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Abstract

Associations between genetic variation and traits are often in non-coding regions with strong 

linkage disequilibrium (LD) where a single causal variant is assumed to underlie the association. 

We applied a massively parallel reporter assay (MPRA) to functionally evaluate genetic variants 

in high, local linkage disequilibrium for independent cis-expression quantitative trait loci (eQTL). 

We found that 17.7% of eQTLs exhibit more than one significant allelic effect in tight LD. 

The detected regulatory variants were highly and specifically enriched for activating chromatin 

structures and allelic transcription factor binding. Integration of MPRA profiles with eQTL/

complex trait colocalizations across 114 human traits and diseases identified causal variant sets 

demonstrating how genetic association signals can manifest through multiple, tightly-linked causal 

variants.

INTRODUCTION

Genome-wide association studies (GWAS) have emerged as an important tool to assess the 

effect of individual genetic variants on phenotypes ranging from gene expression to complex 
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traits and diseases (1, 2). However, due to linkage disequilibrium (LD), it is challenging to 

identify a single causal variant among multiple correlated variants. To address this challenge, 

statistical and functional fine-mapping approaches have been developed to identify credible 

sets of variants containing the causal variant (3). However, these approaches often cannot 

distinguish between proximal or highly-linked variants and lack systematic prior information 

on the number of causal variants underlying association signals.

One approach to systematically identify causal variants while controlling for LD is applying 

massively parallel reporter assays (MPRAs). MPRAs measure the effects of synthetic DNA 

libraries on the expression of a reporter gene, typically luciferase or GFP, containing a 

3’ UTR barcode (4). Such assays have screened potential regulatory elements in diverse 

cellular contexts, and also have applications in saturation mutagenesis or tiling along 

regulatory regions of interest (5–7).

Beyond tests of regulatory function, MPRAs have also been applied to assay the differential 

regulatory effects of genetic variants (8–10). However, existing studies have either targeted 

variants with the strongest trait associations and/or applied extensive prior filtering limiting 

resolution of linked causal variants (8, 9, 11, 12). In the yeast, Saccharomyces cerevisiae, 

quantitative trait loci (QTL) mapping has identified loci containing multiple causal variants 

in tight LD, suggesting that the same genetic architecture may also underlie many human 

traits(13, 14).

RESULTS

Functional fine-mapping of eQTL reproducibly identifies regulatory and allelic hits

We applied an MPRA to systematically characterize causal variants underneath multiple 

expression QTL (eQTL) and GWAS loci. We selected independent, common, and top-

ranked eQTL across 744 eGenes identified in the CEU cohort (comprising Utah residents of 

Northern and Western European ancestry). Each eQTL had a median of 6 lead associated 

variants (range 1–472) in perfect LD. For each lead variant, we identified all additional 

variants with r2 >= 0.85 that were associated with the same gene, as well as a set of variants 

(N=2,114 non-eQTLs) which were not associated with any gene’s expression. Our final 

library included 30,893 variants, with a median of 50 variants per eQTL (range 2–2824) 

(Fig. 1A).

For each variant, we identified 150 bp sequences (centered on the variant) and generated a 

MPRA library by random barcoding (Fig. 1B). For allelic pairs, the fragment lengths and 

surrounding sequence were held constant to allow measurement of allele-specific effects. 

For indels, fragment lengths between allelic pairs differed by less than 9bp. Furthermore, 

in sequences with multiple variants, distinct oligonucleotides (oligos) were designed for 

each possible haplotype resulting in an average of 3.19 oligos per variant. Overall, this 

resulted in an assay of 49,256 total allelic pairs. After reporter gene insertion, the library was 

transfected into lymphoblastoid cell lines (LCLs) in triplicate, sequenced and then quantified 

for each oligo.
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To measure regulatory effects from oligo counts, we used negative binomial regression. 

For each variant, we computed the allele-independent regulatory effects of an oligo 

(“expression” effects) and the difference in regulatory effects between reference and 

alternative allele-containing oligos (“allelic” effects). We detected 8,502 expression effects 

and 1,264 allelic effects across all tested variants.

We observed a modest increase in the total number of MPRA hits in eQTLs relative to 

non-eQTLs (27% vs 26% for expression hits and 9% vs 8% for allelic hits), reflecting 

the low proportion of eQTL variants overall that are expected to be causal (Fig. 1C, D). 

We observed a larger increase in allelic effect sizes among hits which are also eQTL vs 

non-eQTL (fig. S1D). This was the case when comparing MPRA hits between eQTL and 

non-eQTL for both expression effects (Kolmogorov–Smirnov, K-S p-value = 1.704e-4) and 

allelic effects (K-S p-value = 0.0116). Taken together, we obtained for each eQTL gene 

(eGene), a profile of allele-independent and -dependent effects across all highly-associated 

proximal variants (Fig. 1E).

By design, a subset of tested variants (N=782) were previously identified as expression-

modulating variants in (8). This overlapping subset was highly enriched for expression 

and allelic effects (Fig. 1C, D). Further, we observed that 89.6% of allelic MPRA hits in 

both datasets were directionally concordant (fig. S2A). From these results, we constructed 

a concordant, high-confidence “MPRA positive” variant set containing 250 variants with 

expression effects and 120 with allelic effects (fig. S2B, C).

Diverse transcription factor programs contribute at eQTL

The large number of MPRA expression effects enabled identification of transcription 

factors (TFs) impacting gene expression within eQTLs. We observed widespread positive 

enrichment of ChIP-seq peaks for multiple TFsin MPRA expression effects (N=160 total 

TFs). Moreover, applying a more stringent filter, (adjusted p-value <= 5e-10) increases 

these enrichments in most TFs (Fig. 2A and table S5). While enrichments vary across a 

broad range (1.2- to 17-fold), many enriched TFs are members of the same family and 

exhibit highly correlated genome-wide binding profiles. This demonstrates the wide range 

of regulatory element effects captured in our assay and pinpoints specific TFs driving the 

regulatory effects of genetic variation.

We next evaluated histone modifications and observed enrichments for activating histone 

modifications but not for repressive marks like H3K36me3 (Fig. 2B). We also observed 

the strongest enrichments in chromatin accessibility regions that were tissue invariant or 

specific to the Stromal A (representing JDP2 and other AP-1 TF families), Lymphoid, and 

Erythroid/Myeloid tissue clusters demonstrating detection of cell-type information encoded 

in accessible chromatin (Fig. 2C).

Identifying regulatory variants by allelic transcription factor binding and chromatin 
accessibility

To identify specific TFs affected by regulatory variation, we first characterized whether 

the direction of allelic MPRA hits was concordant with SNP-SELEX scores, a set of 

allele-specific binding models created from in vitro TF binding affinities. Here, we observed 
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global concordance (Fisher’s exact p-value = 3.43e-15) that was absent in other tested sites 

(Fisher’s exact p-value = 0.63, Fig. 2D).

Next, we computed the concordance proportion (i.e. how often a SNP-SELEX score for 

a specific TF was concordant with the MPRA allelic effect) for all TFs overlapping at 

least three tested variants (Fig. 2E). The mean concordance proportion across TFs (N=59) 

was 0.733 when using allelic MPRA hits and 0.505 when using other tested sites (N=91) 

(binomial logistic generalized linear model, GLM p-value = 8.46e-12). Although allelic 

MPRA hits were enriched in SNP-SELEX variants, only 13.5% of SNP-SELEX variants 

had an MPRA effect. This suggests that many allelic effects can be explained by altered TF 

binding but altered binding itself does not typically affect transcription.

A similar pattern emerged when comparing allelic imbalance in accessible chromatin with 

MPRA allelic hits. We observed significant concordance between allelic imbalance and 

MPRA allelic effect directions for allelic MPRA hits but not other variants (Fisher’s exact 

p-value = 7.33e-3 and p-value = 0.839 respectively; Fig. 2F). Separation by functional 

footprints found within accessible chromatin regions revealed that several motifs, including 

Gli and a canonical E-box, were concordant across all allelic MPRA hits (Fig. 2G).

To further assess the relationship between regulatory variants and chromatin accessibility, 

we integrated chromatin accessible QTL (caQTL) data to identify variant annotations which 

increased MPRA signals. Using ENCODE allelic imbalance data, we separated all variants 

by whether they were inside or outside an associated peak. MPRA allelic hits were strongly 

concordant with allelic imbalance when inside their peaks, but not when adjacent to them 

(Fisher’s exact p-value = 3.2e-5 and p-value = 0.055, respectively; fig. S3A). Separately, 

in a set of caQTLs assessed across ten population groups, variants that were caQTLs in 

multiple populations were more enriched in MPRA allelic hits than caQTLs shared in only a 

few populations (fig. S3B). Taken together, MPRA allelic hits were significantly concordant 

with in vitro and in vivo measures of allelic regulatory activity while other tested sites were 

directionally random.

MPRAs inform non-coding variant effect prediction

An ongoing challenge is to summarize and predict the regulatory effect of non-coding 

variants using sequence and annotation alone. We evaluated whether genome-wide variant 

effect predictors could identify allelic MPRA hits. Using principal component scores 

from Enformer, a neural network that predicts variant effects by incorporating sequence 

information, we observed significant enrichment of allelic MPRA hits in the top percentiles 

of Enformer scores (K-S test, Fig. 3A inset, 3B) (15). We next assessed all tested variants 

with their annotation principal components (aPCs) from FAVOR, an integrated variant effect 

prediction tool (16). We again observed enrichment of allelic MPRA hits for multiple aPCs. 

These enrichments were strongest for the TF and epigenetics-based aPCs, while others like 

distance from TSS/TES were similarly enriched in both allelic MPRA hits and all other 

tested sites (K-S test, Fig. 3C inset, 3D).

Both predictors could distinguish eQTL regions from genomic background; we also 

observed a positive enrichment in allelic MPRA hits up to the 50th percentile of these 
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scores, with increasing enrichment at very high percentiles (Fig. 3A, C). Despite this 

overlap, when comparing allelic MPRA hits to other tested variants the distributions of 

all Enformer PCs and FAVOR aPCs except for Distance-to-TSS/TES were significantly 

different (K-S test, Fig. 3B, D). This suggests why functional fine-mapping approaches have 

not always benefitted from non-coding variant effect predictions, while also showing that the 

highest genome-wide percentiles of these scores identify variants enriched for MPRA allelic 

effects.

Multiple causal regulatory variants in high linkage disequilibrium underlie eQTL

In order to fine-map regulatory variants, we assessed MPRA hits within eQTLs. Across all 

loci, 76.7% (571/744) and 45.6% (339/744) had at least one expression or allelic MPRA hit, 

respectively (Fig. 4A, 4B). 17.7% (132/744) had more than one allelic MPRA hit, indicating 

that an appreciable number of genetic associations contain multiple regulatory variants in 

high LD (Fig. 4B). Notably, 69% of allelic hits were in perfect LD in Europeans from 

the 1000 Genomes Project limiting the use of statistical approaches (Fig. 4C). Even when 

additionally requiring a strong MPRA expression effect (|log2 effect size| > 1.4), 6.3% of all 

eQTL contained multiple regulatory variants.

The degree to which eQTL are composite products of multiple causal variants is unknown 

due to high LD. We assessed whether allelic MPRA hits found within eQTL were more 

likely to be concordant with eQTL effect direction than other tested sites. We found that 

expression and allelic MPRA effect sizes were larger for concordant variants compared to 

discordant variants (Fig. 4D). Across strong allelic MPRA hits (|log2 effect size| > 1.4), 

we observed significant concordance with eQTL effect direction (Fisher’s exact p-value = 

4.75e-3; Fig. 4E) and the strongest examples of allelic heterogeneity (Fig. 4F).

To rule out study-specific effects, we verified that eQTL effect sizes were consistent across 

multiple studies (fig. S4A) (17, 18). We found consistent patterns of concordance (fig. 

S4B). Additionally, to ensure that concordance patterns were not driven by individual 

eQTL with many concordant MPRA hits, we applied binomial count logistic regression 

to test whether concordance proportions were significantly shifted between allelic MPRA 

hits and other tested sites. We found that allelic MPRA hits, but not other sites, were 

significantly concordant (p-value = 2.85e-3; fig. S4C). We further found that concordance 

persists through the top four ranked variants per eQTL, with the set of third-strongest MPRA 

hits across all eQTL having a concordance rate of 0.67 (fig S4D). Altogether, these results 

indicate that several eQTL regions contain multiple, concordant allelic MPRA hits.

Haplotype decomposition identifies allelic regulation that is unlikely to be observed by 
population sampling

A major advantage of synthetic library design is separation of extremely proximal variants 

that are unlikely to be naturally separated by recombination. Our library included 2,097 pairs 

of eVariants within 75 bp. For these variants, we extended our statistical model to account 

for four haplotypes at each pair of variants and computed summary statistics for each of 

the three non-reference haplotypes (Fig. S5A). We then selected all variants included in at 

least one haplotype allelic MPRA hit. Combined, we identified 120 variant pairs (6.15% 
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of all tests) with at least one haplotype allelic MPRA hit relative to all-reference sequence 

(negative binomial adjusted p-value < 0.05).

Most of the haplotype effects appeared additive, with a small number displaying non-

additivity (Fig. 4G). Our linear contrast test allowed us to identify these non-additive 

interactions between allelic hits(fig. S5B–D and table S7). Of the variant pairs with at 

least one haplotype hit, 19 pairs also had a significant haplotype interaction effect (negative 

binomial adjusted p-value < 0.05; 14.7% of all significant haplotype effects and 0.91% of 

all tested variant pairs). Significant interactions were weaker than additive effects (Fig. S5E) 

and rarely reversed the direction of individual allelic effects. These results support other 

studies that have identified non-additive regulatory effects (14, 19–21) and find that 14.7% 

of significant haplotype effects (only 0.91% of all tests) have evidence of non-additivity.

Experimental fine-mapping of complex trait associations

In order to identify loci with shared genetic architecture between eQTL and human traits, 

we retrieved all genes tested in our dataset that had both an allelic MPRA hit and at least 

one LCL eQTL/GWAS colocalization (22). Out of 744 eGenes, 5.51% colocalized with at 

least one trait and contained at least one allelic MPRA hit. Notably, most colocalizations 

contained more than one allelic MPRA hit (71.9% of colocalizations and 82.9% of eGenes), 

with some loci containing as many as 13 (Fig. 5A). This suggests that the default assumption 

of one causal variant, often used in fine-mapping or GWAS colocalization, does not 

reflect causal variant biology at many regulatory regions. Traits with high-confidence co-

localization were diverse, including blood-cell traits like ZC2HC1A/Lymphocyte Count or 

PACSIN2/Platelet Count, and highly polygenic traits like GNA12/Height (Fig. S6).

The 17q21 locus contains the most extensively replicated genetic association with Asthma 

which co-localizes with ORMDL3 eQTLs (Fig. 5B). This region contains a haplotype block 

with dozens of linked variants, flanked by two variants (rs4065275 and rs12936231) which 

induce loss and gain of CTCF binding, respectively. Further, other variants located between 

these two variants display allele-specific chromatin accessibility, histone modification, and 

CpG methylation (23, 24). Altogether, the risk haplotype results in increased ORMDL3 
expression, which in turn negatively regulates interleukin-2 production in CD4+ T-cells. 

We identified a single allelic MPRA hit, rs12950743, that is linked to and located between 

the two CTCF variants (Fig. 5B). When tested by luciferase assay, this variant displayed 

a nominally significant but weak effect in the same direction as the MPRA (luciferase 

unpaired t-test p-value = 0.035, fig. S7A). Taken together, this suggests that two variants on 

the risk haplotype alter CTCF binding leading to distinct regulatory contacts with their own 

allelic specificity.

In contrast, a different colocalization that included three active variants was AHI1, a 

well-characterized gene strongly associated with Multiple Sclerosis (MS) (Fig. 5C) (25). 

This region contains a strong eQTL and colocalization signal in LCLs; however, its causal 

variant(s) are unknown. We identified rs6908428, rs9399148, and rs761357 as allelic MPRA 

hits. We validated the allelic effects of these variants via luciferase assay and found that 

rs6908428 (luciferase unpaired t-test p-value = 5.1e-6) and rs761357 (unpaired t-test p-value 

= 7.6e-3) showed allelic differences consistent with the MPRA, while rs9399148 (unpaired 
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t-test p-value = 0.18) did not (fig. S7B). The first two of these variants have been highlighted 

by annotation overlap in prior studies of the role of AHI1 in MS pathology, particularly 

interferon gamma production and CD4+ T-cell differentiation, but were severely limited by 

linkage across the risk haplotype (25). When screened against known TF binding motifs, 

we found that rs6908428 and rs761357 overlapped predicted binding motifs for SMAD3/4 

and HNF1A, respectively. Unlike HNF1A, SMAD3/4 are expressed in LCLs suggesting that 

rs6908428 may function to create a SMAD3/4 binding site (fig. S8A).

A complex multi-variant colocalization was identified at ERAP2, an aminopeptidase 

functionally implicated in both Inflammatory Bowel Disease and Crohn’s Disease (26). We 

detected thirteen active variants which span a strongly linked haplotype. While both eQTL 

and GWAS suggest a single top SNP, that top SNP differs between eQTL and GWAS and 

neither are MPRA hits (Fig. 5D and fig. S6A). Prior work has shown that a common splice 

variant in ERAP2 results in nonsense-mediated decay (NMD) and allele-specific expression, 

which can cause an eQTL signal (27). However, the haplotype with this variant contains 

hundreds of other linked variants and harbors a second conditional ERAP2 eQTL in GTEx 

LCLs. We evaluated eight of the thirteen active variants from our MPRA by luciferase assay 

and found significant allelic differences at four of the eight loci (luciferase unpaired t-test 

p-value < 0.05; rs1757538970, rs2549785, rs27298, and rs7713127; fig. S7C). This suggests 

ERAP2 is regulated by a complex allelic structure which operates via gene expression and 

splicing.

Another colocalization was PACSIN2 which contained thirteen variants and whose eQTL 

co-localized with Platelet Count. PACSIN2 is an F-BAR domain protein involved in vascular 

and platelet homeostasis (28). We evaluated eight of the thirteen allelic variants by luciferase 

assay and found significant effects at six of the eight loci (luciferase unpaired t-test p-value 

< 0.05; fig. S7D). Interestingly, two of the variants (rs5751402 and rs9607970) were 

predicted to disrupt known TF binding motifs in directions consistent with their luciferase 

assay result (fig. S8B). The two TF were PAX5 and NFKB1, both of which are very 

highly expressed in LCLs, suggesting that rs5751402 and rs9607970 may function through 

disruption of NFKB1 and PAX5 binding sites.

DISCUSSION

Linkage disequilibrium is a major barrier to identifying causal variants in genetic association 

studies. Furthermore, functional genomic annotations can be useful to prioritize likely causal 

variants but many annotations are also inconclusive, unattainable, or unknown (2). In this 

study, we demonstrate that MPRAs provide a scalable platform to separate and map the 

regulatory activities of expression and complex trait-associated natural genetic variants and 

highlight the limitations of existing approaches to variant interpretation and computational 

fine-mapping. Across positional annotations and variant scores, we observed that both allelic 

MPRA hits and other tested variants were shifted relative to the corresponding genome-wide 

distributions. This demonstrates how functional predictions may readily distinguish eQTL 

regions from the genomic background while struggling to discriminate regulatory activity 

between highly linked allelic MPRA hits within the same region.
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We found that multiple, tightly-linked causal variants could be found under eQTL and 

GWAS loci. We identified that at least 17.7% of eQTL had more than one allelic hit. 

We further observed that most haplotype combinations exhibited additive effects, with 

0.91% exhibiting non-additivity. Using these data, we demonstrate the power of MPRA-

based experimental fine-mapping and report likely causal variants underlying hundreds of 

molecular and complex trait phenotypes, including a single variant underlying ORMDL3/

Asthma, three variants underlying AHI1/Multiple Sclerosis, and up to thirteen variants 

each underlying PACSIN2/Platelet Count and ERAP2/Crohn’s Disease/Inflammatory Bowel 

Disease.

Supplementary Material
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Figure 1 - Design and implementation of a variant-based massively parallel reporter assay
(A) Variant selection and oligonucleotide sequence design. (B) Random barcoding, 

sequencing and expression of the MPRA library. (C) Distribution of eQTLs (orange) and 

non-eQTLs (blue) from the 1000 Genomes Project compared to Tewhey et al. (green) (8) 

variant expression p-values (negative binomial regression) and relative effect proportions. 

Inset shows proportion of tested variants that are significant MPRA hits. (D) Same as 

in (C) but with allelic p-values (negative binomial regression) (E) Genomic position 

and unadjusted p-values for all tested BRCA1-associated variants with colors indicating 
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Benjamini-Hochberg (BH) adjusted p-value <= 0.05. Vertical magenta lines indicate 

positions of variants that are both expression and allelic MPRA hits.
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Figure 2 - General and allele-specific functional properties of regulatory variants
(A) Odds ratios and 95% confidence intervals for enrichment of peaks from 160 ENCODE 

ChIP-seq datasets within expression MPRA hitss. Standard and high thresholds required an 

expression BH-adjusted p-value of < 5e-2 or < 5e-10, respectively. Only TFtranscription 

factors with an enrichment adjusted p-value < 0.005 are shown, and listed TFtranscription 

factors have BH-adjusted enrichment p-value < 0.05 and odds ratio > 5 (Fisher’s exact 

test). (B) Same as in (A) but for histone modifications. Marks above the horizontal line 

have a BH-adjusted p-value < 0.05 at both thresholds. (C) Same as in (A) but for clustered 

chromatin accessibility regions in fragments with expression effects. (D) Distribution of 

SNP-SELEX deltaSVM scores at allele-specific binding variants stratified by MPRA allelic 

hit direction (color) and significance category (top and bottom); MPRA allelic hits have 

BH-adjusted expression and allelic p-values <= 0.05 while non-significant variants have 

p-values > 0.75 (negative binomial regression). (E) Same as in (D) but for allelic imbalance 

in chromatin accessibility from ENCODE. (F) For all TFs evaluated in (D), comparison 

of the concordance proportion across MPRA variants with the expression of each included 

TF in GM12878 cells; points indicate significant effect concordances. (G) Comparison 

of directional concordances within accessible chromatin motifs for significant (left) and 
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non-significant (right) MPRA effects. Significance values for C and D were calculated with 

Fisher’s exact test and p-values are denoted as follows: * <0.05, **<0.005, ***<0.0005, 

****<5e-5.
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Figure 3 - Integrative non-coding variant effect prediction
(A) Empirical cumulative probability distribution of the first through fourth principal 

component (PC) scores from Enformer for allelic MPRA hits and other tested variants 

significant and non-significant MPRA allelic hits; genome-wide percentiles computed across 

all common variants in 1000 Genomes Phase 3. Inset shows a blow up of lower genome-

wide percentile curves (B) Significance of a Kolgomorov-Smirnov (K-S) test comparing the 

empirical distributions of Enformer scores for significant and non-significant allelic MPRA 

hits v; magenta horizontal line indicates significance by K-S test (p-value < 0.05). (C) Same 

as in (A) except showing annotation principle components from FAVOR; genome-wide 

percentiles computed across all variants in TOPMed Freeze5. (D) Same as in B, except 

testing FAVOR aPCs.
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Figure 4 - Decomposition of allelic heterogeneity within regulatory loci
(A) Histograms of the number of expression MPRA hits per locus with BH-adjusted p-value 

<= 0.05 (negative binomial regression). (B) Same as in (A) but requiring BH-adjusted 

p-value <= 0.05 for allelic MPRA hits. (C) Distribution of linkage disequilibrium R2 values 

between all pairs of allelic MPRA hits within genes with multiple hits. (D) Cumulative 

distribution of effect sizes stratified by concordance; concordance is defined as the sign 

of the allelic effect size matching the sign of eQTL beta. (E) Distribution of eQTL 

betas measured in GTEx v8 LCLs for strong MPRA hits (log expression effect size >= 

1.4), stratified by MPRA allelic effect direction and significance from negative binomial 

regression. (F) Using the same variants as (E), counts of directionally concordant and 

discordant allelic MPRA hits across all loci. (G) Comparison of haplotype regression 

coefficients for variants tested individually or jointly; red points indicate allelic interaction 

BH-adjusted p-value <= 0.05 (negative binomial regression). The x-axis displays the sum 

of effect sizes associated with oligos containing each variant individually, and the y-axis 

displays the effect size associated with the oligo containing both variants.
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Figure 5 - Resolving complex trait associations with multiple causal variants
(A) Heatmap of significant colocalizations between eQTL loci and selected GWAS; color 

indicates the number of allelic MPRA hits within the colocalized regions. (B) Comparison of 

genetic associations for Asthma and ORMDL3 expression in GTEx v8 LCLs; red and blue 

points indicate allelic MPRA hits and other tested variants significant and non-significant 

allelic MPRA hits, respectively, black points indicate untested variants not included in our 

library. (C) Same as in (B) for associations with Multiple Sclerosis and AHI1 expression. 

(D) Same as in (B) and (C) for associations with Crohn’s Disease and ERAP2 expression 

which was also colocalized with Inflammatory Bowel Disease (fig. S5A). All GWAS and 

eQTL colocalizations are retrieved from (22), and lead variants were required to be genome-
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wide significant (reported GWAS p-value <= 5e-8 and reported eQTL p-value <= 5e-5) even 

if colocalization probability was high.
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