Skip to main content
. 2022 Dec 6;17(12):e0278445. doi: 10.1371/journal.pone.0278445

Table 4. Performance parameter values for five machine learning algorithms before and after over-sampling.

Algorithms Accuracy Precision Recall F1 score AUC
Before oversampling DT 0.743 0.333 0.217 0.263 0.688
RF 0.780 0.455 0.217 0.294 0.754
LR 0.771 0.429 0.261 0.324 0.733
SVM 0.798 0.667 0.087 0.154 0.712
XGBoost 0.817 0.615 0.348 0.444 0.726
After oversampling DT 0.744 0.828 0.616 0.707 0.813
RF 0.797 0.823 0.756 0.788 0.857
LR 0.640 0.640 0.640 0.640 0.739
SVM 0.663 0.689 0.593 0.638 0.767
XGBoost 0.814 0.846 0.767 0.805 0.881

Abbreviations: AUC, area under the curve; DT, decision tree; RF, random forest; LR, logistic regression; SVM, support vector machine; XGBoost, extreme gradient boosting.