TABLE 4.
Quantitative comparison results between the proposed method and other methods on nyud-v2 test set.
| Method | Input | ODS | OIS | AP |
| gPb-UCM (Arbelaez et al., 2010) | RGB | 0.631 | 0.661 | 0.562 |
| SE (Dollár and Zitnick, 2014) | 0.695 | 0.708 | 0.719 | |
| gPb + NG (Gupta et al., 2013) | 0.687 | 0.716 | 0.629 | |
| SE + NG + (Gupta et al., 2014) | 0.706 | 0.734 | 0.549 | |
| OEF (Hallman and Fowlkes, 2015) | 0.651 | 0.667 | 0.653 | |
| HED (Xie and Tu, 2015) | RGB | 0.717 | 0.732 | 0.704 |
| HHA | 0.681 | 0.695 | 0.674 | |
| RGB-HHA | 0.741 | 0.757 | 0.749 | |
| RCF (Liu et al., 2017) | RGB | 0.729 | 0.742 | 0.693 |
| HHA | 0.705 | 0.715 | 0.650 | |
| RGB-HHA | 0.757 | 0.771 | 0.749 | |
| LPCB (Deng et al., 2018) | RGB | 0.739 | 0.754 | – |
| HHA | 0.707 | 0.719 | – | |
| RGB-HHA | 0.762 | 0.778 | – | |
| DRC (Cao et al., 2020) | RGB | 0.749 | 0.762 | 0.718 |
| HHA | 0.711 | 0.722 | 0.677 | |
| RGB-HHA | 0.769 | 0.782 | 0.771 | |
| LRC (Lin et al., 2020) | RGB | 0.737 | 0.750 | 0.686 |
| HHA | 0.697 | 0.708 | 0.642 | |
| RGB-HHA | 0.759 | 0.771 | 0.748 | |
| BDCN (He et al., 2019) | RGB | 0.748 | 0.763 | 0.770 |
| HHA | 0.707 | 0.719 | 0.731 | |
| RGB-HHA | 0.765 | 0.781 | 0.813 | |
| AMH-Net-ResNet50 (Xu et al., 2018) | RGB | 0.744 | 0.758 | 0.765 |
| HHA | 0.716 | 0.729 | 0.734 | |
| RGB-HHA | 0.771 | 0.786 | 0.802 | |
| PiDiNet (Su et al., 2021) | RGB-HHA | 0.756 | 0.773 | – |
| EDTER (Pu et al., 2022) | RGB | 0.774 | 0.789 | 0.797 |
| MEDNet | RGB | 0.752 | 0.766 | 0.723 |
| HHA | 0.711 | 0.723 | 0.681 | |
| RGB-HHA | 0.772 | 0.787 | 0.776 |
The best two results are marked with red and blue, respectively.