4SS, which is responsible for the translocation of CagA into the cytoplasm of gastric epithelial 
cells through interaction of bacterial and host cell components[46-48]. The oncoprotein has a molecular 
weight of 128–145 kDa and its tertiary structure is characterized by a structured N-terminal region, split 
into Domains I–III and an unstructured C-terminal tail[49].

Injection of CagA depends on the recognition of its N-terminal and C-terminal portions by T4SS, 
which can occur simultaneously or not[50]. However, several other mechanisms are also required for its 
inoculation. We highlight the binding between T4SS CagL and CagY to human β1-integrins[51,52], 
along with the CEACAMs and H. pylori outer membrane protein Q (HopQ) interaction, that allow the 
translocation of CagA into the host cells[53]. A recent study noted that the instability of the relationship 
between H. pylori HopQ and mouse CEACAMs may explain why the pathogenesis of infection in the 
stomach of rodents infected with CagA positive H. pylori strains occurs differently from infection by the 
same strain in humans. The authors also demonstrated that the presence of functional T4SS is associated 
with a time-dependent reduction in human CEACAM1 levels after CagA-positive H. pylori infection
[54]. However, it is still unclear whether the instability of the HopQ–CEACAMs relationship favors the 
host or the bacterium, so more studies are needed to investigate the possibility of these interactions 
being beneficial in favor of the patient infected with H. pylori. BabA is apparently also capable of 
increasing T4SS activity[55].

CagA is known to possess multiple phosphorylation segments in its tertiary structure. The 
phosphorylation sites are denominated EPIYA sequences; regions consisting of five amino acids (Glu-
Pro-Ile-Tyr-Ala) located in the C-terminal portion of the oncoprotein. Four different EPIYA segments 
have been described according to the different amino acid sequences surrounding each motif, 
designated EPIYA-A (32 amino acids), B (40 amino acids), C (34 amino acids) and D (42 amino acids). 
EPIYA-A and EPIYA-B motifs have been identified in almost all CagA-positive H. pylori strains, 
followed by one, two, or three EPIYA-C sequences in western strains, or an EPIYA-D segment in East 
Asian strains[56,57]. Figure 1A summarizes the main structural domain differences between East Asian 
and western CagA.

Once inside the gastric epithelial cells, the EPIYA segments are selectively tyrosine-phosphorylated 
by different kinases of the Src family (s-Src, Fyn, Lyn and Yes) or by Abl kinase of the host cells[58-61]. 
After the phosphorylation process, CagA moves to the cell membrane and acts as a promiscuous 
scaffold protein that simultaneously disturbs multiple signaling pathways, involved in the regulation of 
a large range of cellular processes, including proliferation, differentiation and apoptosis[62].

In this sense, a better understanding of the molecular structure of CagA and the interactions 
promoted by CagA-positive H. pylori strains to prevail in the host organism may be essential in 
identifying variations in prognosis, disease severity, and mechanisms that may be beneficial to the host, 
according to infections by different H. pylori strains.

ROLE OF CagA IN GASTRIC CARCINOGENESIS
The translocated effector protein CagA was found to be associated with gastric cancer development 
even before the initial elucidation of its pathogenic mechanisms[63,64]. Initially, the correlation between 
infection with CagA-positive H. pylori strains and carcinogenesis in vivo was established by experiments 
in Mongolian gerbil models[65-67]. More recently, transgenic expression of CagA in mice and zebrafish 
has also been shown to be associated with the development of gastric and hematopoietic neoplasms[68,
69]. Thereby, the oncogenic potential of the bacterial protein has become increasingly evident and, at the 
same time, different studies have sought to clarify its underlying mechanisms. Nowadays, CagA is 
considered a pathological analog of a scaffold or hub protein capable of disrupting multiple host 
signaling pathways and promoting a pro-oncogenic microenvironment[70].

Upon translocation, CagA localizes to the inner surface of the plasmatic membrane, where it 
undergoes tyrosine phosphorylation by multiple members of the Src family kinases and c-Abl kinases[8,
10,59,61]. As mentioned above, four different EPIYA segments were described according to the different 
amino acid sequences surrounding each motif, designated EPIYA-A–EPIYA-D[56,57]. Strains containing 
EPIYA-D or at least two EPIYA-C motifs are known to be associated with an increased risk of 
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Figure 1 Helicobacter pylori oncoprotein: molecular structure and CagA-mediated carcinogenesis underlying mechanisms. A: Structural 
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domain differences between East Asian and western CagA. CagA tertiary structure is characterized by a structured N-terminal region and an unstructured C-terminal 
tail. The oncoprotein contains repetitive sequences in its C-terminal polymorphic region, known as the EPIYA motifs and CM motif. EPIYA-A and EPIYA-B motifs 
were identified in almost all CagA-positive H. pylori strains, followed by one, two, or three EPIYA-C sequences in western strains, or an EPIYA-D segment in East 
Asian strains. The CM motif, although highly conserved, possesses a 5-amino-acid difference between East Asian and western strains, hence distinguishing East 
Asian and Western CagA; B: Molecular mechanisms of CagA-mediated carcinogenesis. Upon translocation, CagA EPIYA motifs are tyrosine-phosphorylated by Src 
family or c-Abl kinases of the host cell. After phosphorylation, CagA localizes to the inner leaflet of the plasmatic membrane and acts as a promiscuous scaffold or 
hub protein that simultaneously disturbs multiple host signaling pathways, involved in regulation of a large range of cellular processes, including proliferation, 
differentiation and apoptosis. Ultimately, the disharmonic interaction between CagA and host proteins leads to pro-oncogenic cellular alterations. CM: CagA-
multimerization; CMW: western CagA.

developing precancerous lesions and gastric cancer[71-75]. Queiroz et al[75] demonstrated in a Brazilian 
population that first-degree relatives of patients with gastric cancer were significantly and 
independently more frequently colonized by H. pylori strains with higher numbers of CagA EPIYA-C 
segments, which may be associated with an enhanced risk of developing this neoplasm[76].

Following tyrosine phosphorylation, EPIYA-C and D motifs acquire the ability to interact with SHP2 
and induce pathological intracellular signaling[9]. Abnormal SHP2 activity leads to aberrant activation 
of the Ras–MAPK pathway, which has been associated with accelerated cell cycle progression and 
enhanced cell proliferation. CagA-activated SHP2 is also able to interact with proteins such as focal 
adhesion kinase, thence leading to cell elongation, increased motility, and cytoskeleton rearrangements
[77,78]. All these pathological alterations in cell biology increase the risk of damaged cells acquiring 
precancerous genetic changes[79]. It is worth mentioning that CagA possessing EPIYA-D or a higher 
number of EPIYA-C segments binds more robustly to SHP2, which may explain their association with 
higher risk of gastric cancer development[8]. It has also been described that EPIYA-A and B motifs are 
able to interact with the SH2 domains of the tyrosine-protein kinase Csk, thereby inducing damage to 
actin binding proteins such as cortactin and vinculin. Consequently, rearrangements in the cytoskeleton 
reduce cell adhesion to the extracellular matrix and increase cell motility[80]. A recent study observed 
that H. pylori, through the T4SS encoded by cagPAI, interferes with the activity of cortectin binding 
partners, and stimulates overexpression of this molecule and promotes alterations in the actin 
cytoskeleton that may favor cell adhesion, motility and invasion of tumor cells contributing to the 
development of gastric cancer[81].

Recent studies have described that SHIP2, an SH2-containing phosphatidylinositol 5′-phosphatase, is 
a previously undiscovered CagA binding protein. Similar to SHP2, the SHIP2 protein is able to bind to 
EPIYA-C and D motifs in a tyrosine phosphorylation-dependent manner. In contrast, SHIP2 binds more 
robustly to EPIYA-C than to EPIYA-D sequences, thereby inducing changes in membrane 
phosphatidylinositol composition. This process enhances the subsequent delivery of CagA to the host 
cell, which binds to and dysregulates SHP2[82].

Other mechanisms have also been related to the aberrant induction of morphological changes, 
increased motility and cell proliferation[83]. In a tyrosine-phosphorylation-dependent manner, the 
interaction of CagA with the adapter molecule Crk is known to drive abnormal cell proliferation via 
MAPK signaling. Furthermore, the activation of Crk signaling pathways lead to the loss of cell–cell 
adhesion, hence inducing cell scattering/hummingbird phenotype and cell–cell dissociation[84]. It is 
important to mention that the EPIYA motif that corresponds to the binding site Csk has not been 
identified yet. In contrast, activation of the growth factor receptor-bound protein 2 (Grb2) protein and 
the C-Met oncogene in a tyrosine-phosphorylation-independent manner can also lead to similar 
pathological effects, highlighting the multiplicity of pro-oncogenic mechanisms of CagA[85,86]. Grb2 is 
an important regulator of Ras–MAPK pathway activation, capable of deregulating cell proliferation. 
Activation of C-Met-mediated PI3K/Akt signaling is associated with cancer-promoting mitogenic and 
inflammatory response[87-91].

The ability of CagA to disrupt the epithelial barrier has also been widely linked to its carcinogenic 
potential. In addition to the EPIYA sequences, the oncoprotein contains another repetitive sequence in 
its C-terminal polymorphic region, known as the CagA-multimerization (CM) motif[90]. With its 
number varying between different strains, the CM motif is composed of a 16-amino-acid sequence 
located downstream of the last EPIYA sequence[89]. This sequence, although highly conserved, 
possesses a 5-amino-acid difference between East Asian and western strains, hence distinguishing East 
Asian and western CagA (CMW)[91]. Thus, higher number of EPIYA-C motifs also increases the number 
of CM motifs in the CMW. The CM motif is identified as the main mediator of the interaction between 
CagA and the partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase, which plays a 
pivotal role in establishing epithelial polarity. As a result, there is loss of cell polarity, as well as 
induction of morphological alterations also associated with the hummingbird phenotype[92]. CagA-
mediated PAR1 inhibition also disrupts mitosis, causing increased cell division and impaired 
segregation of sister chromatids, thus leading to chromosomal instability (CI)[93]. Currently, CI is 
widely recognized for its multifactorial role in carcinogenesis and its microenvironment[94].
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Figure 2 Simplified model of CagA-mediated hit-and-run carcinogenesis. The pro-oncogenic properties of CagA are already well established. However, 
genetic and epigenetic alterations caused by this oncoprotein provide a favorable environment for carcinogenesis, independently of its presence, in a hit-and-run 
carcinogenesis mechanism. In this sense, through interaction with various host proteins, CagA leads to chromosomal instability, double-strand breaks and repeated 
nucleotide mutations, which are correlated to gastric cancer development. CMW: western CagA.

From a different perspective, there is also a dangerous association between CM motifs and E-
cadherin, a key protein in establishing cell polarity and maintaining epithelial integrity and differen-
tiation[95-97]. It has been described that the CagA–E-cadherin interaction downregulates the β-catenin 
signal that promotes intestinal transdifferentiation in gastric epithelial cells. Therefore, it was inferred 
that the oncoprotein plays an important role in the development of intestinal metaplasia, a precancerous 
transdifferentiation of gastric epithelial cells from which intestinal-type gastric adenocarcinoma emerges
[98].

Also in this sense, a recent study observed that CagA seems to be able to induce gastric carcino-
genesis by stimulating the migration of cancer cells through the activation of the NLR family pyrin 
domain containing 3 (NLRP3) inflammasome. The authors reported that CagA also participates in the 
generation of intracellular ROS and that ROS inhibition has the potential to disrupt the NLRP3 pathway 
and pyroptosis. With these findings, the authors concluded that NLRP3 plays a key role in the action of 
CagA on gastric cells and that silencing NLRP3 can limit the effects of migration and invasion of cancer 
cells caused by CagA[99].

It is worth emphasizing the ability of CagA to activate a variety of antiapoptotic pathways, upon 
interaction of its N-terminal portion with various tumor suppressor factors. For example, it is well 
described that CagA is able to impair the antiapoptotic activity of the tumor suppressor factor p53. 
CagA protein induces degradation of p53 protein in both ASPP2- and p14ARF-dependent manners[100,
101]. Furthermore, it is known that the interaction of the oncoprotein with Runt-related transcription 
factor 3 (RUNX3) is able to induce the ubiquitination and degradation of RUNX3 that blocks its 
antitumoral activity[102]. Figure 1B summarizes the main molecular mechanisms of CagA-mediated 
carcinogenesis.

Another important potential of CagA associated with gastric cancer pathogenesis is the ability to 
drive epithelial to mesenchymal transition (EMT); a phenomenon extensively related to carcinogenesis
[103,104]. EMT is the result of a complex molecular program that allows cancer cells to suppress their 
epithelial characteristics, transforming themselves into mesenchymal epithelial cells. This change allows 
the cells to acquire motility, invasiveness, greater resistance to apoptosis, and the ability to migrate from 
the primary site[104,105]. In this regard, it has been shown that EMT gene expression is upregulated in 
gastric epithelial cells infected with H. pylori CagA-positive strains[106]. Nevertheless, multiple 
pathogenic mechanisms have been described, including reduction of glycogen synthase kinase-3 activity 
and triggering of the YAP oncogenic pathway, for example. However, the multiplicity of processes 
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involved in EMT and its role in gastric cancer development still requires further explanation[107,108].
Recent studies have not been limited to pathogen–host interactions in H. pylori infection, but have 

also investigated the mechanisms regulating bacterial virulence factors, such as CagA, and their relation 
to carcinogenesis. Eisenbart et al[11] identified a conserved, abundant nickel-regulated sRNA and 
named it NikS (nickel-regulated sRNA), whose expression is transcriptionally modulated based on the 
size of a variable thymine stretch in its promoter region. NikS, in dependence on nickel availability, 
directly represses several virulence factors of H. pylori, including the oncoprotein, CagA, and its effects 
on host cell internalization and epithelial barrier disruption. In this sense, multiple clinical repercussions 
of post-transcriptional modulation of CagA by NikS can be hypothesized, including decreased 
activation of procarcinogenic signaling. Kinoshita-Daitoku et al[109] described that NikS expression is 
lower in clinical isolates from gastric cancer patients than in isolates from noncancer patients, while the 
expression of virulence factors targeted by NikS, including CagA, is increased in isolates from gastric 
cancer patients. This field needs to be better explored, especially regarding the correlation of NikS with 
the multiple virulence factors of H. pylori and its potential clinical repercussions.

CAGA-MEDIATED HIT-AND-RUN CARCINOGENESIS
Even though CagA is notably a pro-oncogenic virulence factor, once gastric cancer sets in, its 
perpetuation is independent of the presence of this oncoprotein. In this sense, genetic and epigenetic 
changes caused by CagA seem to be responsible for this process, in a mechanism called “hit-and-run” 
carcinogenesis[58,92], firstly proposed by Skinner[110] for virus-induced cancers. Apparently, these 
changes are intrinsically related to disorders in the expression of activation-induced cytidine deaminase 
(AID), a crucial enzyme in the processes of somatic hypermutation and class-switch recombination of 
immunoglobulin genes in B cells[111,112]. Matsumoto et al[111] state that cagA-positive H. pylori induces 
disordered expression of AID via NF-B, which consequently leads to various nucleotide mutations, such 
as in the tumor suppressor gene TP53. cagA-positive H. pylori strains are also related to oxidative DNA 
damage, because they are able to promote increased levels of H2O2 and downregulation of heme 
oxygenase-1[89,113]. CagA also inhibits PAR1 kinase, leading to microtubule-based spindle dysfunction 
and consequent CI[93].

Some studies have shown that H. pylori can also promote DNA double-strand breaks (DSBs) in host 
cells[114,115], but whether or not this feature is CagA-related remains uncertain. However, a recent 
study showed that inhibition of PAR1b kinase by CagA hindered BRCA1 gene phosphorylation, which 
leads to a BRCAness picture that, in turn, induces DSBs[116]. All these genetic and epigenetic changes 
support the hit-and-run mechanism, in which, regardless of the presence of CagA, the established pro-
oncogenic environment maintains the acquired phenotype. Figure 2 summarizes the main features 
regarding CagA-mediated hit and run carcinogenesis mechanism.

CONCLUSION
In this study, we address the role of CagA in the development of H. pylori-mediated gastric carcino-
genesis and discuss the perspectives in this field of study (Figure 3). CagA undergoes important translo-
cation and tyrosine phosphorylation before disrupting several cell signaling pathways and promoting 
protein dysfunction. However, there is still much to be clarified regarding the steps involved in the role 
of CagA in gastric carcinogenesis. Recent discoveries such as the identification of the SHIP2 binding 
protein capable of binding to the EPIYA-C and D motifs and potentiating the delivery of CagA to 
infected cells, or discovery of the instability between the H. pylori HopQ and CEACAM relationship, are 
significant findings that can generate advances in the area, and therefore, need to be investigated in 
more depth. Exploration of the little-known field of regulatory RNAs seems promising for a broader 
understanding of the control mechanisms involved in H. pylori infection and CagA levels and has the 
potential to identify factors with important clinical repercussions for conditions such as gastric cancer. 
Finally, the ability of H. pylori to evolve as a pathogenic bacterium and as a carcinogen is undeniable, 
therefore, it is essential to clarify what is still unclear about the subject and periodically monitor the 
behavior of the bacterium in the infection, the molecular processes and elements such as CagA to 
advance the diagnosis and treatment of the disease.
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Figure 3 Status of the current understanding regarding CagA-related pathogenic mechanisms. EMT: Epithelial to mesenchymal transition; 
CEACAMs: Carcinoembryonic antigen-related cell adhesion molecules; Grb2: Growth factor receptor-bound protein 2; ASPP2: Apoptosis-stimulating protein of p53 2; 
SHP2: Domain-containing protein tyrosine phosphatase 2; SHIP2: Src homology 2 domain-containing inositol 5'-phosphatase 2; RUNX3: Runt-related transcription 
factor 3; PAR1: Partitioning-defective 1; NikS: Nickel-regulated sRNA.
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