Skip to main content
. 2022 Nov 22;16:1073484. doi: 10.3389/fnins.2022.1073484

TABLE 3.

Quantitative comparison results between the proposed method and other methods on the BSDS500 test set.

Method ODS OIS AP P(M) FLOPs (G)
Human (Martin et al., 2004) 0.803 0.803
Canny (Canny, 1986) 0.611 0.676 0.520
SCO (Yang et al., 2015a) 0.670 0.710 0.710
SED (Akbarinia and Parraga, 2018) 0.710 0.740 0.740
gPb (Arbelaez et al., 2010) 0.729 0.755 0.745
OEF (Hallman and Fowlkes, 2015) 0.746 0.770 0.815
SE (Dollár and Zitnick, 2014) 0.743 0.764 0.800
DeepContour (Shen et al., 2015) 0.757 0.776 0.790
DeepEdge (Bertasius et al., 2015) 0.753 0.772 0.787
COB (Maninis et al., 2016) 0.793 0.819 0.849 28.8
HED (Xie and Tu, 2015) 0.788 0.808 0.840 14.7 93.2
RCF-SS-VOC (Liu et al., 2017) 0.806 0.823 0.839 14.8 79.7
RCF-MS-VOC (Liu et al., 2017) 0.811 0.830 0.846
CED-SS (Wang et al., 2017) 0.803 0.820 0.871 21.4 138.8
CED-MS-VOC (Wang et al., 2017) 0.815 0.833 0.889
LPCB-SS-VOC (Deng et al., 2018) 0.808 0.824 15.7 121.5
LPCB-MS-VOC (Deng et al., 2018) 0.815 0.834 0.827
DRC-SS-VOC (Cao et al., 2020) 0.802 0.818 0.800 17.7 124.2
DRC-MS-VOC (Cao et al., 2020) 0.817 0.832 0.836
LRC-SS-VOC (Lin et al., 2020) 0.802 0.821 0.830 24.8 174.4
LRC-MS-VOC (Lin et al., 2020) 0.816 0.836 0.864
DSCD-SS-VOC (Deng and Liu, 2020) 0.813 0.836 0.847 34.07 135.3
DSCD-MS-VOC (Deng and Liu, 2020) 0.822 0.859 0.863
BDCN-SS-VOC (He et al., 2019) 0.820 0.838 0.888 16.3 95.1
BDCN-MS-VOC (He et al., 2019) 0.828 0.844 0.890
PiDiNet-SS-VOC (Su et al., 2021) 0.807 0.823 0.71 16.6
EDTER-SS-VOC (Pu et al., 2022) 0.832 0.847 0.886 332.0
EDTER-MS-VOC (Pu et al., 2022) 0.848 0.865 0.903
MEDNet-SS-VOC 0.811 0.831 0.849 55.2 179.5
MEDNet-MS-VOC 0.825 0.845 0.872

VOC, mixed data set BSDS500-VOC; SS, single-scale results; MS, multi-scale results. The best two results are marked with red and blue, respectively. Stands for the result of our test. Indicates the result of the reference. FLOPs are calculated based on a 320 × 320 image.