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Abstract

Solution-based SERS detection by using a portable Raman instrument has emerged as an 

important tool due to its simplicity, and flexibility for rapid and on-site screening of analyte 

molecules. However, this method has several shortcomings, including poor sensitivity especially 

for weak-affinity analyte molecules, where there is no close contact between the plasmonic metal 

surface and analyte molecule. Examples of weak-affinity molecules include pigment molecules 

that are commonly used as a consumable coloring agent, such as allura red (AR), and sunset 

yellow (SY). As high consumption of colorant agents has been shown to cause adverse effects 

on human health, there is a strong need to develop a simple and practical sensing system with 

high sensitivity for these agents. Here we present a novel, highly sensitive solution-based SERS 

detection method for AR, and SY by using CTAC capped gold nanostars (GNS) having different 

aspect ratios (GNS-2, GNS-4, and GNS-5) without utilizing any aggregating agents which can 

enhance SERS signal however it reduces batch to batch reproducibility. The influence of the 

aspect ratio of GNS on SERS properties was investigated. We have achieved a limit of detection 

(LOD) of AR and SY as low as 0.5 and 1 ppb, respectively by using GNS-5 with the advantages 

of minimal sample preparation by just mixing the analyte solution into a well plate containing 

GNS solution. In addition, excellent colloidal stability and reproducibility have further enhanced 

the applicability in real-world samples. Overall, our results evidence that the solution-based SERS 

detection platform using high aspect-ratio GNS can be applied for practical application to detect 

pigment molecules in real samples with satisfactory results.
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Introduction

Synthetic azo colorant pigment molecules are illegally used as color additives because of 

their advantages of low price, excellent tinting, and improved stability for beverages, drinks, 

candies, and other food additives.1–4 However, these pigment molecules are serious threats 

to human health because of their cytotoxicity, carcinogenicity, and hypersensitivity effects 

as they can decompose into carcinogenic amine materials.2, 5–7 Therefore, there remains 

an urgent need for an analytical technique to prevent this food fraud which can offer a 

sensitive, rapid, and effective detection of these pigment molecules. Traditional methods 

for the detection of these pigment molecules are high-performance liquid chromatography 

(HPLC) and mass spectrometry (MS).8–10 However, these techniques are time-consuming 

and require costly instrumentation and special expertise to operate. Therefore, it is highly 

desirable to develop a cost-effective analytical method that features low cost, minimal 

sample preparation, high sensitivity, and on-site detection possibility.

Recently, surface-enhanced Raman spectroscopy (SERS) has emerged as a promising 

analytical tool in different fields including food and drug safety, and environmental 

monitoring with high sensitivity and selectivity envisioned the molecular fingerprint 

information of analyte molecules.11–15 Over three decades our laboratory has been 

developing different plasmonic-active platforms for a wide variety of applications ranging 

from SERS chemical sensing to biomedical diagnostics and therapy.16–19 One main driving 

force behind this evolution was the discovery of plasmonic noble metal nanoparticles where 

there occurs an electromagnetic enhancement of Raman signals from molecules in close 

proximity to plasmonic metal nanoparticles.20 In addition, the portable feature of the Raman 

instrument has been developed recently which further enhances its application in the real 

world. However, despite the widespread use of SERS, their application is still limited, which 

is mainly because of the poor sensitivity of analyte molecules, especially for weak-affinity 

analyte molecules like AR, and SY where there is no close contact between the plasmonic 

metal surface and analyte molecule.20 To achieve improved sensitivity, most current research 

has focused on solid substrate-based detection methods. Although these SERS substrates 

showed highly sensitive detection capabilities, they have some disadvantages including long 

procedure sample preparation and they are not suitable for rapid and on-site detection. 

Therefore, it is highly desirable to develop a streamlined SERS sensing platform for on-site 

detection, involving simple mixing of the analytes with nanoparticle solution and generating 

an ultra-high SERS signal. In particular, solution-based SERS detection could be a potential 

platform for rapid and on-site detection as it requires minimal sample preparation.21, 22 

The detection limit of this method, however, is very poor, which further restricts the 

applicability of solution-based SERS detection. It is reported that the SERS signal can 

improve by aggregation of nanoparticles.21–24 Unfortunately, this process affects batch-to-

batch reproducibility of SERS measurements because of the uncontrolled aggregation of 

nanoparticles.25 These limitations can be circumvented by developing a nanoparticle system 

that can generate ultra-high SERS signal without the addition of salts for weak-affinity 

analyte molecules.

The SERS enhancement depends on the localized surface plasmon resonance (LSPR) 

of plasmonic noble metal nanoparticles, which generates a strong local electric field 
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to enhance the Raman signals of target molecules.26 Moreover, plasmonic nanoparticles 

with sharp edges and rough surfaces can further intensify the local electric field name 

as “hotspots”.26–28 Therefore, there is a great interest in the scientific community to 

synthesize anisotropic nanoparticles to enhance the local electric field. Among the various 

metal nanoparticles reported to date, anisotropic gold nanostars (GNS) promise to be a 

potential candidate due to their excellent SERS enhancement properties, tunable plasmon 

resonance, and good stability in ambient conditions.29–33 Anisotropic GNS is an excellent 

SERS platform than other nanoparticle systems owing to three reasons. First, GNS has 

3D sharp protruding spikes, thereby facilitating the generation of multiple hot spots than 

other nanoparticle systems such as nanospheres, nanorods, and nanocubes. Second, GNS 

has greater flexibility for fine-tuning the size and shape of the morphology.34 Third, the 

localized surface plasmon resonance (LSPR) of GNS can be tuned from the visible to NIR 

region.35–37 Over the past few years, there are several approaches reported in the literature 

for GNS synthesis38 for application in different research fields including biology and 

medicine, sensing, and photocatalysis.39–45 For example, we first showed experimentally 

and computationally that the SERS signal was intensified by increasing spike length and 

branch number.46 However, further improvements are still needed for fine-tuning the GNS 

morphology to achieve ultrahigh SERS sensing.

This study is aimed at synthesizing GNS having multibranched pointed tips which can 

provide a potential ultra-high SERS sensitivity of consumable analytes (Scheme 1). Three 

different aspect ratios of GNS: GNS-2, GNS-4, and GNS-5 were synthesized via a 

surfactant-free seed-mediated synthesis and capped with CTAC for better stability of GNS. 

For these particles, we elucidate the role of brunch number and aspect ratio on SERS 

enhancement of AR and SY, where we achieve maximum SERS enhancement using GNS-5. 

This solution-based SERS platform detects AR and SY down to the level of 0.5 and 1 ppb, 

which is almost 100 times lower than that reported previously.4, 21 Furthermore, we showed 

exceptional reproducibility and stability of the GNS-5. Finally, we have applied our SERS 

detection strategy for monitoring real-life samples which indicate that our method has the 

advantages of being convenient, efficient, and highly selective for the detection of AR, and 

SY which could be very significant for food safety.

Experimental section

Materials and Characterization

Chloroauric acid (HAuCl4), L-ascorbic acid, silver nitrate (AgNO3, 99.8%) hydrochloric 

acid (HCl), and trisodium citrate (Na3C6H5O7) were purchased from Sigma-Aldrich. Milli-

Q deionized (DI) water was used throughout the experiment. The morphology of nanostars 

was characterized by analysis FEI Tecnai G2 Twin transmission electron microscope, and 

HAADF STEM images and EDS maps were acquired using Aberration Corrected STEM-

Thermo Fisher Titan 80–300. UV-vis spectra were recorded using a Shimadzu UV-3600i 

spectrometer with cuvettes of 1 cm path length at room temperature.
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Synthesis of Gold Seeds

12 nm Au seeds were synthesized by following a modified version of our previously 

reported method.33 Briefly, 7.5 mL of 1% sodium citrate solution was added to 50 mL of 

boiling 1 mM HAuCl4 aqueous solution. It kept boiling for an additional 60 min, and the 

solution turns to a red color; then, it was cooled to room temperature in an ice bath and 

stored at 2–4 °C which was used further for nanostars synthesis.

Synthesis of CTAC Capped GNS-2, GNS-4, and GNS-5 Gold Nanostars

Surfactant-free GNSs gold nanostars were synthesized following a modified version of our 

previously reported method.47 The synthesis procedure for GNS-2 is as following. Briefly, 

50 μL of 1 N HCl was added to a solution containing 50 mL of 0.25 mM HAuCl4 and 500 

μL of the citrate capped gold seed solution. Then, 250 μL of 3 mM AgNO3 and 250 μL of 

100 mM ascorbic acid were added to the solution with 5 second time interval. The solution 

was stirred for 2 minutes. Then, 10 mL 0.1 M CTAC solution was added to GNS solution 

and stirred for an hour. The solution was centrifuged at 4000 g for 12 min and dispersed in 

500 μL of Milli-Q water so that the concentration was 10 times higher than as synthesized 

nanostars.

The synthesis procedure for GNS-4 is as following. Briefly, 200 μL of 1 N HCl was added 

to a solution containing 50 mL of 1 mM HAuCl4 and 500 μL of the citrate capped gold seed 

solution. Then, 2 mL of 3 mM AgNO3 and 1 mL of 100 mM ascorbic acid were added to 

the solution with 5 second time interval. The solution was stirred for 2 minutes. Then, 10 

mL 0.1 M CTAC solution was added to GNS solution and stirred for an hour. The solution 

was centrifuged at 4000 g for 12 min and dispersed in 500 μL of Milli-Q water so that the 

concentration was 10 times higher than as synthesized nanostars.

The synthesis procedure for GNS-5 is as following. Briefly, 300 μL of 1 N HCl was added to 

a solution containing 50 mL of 1.5 mM HAuCl4 and 500 μL of the citrate capped gold seed 

solution. Then, 3 mL of 3 mM AgNO3 and 1.5 mL of 100 mM ascorbic acid were added to 

the solution with 5 second time interval. Then, 10 mL 0.1 M CTAC solution was added to 

GNS solution and stirred for an hour. The solution was centrifuged at 4000 g for 12 min and 

dispersed in 500 μL of Milli-Q water so that the concentration was 10 times higher than as 

synthesized nanostars.

Raman Measurements

The SERS measurement was carried out using a lab built portable system having 785 

nm laser source (Rigaku Xantus TM-1 handheld Raman device), a fiber optic probe 

(InPhotonics RamanProbe), a spectrometer (Princeton Instruments Acton LS 785), and a 

CCD camera (Princeton Instruments PIXIS: 100BR_eXcelon). Laser power of the Rigaku 

Xantus TM-1 was set at 150 mW and the CCD camera exposure time was set at 10 s. 

The SERS measurement was standardized using ethanol. The SERS measurement involves a 

minimal sample preparation in which 300 μL of the gold nanoparticle solution (3 μL stock 

solution of GNS + 297 μL of Milli-Q-water) were thoroughly mixed with 3μL of analyte 

solution in 96 well plate whose bottom was covered with aluminum foil to prevent signal 

interference from the polypropylene well plate.
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Results and discussion

The GNS employed in this study were prepared using the surfactant-free nanostars 

synthesis method.47, 48 The surfactant-free stars have many advantages over surfactant-based 

like cetyltrimethylammonium bromide/chloride (CTAB/ CTAC),49 or polymers based like 

Triton-X,41 poly(vinylpyrrolidone) (PVP)50 nanostars synthesis. First, the morphology of 

surfactant-free nanostars can be easily tuned by changing the synthesis parameters including 

gold salts, seeds, ascorbic acid, AgNO3, and HCl concentration.33, 48, 51 On the other hand, 

for surfactant-based nanostars synthesis, the surfactant molecules bind on highly energetic 

crystal facets of intermediated seeds to stabilize the seeds, thereby generating of a smaller 

number of nucleation centers to grow the spikes which result in a lower number of spikes.41 

Moreover, the plasmon peak of surfactant-free stars can be easily tuned to the visible to NIR 

region so that we can utilize the 785 lasers to achieve the highest SERS enhancement.48

Synthesis and Stability of GNS

Surfactant-free GNS consists of a spherical core and sharp protruding spikes exposed from 

the core.33, 47 The nanostars morphology is formed when gold salts, ascorbic acid, AgNO3, 

and HCl at an ideal concentration for surfactant-free GNS formation were added to the 

spherical gold seeds solution. The morphology of the nanostars is highly depended on the 

concentration of the chemicals including gold salts, ascorbic acid, AgNO3, HCl, and gold 

seeds.48, 52, 53 Interestingly, it is reported that the formation and stabilization of the spikes 

is highly dependent on AgNO3 concentration where a monolayer of silver atoms deposited 

on the highly energetic gold atoms present on the surface of the spikes and stabilized the 

spike morphology.41 In this study, we have synthesized three different aspect ratios of GNS 

(GNS-2, GNS-4, and GNS-5) by following a modified version of the surfactant-free GNS 

synthesis method reported previously by our group.47 The aspect ratio of GNS is the ratio of 

the spike length and width of the spike at the core of GNS, which is directly correlated to the 

synthetic parameters of GNS. For example, the GNS-2, and GNS-4 were achieved by simply 

varying the concentration of Ag+, and ascorbic acid while keeping all other parameters 

(gold salts, seeds, and HCl concentration) constant. Whereas the GNS-5 was achieved by 

increasing the concentration of all the variables: gold salts, seeds, ascorbic acid, AgNO3, 

and HCl concentration from the concentration of synthetic parameters of GNS-2 and GNS-4. 

Representative TEM images (Figure 1) revealed that GNS spike length and spike numbers 

were increased from GNS-2 to GNS-5. The core size, spike length, spike sharpness, and 

aspect-ratios of the GNSs were summarized in Table 1. We have determined the spike 

sharpness of GNS by measuring the dimensions of high-resolution TEM images using the 

software program ImageJ. Figure 1h shows that the three GNSs’s UV-vis spectra exhibits 

a gradual red-shift of the plasmon resonance from 780 nm to 890 nm with increasing the 

aspect ratio of the spikes from 2 to 5.

The surfactant-free GNSs were further capped with CTAC. The unique structure of long-

chain aliphatic CTAC is favorable to trap aromatic molecules via hydrophobic interactions 

between aromatic benzene rings of the analyte (AR and SY) and aliphatic carbon chain 

CTAC, and therefore it could be a suitable platform for trapping weak-affinity aromatic 

pigment analyte molecules, thereby facilitating ultra-sensitive SERS detection.21, 54 The 
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plasmon resonance of GNS was around 10 nm red-shifted after CTAC capping (Figure S2). 

Interestingly, we observed that the GNS-2 was not stable, and the plasmon resonance peak 

was blue-shifted from 780 to 610 nm after 24 hours (Figure-S3a). Whereas there were no 

spectral changes observed over time (after 20 days) for GNS-4, and GNS-5 (Figure S3b–3c), 

indicating good stability of GNS-4, and GNS-5. The TEM images of GNS-4 and GNS-5 

after 20 days were further confirmed that the morphology remains same after 20 days of 

synthesis (Figure S3d–3e). The low stability of GNS-2 might be attributed due to the low Ag 

content present on the highly energetic spikes, thereby the spikes were shrunk with time and 

the plasmon resonance was blue-shifted.41

SERS Measurement and Reproducibility

To evaluate the SERS sensitivity of GNSs, we employed AR and SY as a SERS analyte. 

The SERS measurements were performed after 30 minutes of mixing 3 μL of the analyte 

solution (AR, and SY) with the 297 μL nanostars solution so that the analyte molecules can 

incorporate into the CTAC bilayer and get closer to the nanostars. The SERS spectra of AR 

show characteristic peaks at 978, 1130, 1188, 1224, 1272, 1385, 1411, 1500, 1582, and 1611 

cm−1 which match with the reported result.4, 21 We have selected the highest intense peak 

at 1500 cm−1 for sensitivity determination, and this band was used to compare the SERS of 

GNSs. For SY, the characteristic SERS peaks are at 986, 1168, 1228, 1395, 1504, 1598 cm−1 

and, we have selected 1395 cm−1 to determine the sensitivity of GNSs.21, 55

We have first investigated the effect of the aspect-ratio of GNS on SERS performance of 

AR and SY at 500 ppb concentration. As seen from Figure 2a, the SERS signal intensity of 

AR was 4 times higher for GNS-4 than GNS-2 and 8 times higher for GNS-5 than GNS-2. 

On the other hand, Figure 2b shows the SERS signal of SY, where the SERS intensity was 

8 times higher for GNS-4 than GNS-2 and 11 times higher for GNS-5 than GNS-2. As 

anticipated, GNS-5 shows higher SERS enhancement than GNS-2 and GNS-4 because of 

a higher number of spikes present in GNS-5 than GNS-2 and GNS-4 resulting generation 

of a high number of hot spots, thereby enhancing the SERS signal. It is noteworthy that 

not only the aspect-ratio, but other parameters (spike number, core size, spike length, spike 

sharpness) also contribute to the SERS enhancement.

Figures 3a–b, and 3c–d show representative SERS spectra and calibration curve of AR 

(3a–b) and SY (3c–d) dye using GNS-5 where ten different samples were selected for each 

concentration of the analytes. The SERS intensity at 1500 cm−1 was selected as a function 

of the AR concentration. The concentration of AR follows a linear relationship with the 

intensity at 1500 cm −1. The linear equation for AR is I = 1662 + 108CAR where I is the 

intensity at 1500 cm −1 and CAR is the concentration of AR. The concentration of SY also 

follows a linear relationship with the intensity at 1395 cm −1. The linear equation for SY is 

I = 2777 + 46CSY where I is the intensity at 1395 cm −1 and CSY is the concentration of 

SY. It is important to notify that the detection limit was achieved by our method is up to 0.1 

ppb for AR and 1 ppb for SY, which is at least 100 times lower than the previously reported 

values without using any aggregating agents.4, 21 Such significant improvements in detection 

sensitivity might be attributed to the higher number of “hot spots” present in the GNS-5 than 

that of gold nanorods or nanospheres.
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We have further investigated the reproducibility of SERS measurement of GNS-5 at 500 ppb 

concentration of AR. Ten different sample spots of GNS-5 were randomly selected. Figure 

3e shows the peak intensities at 1500 cm −1. The relative standard deviation (RSD) value 

was 4% indicating high reproducibility for this solution-based SERS detection method. 

Moreover, we have studied the stability of the substrate for 20 days measured at 5 days 

interval. Figure 3f shows that the SERS spectrum was identical, indicating higher stability of 

GNS-5 over 20 days.

Application to Real-Sample Analysis

We have validated our SERS platform to detect trace amounts of AR and SY in practical 

beverage samples. The beverage sample was purchased from a market. Figure 4 shows the 

SERS spectra of strawberry juice, fruit juice, and Thai tea samples. The results clearly show 

the characteristic SERS peaks of AR for strawberry juice, and fruit juice, and SY for Thai 

tea samples. The concentrations of AR and SY were calculated from the linear equation of 

AR and SY. The concentration of AR in strawberry juice, and fruit juice was 90.4 and 141.8 

ppb, respectively. The concentration of SY in Thai tea sample was 19.9 ppb. Overall, this 

method demonstrated that the CTAC-capped GNS can be applied for the detection of AR 

and SY in beverages with ultrahigh sensitivity. We have further performed measurements 

to demonstrate that our method is capable of monitoring changes with AR concentrations 

in fruit juice sample by addition of various amounts of AR, where we observed that the 

intensity of the SERS peak at 1500cm−1 was enhanced with increasing concentration of AR 

from 50 ppb to 400 ppb with fruit juice sample (Figure S4). The detailed investigation to 

determine the concentrations of the AR, SY, and other food colorants in consumer products 

using lab-based methods such as HPLC-MS to compare with our SERS results will be 

considered in further studies.

Conclusions

In conclusion, we demonstrated a simple approach for fabricating high aspect-ratio 

GNSs with CTAC which was utilized for solution-based SERS detection of weak-affinity 

molecules like AR and SY. Our SERS measurement platform was streamlined with minimal 

sample preparation by just mixing the analytes into a well plate with GNS and utilizing 

a portable Raman instrument for rapid detection. With this method using GNS-5, we have 

achieved a limit of detection of AR, and SY as low as 0.5 ppb and 1 ppb, respectively. 

Furthermore, we have validated our method with quantitative analysis of AR and SY 

in beverages. As the synthesis procedure for high aspect ratio GNSs is easy and they 

exhibit long-term stability, they can be useful for specific applications in biosensing even in 

presence of a complex environment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
3D model of GNS-2, GNS-4, and GNS-5 morphology (a). TEM image of GNS-2 (b), 

GNS-4 (c) and GNS-5 (d). TEM image having multiple nanostars of GNS-5 showing 

high monodispersity of the synthesis (e). UV-vis spectra of GNS-2, GNS-4, and GNS-5 

morphology showing a red shift from 780 nm to 890 nm when the GNS morphology 

changes from GNS-2 to GNS-5 (f).
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Figure 2. 
Comparison of SERS signal intensity of allura red dye using GNS-2, GNS-4, and GNS-5 

(a). Comparison of SERS signal intensity of sunset yellow with GNS-2, GNS-4, and GNS-5 

(b).
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Figure 3. 
SERS spectra of AR using GNS-5 at different concentrations from 500 ppb to 0.5 ppb (a). 

The calibration curve for the characteristic peak intensity at 1500 cm−1 as a function of AR 

concentration (b). SERS spectra of SY at different concentration from 500 ppb to 1 ppb (c) 

and SERS intensity of SY at 1395 cm−1 as a function of different concentrations (d). SERS 

reproducibility of allura red using GNS-5 (e). Representative SERS spectra of GNS-5 after 

20 days measured with 5 days interval showing good stability of GNS-5(f).
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Figure 4. 
Representative SERS spectra of beverages where GNS-5 was utilized as a SERS probe.
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Scheme 1. 
Schematic of the synthetic procedure of CTAC capped GNS-5 where the GNS-5 

morphology was achieved by systematic controlling of the concentrations of reagents 

including gold salt, HCl, ascorbic acid, and AgNO3 (a), and a simple procedure for SERS 

detection of weak-affinity analytes which involves simple mixing of analytes in a well plate 

having CTAC capped GNS-5 (b).
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Table 1.

Morphological characterization of GNS-2, GNS-4, and GNS-5.

Number of spikes Core size (nm) Spike length (nm) Spike aspect ratio Spike sharpness

GNS-2 7–8 22 ± 10 18 ± 8 1.8 7 ± 2

GNS-4 10–15 40 ± 20 45 ± 8 4 3 ± 2

GNS-5 20–35 50 ± 20 53 ± 12 5.2 3 ± 2
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