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Abstract

Minor amputations are performed in a large proportion of patients with diabetic foot ulcers
(DFU) and early identification of the outcome of minor amputations facilitates medical
decision-making and ultimately reduces major amputations and deaths. However, there
are currently no clinical predictive tools for minor amputations in patients with DFU. We
aim to establish a predictive model based on machine learning to quickly identify patients
requiring minor amputation among newly admitted patients with DFU. Overall, 362 cases
with University of Texas grade (UT) 3 DFU were screened from tertiary care hospitals in
East China. We utilized the synthetic minority oversampling strategy to compensate for
the disparity in the initial dataset. A univariable analysis revealed nine variables to be
included in the model: random blood glucose, years with diabetes, cardiovascular dis-
eases, peripheral arterial diseases, DFU history, smoking history, albumin, creatinine, and
C-reactive protein. Then, risk prediction models based on five machine learning algo-
rithms: decision tree, random forest, logistic regression, support vector machine, and
extreme gradient boosting (XGBoost) were independently developed with these variables.
After evaluation, XGBoost earned the highest score (accuracy 0.814, precision 0.846,
recall 0.767, F1-score 0.805, and AUC 0.881). For convenience, a web-based calculator
based on our data and the XGBoost algorithm was established (https://dfuprediction.
azurewebsites.net/). These findings imply that XGBoost can be used to develop a reliable
prediction model for minor amputations in patients with UT3 DFU, and that our online cal-
culator will make it easier for clinicians to assess the risk of minor amputations and make
proactive decisions.

Introduction

It is estimated that the number of diabetes patients worldwide will reach 300 million by 2025
[1]. Diabetic ulcers, particularly severe diabetic foot ulcers (DFU), are the most prevalent and
severe diabetes consequence. When debridement and repair do not improve a patient’s diabetic
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foot condition [2], amputation becomes an unpleasant option. However, amputation can have
a significant impact on the prognosis of individuals with DFU, decreasing their quality of life
and increasing their chance of mortality [3-5]. According to statistics, the 5-year death rate for
DFU patients will increase from 40% to 63% after amputation [1]. In addition, amputation
multiplies the expense of treatment by a factor of five, hence increasing the load on the national
health care system [6, 7].

DFU amputations can be divided into minor amputations below the ankle and major
amputations above the ankle. Compared to major amputations as a life-saving alternative,
minor amputations represent a larger clinical proportion (about 90%) of patients undergoing
amputation [8]. Therefore, early diagnosis of the risk of small DFU amputation can benefit the
majority of DFU patients, while early intervention for the risk of minor amputation is critical
to prevent large amputations and preserve limbs [9, 10].

Machine learning is a subfield of artificial intelligence that has brought revolutionary
changes to the field of health care through fast, efficient, accurate, and cost-effective comput-
ing decisions [11]. Machine learning plays an important role in the prediction of many com-
mon diseases, such as the diagnostic prediction of patients with type 2 diabetes [12] and the
classification of cardiovascular diseases in patients with diabetes [13]. Several studies on
DFU have shown the superior predictive performance of machine learning algorithms [14-
19]. For the DFU diagnosis, Amith Khandakar et al. used thermogram images to establish a
machine learning model based on CNN for early detection of DFU [15]. Rachita Nanda
et al. constructed the prediction models for differentiating T2DM with DFU with four dis-
tinct machine learning methods [17]. For the DFU prognosis prediction, the Bayesian-based
decision model [20] and the light gradient boosting machine model [19] were used to pre-
dict the amputation rate of DFU patients in different retrospective studies. Recently, a Chi-
nese team focused on DFU mortality and amputation during the COVID-19 post-lockdown
compared different machine-learning models [18]. However, these models’ performance
was hampered due to a paucity of data. In a particular scenario, the choice of a machine
learning algorithm depends on the sample dataset and the decision objective. The majority
of studies utilized a single machine learning algorithm, they were unable to find the optimal
algorithm.

In this study, we collected data on University of Texas grade 3 (UT3) DFU patients from
two tertiary hospitals in eastern China. The University of Texas classification is a commonly
used grading system, which is detailed in S1 Table. Patients with UT3 (bone or joint pene-
tration) were selected because they constitute the majority of patients at tertiary hospitals
and are the most susceptible to minor amputations. We used the following five supervised
learning algorithms to filter out the best prediction model for minor amputation: logistic
regression (LR), a long-standing statistical method to predict patients’ results based on the
predictive variables of each patient [21]; random forest (RF), a mature learning algorithm
widely used based on recursive methods [22]; decision tree (DT), a tree model in which
each node has a question and each branch represents a result [23]; support vector machine
(SVM), an excellent technology with independent integrity theory based on the optimal
solution [24]; and extreme gradient boosting (XGBoost), an enhanced learning algorithm,
which aims to transform weak learners into strong learners with high prediction accuracy
[25].

Notably, the data collected by our team exhibits the class imbalance problem commonly
associated with clinical data. To prevent its potential to lead to biased decision boundaries,
we balanced the outcome variables using the synthetic minority oversampling technique
(SMOTE) method, which has performed well in numerous studies [26-29]. To aid physicians,
a final web-based calculator based on the best algorithm was also developed.
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Methods

The study design flow chart and data screening flow sheet are shown in Fig 1. Below we present
the study population, outcome and predictors, data processing, model building and model
evaluation methods respectively.

Study population

All clinical data were selected from *** Hospital and the *** Hospital from January 2018 to
December 2019. Both hospitals treated DFU under multidisciplinary cooperation. Only
patients with UT3 DFU were included in the study while patients who received major amputa-
tion, gave up treatment, or had incomplete information were excluded. The demographic
data, wound characteristics and laboratory indicators of patients were collected from the medi-
cal records. According to the Helsinki Declaration, our study was approved by the Ethics
Committee of Nanjing Drum Tower Hospital (No. 2020-10901). Informed consent of the par-
ticipants was waived because of the retrospective study design and the use of anonymized clini-
cal data.

Outcome and predictors

Outcome. A minor amputation is defined as any amputation distal to the ankle joint.
Predictors. A total of 21 variables that have been shown to have a prognostic impact on
diabetic ulcers in the previous literature were collected [30, 31]. All the enrolled predictors can
be seen in the S2 Table. To avoid confusion, we have given specific explanations of the clinical

indicators that may be controversial as follows:

Ulcer location: The location of the ulcer was judged by the endocrinologist and the burn plastic
surgeon at the first visit to the hospital.

Wound duration: This period ranged from the first discovery to the first visit to the hospital.

Diabetic peripheral neuropathy (DPN): Clinical symptoms, such as finger/toe symmetrical
sensory disturbance or abnormal nerve conduction velocity, are noted on electrophysiolog-
ical nerve examination. Two of the following diagnostic criteria of DPN must be met [32]:
(1) neuropathic pain, anesthesia, or other sensory abnormalities; (2) abnormal acupuncture
sensation of the lower extremities or changes in the 10 g Sims-Weinstein monofilament
test; or (3) decreased ankle reflex.

Smoking history: The definition refers to the standard recommended by the WHO in 1984,
that is, smoking more than one cigarette a day for a continuous period of one month; other-
wise, it is judged to be nonsmoking.

Drinking history: The criteria for being classified as a drinker includes a long history of drink-
ing lasting for more than 5 years and daily alcohol consumption >80 g.

Hypertension: The criteria for determining hypertension are as follows: systolic blood
pressure >140/90 mmHg or use of antihypertensive drugs with normal blood pressure.

Peripheral artery disease (PAD): If one or more lower extremity artery occlusions are found by
Doppler ultrasound, it is diagnosed as peripheral artery disease [33].

Hyperlipidemia: Hyperlipidemia is known as lipid metabolism disorder and refers to total cho-
lesterol, triglyceride, high-density lipoprotein cholesterol and low-density lipoprotein cho-
lesterol exceeding the standard value.

PLOS ONE | https://doi.org/10.1371/journal.pone.0278445 December 6, 2022 3/17


https://doi.org/10.1371/journal.pone.0278445

PLOS ONE Machine learning for UT3 DFU

B
N \
Demographic Laboratory
characteristics indictors |
I
Wound @ Comorbidities |
characteristics 21 characteristics of the 362
@ | DFU patients collected and
l e | whether the current treatment
| Minor had a minor amputation
QA amputation | >
== |
N
After univariate logistic regression
T T—— analysis, 9 features left for
i = 362 DFU patients
N

|

DBD SMOTE After oversampling (SMOTE),
patient data volume was

e expanded to 574 cases

s, T T T T T 7 T 7 7N
Model Evaluation l
I ® /o '!, ; |
| la&® .-o*., | 70% for training set (n=402)
| e | 30% for verification set (n=172)
LR DT SVM

| I
| I
! RF XGboost |
N

S

@ Aweb calculator

Fig 1. Study design flowchart and data screening flowchart. (A) Study design flowchart; (B) Data screening flowchart. Abbreviations: DFU, diabetic foot
ulcer; DT, decision tree; LR, logistic regression; RF, random forest; SMOTE, synthetic minority oversampling technique; SVM, support vector machine;
XGBoost, extreme gradient boosting.

https://doi.org/10.1371/journal.pone.0278445.9001
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To explore whether the variables were dose-dependent on the outcome of amputation of
diabetic foot ulcers, we defined the abnormal values of variables according to clinical experi-
ence and guidelines [34-38]. Patients were divided based on 11.1-16.7 mmol/L and >16.7
mmol/L blood glucose. Patients were divided based on 25.0-34.9 g/L and <25.0 g serum
albumin levels. Patients were divided based on 8-100 mg/L and >100 mg/L CRP levels. The
duration of diabetes was divided into 0-10 years, 10-20 years and >20 years. Patients were
divided based on creatine levels as follows: 134-186 pmol/L, 187-451 umol/L, 452-771 umol/L
and >771 pmol/L. Details are provided in S2 Table.

SMOTE for the imbalanced dataset

Our dataset consisted of 75 (20.7%) patients with minor amputation and 287 (79.3%) patients
without any amputation. A class imbalance exists in the original dataset, which is a common
phenomenon in the field of data science.

The class imbalance will cause “undo” effect because they cannot weaken the deviations of
the majority class. Therefore, we used the SMOTE technique to alleviate the data imbalance
problem, which synthesizes new minority instances from the nearest neighbors of a straight
line connecting a small number of samples. These new instances are created based on the char-
acteristics of the original dataset, so they become similar to the original minority class
instances [39]. The algorithm flow is as follows [40].

1. For each minority sample x, calculate its distance from the other samples in the minority
class and get k-nearest neighbors.

2. Randomly select a number of samples from the k-nearest neighbors.

3. For each randomly chosen nearest neighbor x’, a new sample is synthesized according to
the formula: xnew = x + rand(0,1)*(x’-x).

Determine the sampling multiplier based on the sample imbalance ratio and repeat the
above process. Finally, a balanced dataset can be obtained.

Model construction

Statistical analyses were performed using SPSS 26.0. The enumeration data were expressed

as count (percentage) and processed with a Chi-square test, whereas the measurement data
were presented as the means + standard deviation and analyzed by t-test. Factors with a
p-value <0.05 in the univariate binary logistic regression analysis were used as candidate fac-
tors to construct predictive models. In this study, machine learning algorithms were selected
as the modeling methods for DFU minor amputation prediction. The whole dataset was ran-
domly divided into the training set and the verification set according to the proportion of
approximately 7:3, in which the training set was used to build the prediction models, and the
verification set was used to verify and evaluate the performance of the models. Five machine
learning algorithms were adopted to build risk prediction models, including DT, RF, LR, SVM
and XGBoost. Among them, RF and XGBoost are integrated machine learning classifiers, and
the remainder are single classifiers. In the process of training, the optimal parameters were
determined by 10 cross-validations.

Model evaluation

The evaluation indicators, including accuracy, precision, recall rate, F1-score, and AUC, were
calculated to assess the constructed models. The closer the values are to 1, the better the perfor-
mance of the prediction model. In addition, our experiment also used the receiver operating
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Table 1. Calculation formulae for the evaluation indicators of the model.

CM Labeled Predicted as negative Predicted as positive

Negative N FP

Positive FN TP
Recall TPIPFN

TPLIN
Accuracy TPLFPLTNLEN
Precision TPTFP
2TP

F1-score 2TP+ FP+EN

Abbreviations: CM, confusion matrix; TP, true positive; FP, false positive; FN, false negative; TN, true negative.

https://doi.org/10.1371/journal.pone.0278445.t001

characteristic curve (ROC) to graphically represent the discernibility. As the most persuasive
measurement for predictive analysis in machine learning, we also employed the confusion
matrix (CM) for further model evaluation, which is a summarized table of the number of
actual values and the predicted values yielded by the prediction model. Details of all these eval-
uation metrics are shown in Table 1.

Results
Patient characteristics

From January 2018 to December 2019, a total of 362 patients with Texas grade 3 DFU were
collected, including 257 males and 105 females aged 26-88 years. All the patient data, includ-
ing demographics and disease and treatment characteristics, grouped by amputation are listed
in S2 Table.

Univariable analysis results

Univariate regression analysis was conducted based on 362 patients with minor amputation as
dependent variables, and demographics, wound characteristics, and laboratory indicators
served as independent variables. Significant results are shown in Table 2, and 9 characteristic
variables were selected (P<0.05): random blood glucose, years with diabetes, cardiovascular
disease, peripheral arterial disease, smoking history, albumin, serum creatinine, C-reactive
protein, and DFU history.

SMOTE algorithm

To solve the class imbalance of the binary variables, we adopted the SMOTE technique. We
sampled both the training dataset and the verification dataset, and the sample distribution
before and after oversampling is shown in Table 3.

Model establishment and evaluation

Undergoing a minor amputation operation or not was set as the label, and 9 statistically signif-
icant factors in univariate analysis were set as features. The risk prediction models of minor
amputation in DFU patients were established by DT, RF, LR, SVM and XGBoost.

Fig 2 shows the results of the confusion matrix of various models. The confusion matrix of
the classification results consists of four quadrants. In our study, 0 represents patients who did
not receive minor amputation during this treatment, and 1 represents patients who received
minor amputation during this treatment.
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Table 2. Results of univariate analysis of minor amputation for diabetic foot ulcer patients.

Non-amputation (n = 287) Minor Amputation (n = 75) Statistics(y2) p-values
Random blood glucose (mmol/L) 43.323 <0.001
<11.1 172(92.0%) 15(8.0%)
11.1-16.7 69(60.5%) 45(39.5%)
>16.7 46(75.4%) 15(24.6%)
Years with diabetes 7.389 0.025
0-10 161(84.7%) 29(15.3%)
11-20 99(73.9%) 35(26.1%)
>20 27(71.1%) 11(28.9%)
Cardiovascular diseases 4.453 0.035
No 71(87.7%) 10(12.3%)
Yes 216(76.9%) 65(23.1%)
Peripheral arterial diseases 8.949 0.003
No 78(90.7%) 8(9.3%)
Yes 209(75.7%) 67(24.3%)
Smoking history 7.600 0.006
No 131(86.2%) 21(13.8%)
Yes 156(74.3%) 54(25.7%)
Albumin(g/L) 12.361 0.002
35.0-50.0 121(87.1%) 18(12.9%)
25.0-34.9 143(76.9%) 43(23.1%)
<25.0 23(62.2%) 14(37.8%)
Creatinine(pmol/L) 10.337 0.026
54-133 234(81.5%) 53(18.5%)
134-186 22(71.0%) 9(29.0%)
187-451 16(76.2%) 5(23.8%)
452-771 11(84.6%) 2(15.4%)
>771 4(40.0%) 6(60.0%)
C-reactive protein(mg/L) 15.227 <0.001
0-8 124(89.9%) 14(10.1%)
8-100 125(73.1%) 46(26.9%)
>100 38(71.7%) 15(28.3%)
DFU history 7.350 0.007
No 242(82.0%) 53(18.0%)
Yes 45(67.2%) 22(32.8%)
Abbreviations: DFU, diabetic foot ulcers.
https://doi.org/10.1371/journal.pone.0278445.t002
Table 3. Data distribution of both the training set and validation set before and after SMOTE.
Training set Validation set
Non-amputation Minor amputation Non-amputation Minor amputation
Before over-sampling 201 52 86 23
After over-sampling 201 201 86 86

Abbreviations: SMOTE, synthetic minority oversampling technique.

https://doi.org/10.1371/journal.pone.0278445.t003
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Fig 2. Confusion matrix of the risk prediction models with machine learning algorithms. (A) DT: decision tree. (B)

RF: random forest. (C) LR: logistic regression. (D) SVM: support vector machine. (E) XGBoost: extreme gradient
boosting.

https://doi.org/10.1371/journal.pone.0278445.9002

Firstly, we compared the prediction performance of five machine learning algorithms
before and after oversampling as shown in Table 4, which demonstrates the effectiveness of the
SMOTE algorithm. Before SMOTE technique, all five machine learning algorithms suffered
from data imbalance, resulting in biased classification boundaries. Although the overall classi-
fication accuracy was satisfactory, other metrics, such as precision, recall, and F1 score, were
significantly lower, proving that the obtained models were clinically meaningless in practice.
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Table 4. Performance parameter values for five machine learning algorithms before and after over-sampling.

Algorithms Accuracy Precision Recall F1 score AUC
Before oversampling DT 0.743 0.333 0.217 0.263 0.688
RF 0.780 0.455 0.217 0.294 0.754
LR 0.771 0.429 0.261 0.324 0.733
SVM 0.798 0.667 0.087 0.154 0.712
XGBoost 0.817 0.615 0.348 0.444 0.726
After oversampling DT 0.744 0.828 0.616 0.707 0.813
RF 0.797 0.823 0.756 0.788 0.857
LR 0.640 0.640 0.640 0.640 0.739
SVM 0.663 0.689 0.593 0.638 0.767
XGBoost 0.814 0.846 0.767 0.805 0.881

Abbreviations: AUC, area under the curve; DT, decision tree; RF, random forest; LR, logistic regression; SVM, support vector machine; XGBoost, extreme gradient

boosting.

https:/doi.org/10.1371/journal.pone.0278445.t004

Value

To further clearly compare the performance of the five machine learning algorithms with
SMOTE technique, we visualized the evaluation metrics shown in Figs 3 and 4. It is not diffi-
cult to find that the integrated algorithms XGBoost and RF were higher than other single clas-
sification algorithms from an overall perspective, and XGBoost had the highest value in all
indicators (accuracy 0.814, precision 0.846, recall 0.767, F1-score 0.805, and AUC 0.881),
which indicates that XGBoost obtained optimal performance in the prediction of minor ampu-
tation in UT3 diabetic foot ulcer.

0.754

0.50 1

0.254

0.00

Algorithms

Hor
|
B rF
B sw
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Metric

F1 score

AUC

Fig 3. Performance comparisons of machine learning algorithms after over-sampling. Abbreviations: DT, Decision Tree; RF, Random Forest; LR,
Logistic Regression; SVM, Support Vector Machine; XGBoost, extreme gradient boosting; AUC, area under the curve.

https://doi.org/10.1371/journal.pone.0278445.9g003
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Web-based calculator

Based on our dataset and the XGBoost algorithm, we constructed a web calculator using
Microsoft Azure Web Sites. The address of the website is (https://dfuprediction.azurewebsites.
net/). This web application enables the user to select nine variables to calculate the likelihood
of minor amputation for DFU patients. S1 Fig contains an example.

The importance of characteristic variables

Based on the algorithm evaluation, XGBoost had the strongest prediction ability. Thus, we
explored the relative importance of each feature variable in the XGBoost risk model. The fea-
ture importance ranking results are shown in Fig 5. Random blood glucose occupied the first,
second and fifth places of importance, and history of DFU and serum albumin values less than
25 g/L ranked third and fourth in importance, respectively. Other important features included
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creatinine >771 pumol/L, peripheral artery disease, smoking history, diabetes mellitus, CRP
and cardiovascular disease.

Discussion

In recent years, a variety of linear regression models have been established to obtain the prog-
nosis of clinical diseases. Linear regression models mainly refer to logistic regression and Cox
regression. These models have strong predictability for the outcome of classified variables, but
the predictive ability may be reduced because these models ignore the nonlinear relationship.
With the continuous development of artificial intelligence, machine learning has been applied
in the field of medical diagnosis and demonstrated better performance in the prediction of
clinical disease prognosis [41]. In recent studies, many studies have shown the superior predic-
tive power of machine learning algorithms for the diagnosis and prognosis of DFU [14-19].
However, there is a lack of studies with sufficient case data to determine comparatively which
machine learning algorithm is the most suitable for use, especially in patients with UT3 DFU,
which is most commonly seen in tertiary care hospitals. Our study focuses on predicting the
rate of minor amputations in patients with UT3 DFU to more efficiently achieve limb preser-
vation and reduce complications.

To identify the most suitable model for predicting minor amputation in UT3 DFU patients,
our team collected 21 factors based on demographic features, wound features, and laboratory
indicators in 362 cases. Five algorithms, namely DT, RF, LR, SVM and XGBoost, were used to
predict the minor amputation probability. The XGBoost algorithm performed better than the
commonly used linear regression model (LR), the single classifier (DT and SVM), and another
ensemble learning machine learning algorithm (RF). Thus, the XGBoost algorithm was best to
predict minor amputation of DFU patients (Table 4, Figs 3, 4). XGBoost is an ensemble learn-
ing algorithm that combines the predictions of multiple trees and adds the predicted scores of
each tree to obtain the final score. With the advantages of high speed, high efficiency and high
fault tolerance, XGBoost can effectively avoid overfitting and exhibit a high generalization
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ability. Many researchers have demonstrated that XGBoost has achieved good performance in
the prediction of a variety of clinical diseases [42, 43]. Our study also demonstrates the good
operation of SMOTE oversampling in solving the balance class problem in small samples of
medical data.

In the results of our feature importance analysis, the top five important factors in our rank-
ing were random blood glucose, DFU history and albumin. Random blood glucose accounted
for three of the top five factors, emphasizing the importance of blood glucose control. Some
studies have shown that intensive blood glucose control may lead to hypoglycemia [44-47].
Nevertheless, the relaxation of blood glucose control has contributed to the return of LEA
based on an analysis of adult participants in the National Health and Nutrition Survey
(NHANES) from 2010 to 2015 [48]. The Action to Control Cardiovascular Risk in Diabetes
(ACCORD) trial collected 10251 randomly selected type 2 diabetic patients at 77 locations in
the United States and Canada. This trial found that intensive blood glucose therapy was associ-
ated with a 31% reduced risk of major lower limb amputation [49]. Based on a systematic
review of the literature on diabetic foot disease, the guidelines of the Society of Vascular Sur-
gery (SVS) recommend enhanced blood glucose control (HbAlc = 6-7.5%) to reduce the risk
of amputation [50]. Paying early attention to strict blood glucose control may be a key factor
in preventing the progression of severe limb ischemia and subsequent major limb amputation.
Our research particularly emphasizes this point.

The remaining top five important factors in our ranking were DFU history and albumin.
Byung-Joon Jeon et al. demonstrated that a history of previous DFU increased the risk of LEA
(P =0.008, OR = 3.38) [51]. In our study, 32.8% of patients with a history of diabetic ulcers
underwent a minor amputation. Our results are similar to those of Helm et al., who reported
that 20-58% of patients relapsed within one year of wound healing [52]. However, Jiang et al.
observed in a cohort of 669 Chinese people that the amputation rate of diabetic DFU patients
within two years was 19.03% [8]. Our data differed because as a cross-sectional study, the inter-
val between the last occurrence of ulcers in our patients may be greater than 2 years, and all
patients in our cohort were UT3 patients whose ulcers were severe enough to reach the tendon.
Patients with a history of ulcers are likely to have all the risk factors for ulcers. This finding
reminds us to follow up on DFU after treatment, including disease care education and regular
reexamination.

Low serum albumin always indicates malnutrition, which is more common in patients with
DFU given elevated flux and poorly controlled blood glucose. Adequate nutrition is essential
for tissue remodeling. The GNRI score for assessing nutrition-related risks consists of serum
albumin, body weight, and ideal weight. In a study on nutrition and DFU healing, foot prog-
nosis deteriorated with the increase in the risk of malnutrition (GNRI score) (linear trend,
P<0.001) and the incidence of major LEA (11.3% vs. 1.8%) in the malnutrition (GNRI<92)
group was approximately 6-fold increased [53, 54]. Meanwhile, a serum albumin level of <25
g/L, indicating severe malnutrition, has a greater impact on the amputation rate of DFU. In
this case, even if DFU is treated, the prognosis is still poor [38]. The results of a nutritional sup-
plement study showed improvement in patients with DFU who received arginine, glutamine
and B-hydroxy-B-methyl butyrate supplements with albumin <40 g/L rather than below the
normal value of 55 g/L. More research is needed in this area because it is still not clear whether
the infection worsened due to the patient’s long-term hypoproteinemia or whether the serum
albumin decreased sharply when dealing with the infection [55].

Our research is characterized by the following points: 1. Our study provides a real-world
dataset from two tertiary hospitals in East China, focusing on outcomes in patients with UT3
diabetic foot ulcers and minor amputations. 2. We compared five popular machine learning
algorithms (LR, RF, DT, SVM and XGBoost) to filter out the best-performing clinical models
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and ultimately provided a network calculator for use (https://dfuprediction.azurewebsites.
net/). 3. Our study showed good results in small sample medical data using an oversampling
approach (SMOTE) to balance the data. 4. Based on the results of the ranking of factors affect-
ing the risk of minor amputation, we suggest that strict glycaemic control, active DFU follow-
up including disease care education and regular review, and improved malnutrition are three
key points to avoid minor amputation.

This study has some limitations. First, this study collected case data from the *** Hospital
and the *** Hospital. Because these hospitals serve as the main referral centers for DFU, our
conclusions are sufficiently representative. However, the amount of data is limited, limiting the
performance of machine learning. We aim to verify the results in a larger sample size of patients
from multiple centers in the future. Finally, due to incomplete examination records, we did not
include some laboratory indicators that may be related to minor amputation, such as glycosy-
lated hemoglobin and serum insulin levels, or the treatment of other diseases of the patient,
such as hypolipidemic agents for ischemic heart disease and anticoagulants for peripheral vas-
cular disease. The field of artificial intelligence is developing rapidly. Data from multisensory
data and imaging CT and MRI data are already being used extensively in medical decision-
making [56-58]. In the field of diabetic foot ulcers, we look forward to incorporating such data
in our follow-up work to make more accurate monitoring and timely treatment of patients.

Conclusion

In this study, we used the data of patients with UT3 DFU collected from two tertiary care hos-
pitals to train, test, and evaluate the predictive ability of five machine learning algorithms for
minor amputation. Ultimately, XGBoost shows the best performance. The web calculator we
have created would help clinical workers assess the risk of small amputation of diabetic foot
ulcers at the time of admission, implement individualized treatment and optimize patient
outcomes.
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