Table 4. Performance parameter values for five machine learning algorithms before and after over-sampling.
Algorithms | Accuracy | Precision | Recall | F1 score | AUC | |
---|---|---|---|---|---|---|
Before oversampling | DT | 0.743 | 0.333 | 0.217 | 0.263 | 0.688 |
RF | 0.780 | 0.455 | 0.217 | 0.294 | 0.754 | |
LR | 0.771 | 0.429 | 0.261 | 0.324 | 0.733 | |
SVM | 0.798 | 0.667 | 0.087 | 0.154 | 0.712 | |
XGBoost | 0.817 | 0.615 | 0.348 | 0.444 | 0.726 | |
After oversampling | DT | 0.744 | 0.828 | 0.616 | 0.707 | 0.813 |
RF | 0.797 | 0.823 | 0.756 | 0.788 | 0.857 | |
LR | 0.640 | 0.640 | 0.640 | 0.640 | 0.739 | |
SVM | 0.663 | 0.689 | 0.593 | 0.638 | 0.767 | |
XGBoost | 0.814 | 0.846 | 0.767 | 0.805 | 0.881 |
Abbreviations: AUC, area under the curve; DT, decision tree; RF, random forest; LR, logistic regression; SVM, support vector machine; XGBoost, extreme gradient boosting.