
Metagenome analysis using the Kraken software suite

Jennifer Lu1,2,*,#, Natalia Rincon1,2,#, Derrick E. Wood2,4, Florian Breitwieser2, Christopher
Pockrandt2, Ben Langmead4, Steven L. Salzberg1,2,4,5, Martin Steinegger3,*

1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States

2Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University,
Baltimore, MD, United States

3School of Biological Sciences and Institute of Molecular Biology & Genetics, Seoul National
University, Seoul, Republic of Korea

4Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States

5Department of Biostatistics, Johns Hopkins University, Baltimore, MD, United States

Abstract

In order to facilitate efficient and reproducible metagenomic analysis, we introduce Kraken

Protocols, an end-to-end pipeline for the classification, quantification, and visualization of

metagenomic datasets. Our protocol describes the execution of the Kraken programs, via a

sequence of easy to use scripts, in two scenarios: (1) quantification of the species in a

metagenomics sample, and (2) detection of a pathogenic agent from a clinical sample taken

from a human patient. The protocols can be run by any users who are familiar with the Unix

command-line environment.

Introduction

Metagenomics sequencing has greatly improved our understanding of the microscopic world

by revealing a vast range of microbial organisms that were previously unobserved, many

of which cannot be grown in laboratory cultures 1. Metagenomics experiments take many

forms, two of which can be broadly categorized as either microbiome experiments or

pathogen identification experiments. In microbiome experiments, researchers evaluate all

of the microbial organisms identified in a given sample, often with the goal of describing

what is present. In contrast, in a pathogen identification experiment, researchers focus on

* jennifer.lu717@gmail.com, martin.steinegger@snu.ac.kr.
#These authors contributed equally to this work.
Author Contributions
J.L. and M.S. led the development of the protocol. N.R. executed and designed the Microbiome Analysis protocol and is the author
of the KrakenTools alpha diversity tools. J.L. developed the Pathogen Identification protocol and is the author of Bracken and
KrakenTools. M.S. authored the jupyter notebooks for the protocol. D.E.W. is the senior author of Kraken and Kraken 2. F.B. is the
author of KrakenUniq. C.P. is an author for the KrakenTools beta diversity script. B.L. supervised the development of Kraken 2. S.L.S.
supervised the development of Kraken, KrakenUniq, and Bracken. B.L. and S.L.S. supervised the development of this protocol. All
authors contributed to the writing of the manuscript.

Competing interests
The authors declare no competing financial interest

HHS Public Access
Author manuscript
Nat Protoc. Author manuscript; available in PMC 2022 December 06.

Published in final edited form as:
Nat Protoc. 2022 December ; 17(12): 2815–2839. doi:10.1038/s41596-022-00738-y.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

identifying one or a few pathogenic microbes, with the goal of diagnosing an infection. The

suite of tools in the Kraken package were developed to cover many of the bioinformatics

needs of both microbiome and pathogen metagenomics experiments. These tools include

Kraken 2, KrakenUniq 3, Kraken 24, Kraken2Uniq (based on KrakenUniq), Bracken 5,

KrakenTools, and Pavian 6.

Microbiome experiments begin with (1) removing host DNA and then (2) classifying a set

of sequencing reads, with each read assigned to a taxonomic category (species, genus, or

higher-level taxa), followed by (3) computing the relative abundance of different species

in the sample. When computing relative abundance, researchers sometimes focus on a

limited number of “marker” genes, classifying only the reads that align within these genes.

The most widely used marker gene is ribosomal RNA, but protein-coding genes can also

be used, particularly those that are expected to be present in exactly one copy per cell.

However, many studies prefer to analyze all of the sequencing reads collected from a

sample, which is the strategy we focus on in this protocol. Following characterization of

the original data, downstream analyses may include (4) statistical methods for comparing

the microbial compositions of different environments or (5) visualization methods for

understanding microbial compositions. Kraken 2 and Kraken 24 (an improved version of

Kraken) were previously developed by some of us for rapid, accurate classification of

sequencing reads. Bracken 5 was developed to work in conjunction with Kraken to compute

species abundance using Kraken classification results. Finally, KrakenTools and Pavian 6

provide a comprehensive set of tools for downstream statistical analysis and visualization of

the classification and abundance estimation results.

In pathogen identification experiments, researchers and clinicians are interested in

identifying pathogenic microbes that might be the cause of a harmful infection. Pathogen

identification studies conceptually include the following steps: (1) removal of host DNA

from the microbial reads; (2) classification of the remaining microbial reads; (3) comparison

of sample reads against control samples; and (4) validation of pathogen classifications. The

second and third steps are essentially the same as those done for microbiome experiments,

while the first and last steps are needed to ensure the accuracy of any pathogen that is

identified. For removal of host DNA, one can use Bowtie 27 (also developed by some of

the authors of this protocol) as a fast, sensitive aligner that can compare sequencing reads

to the human reference genome. Classification of the remaining reads is then accomplished

by using KrakenUniq 3 and Kraken2Uniq. Finally, KrakenTools and Pavian 6 cover the

remaining steps of pathogen identification experiments, assisting in the identification and

verification of potential pathogens.

Here, we describe in detail how to use the Kraken suite to analyze metagenomic data for

both microbiome and pathogen identification experiments. Figure 1 outlines the protocols

for each of the two types of studies.

Overview of the protocol

The protocols described here focus on two major categories of metagenomic experiments:

microbiome analysis and pathogen identification. We detail the protocol steps using

Lu et al. Page 2

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

DNA samples from the human gut and cornea. However, these protocols may also be

applied to RNA data as well as other biomes and species. For microbiome analysis,

we consider an experiment describing the change in gut microbiome for a single human

patient who underwent a fecal microbiota transplant and antibiotic treatment. For pathogen

identification, we consider 8 separate human corneal samples with bacterial, viral, or fungal

infections and two non-infectious human corneal samples. For both samples, human reads

were already removed prior to analysis in the protocol. However, we include the host

removal step in the protocol to demonstrate how to remove host reads using Bowtie 27.

For microbiome analysis, host-filtered microbial reads undergo classification against

bacterial, viral, fungal, archaeal, and human genomes using Kraken 2 (Figure 1). The

classification report is then used by Bracken for species abundance estimation, which

provides estimated reads per species in the sample. Bracken output files are then passed to

KrakenTools and Pavian for visualization. Pavian provides Sankey visualization of samples

and read count comparisons between samples. For more in-depth downstream analysis,

we recently developed KrakenTools (https://github.com/jenniferlu717/KrakenTools) as a set

of individual programs for visualizing or transforming Kraken and Bracken output. For

microbiome projects, KrakenTools provides functions to compute Krona plots, filter and

combine reports, and calculate alpha and beta diversity metrics about each sample. The

software is not previously published but is already packaged and available through github or

bioconda (https://bioconda.github.io/recipes/krakentools/README.html).

For pathogen identification, we classify 8 infected patient samples and 2 control samples

against the same Kraken 2 database used in microbiome analysis (Figure 1). However, the

additional feature of unique k-mer counting from KrakenUniq 3 is enabled for accurate

pathogen identification. We refer to this as Kraken2Uniq. Following classification by

Kraken2Uniq, the Kraken report files are uploaded to the Pavian Shiny App6, which

compiles all of the read counts per species and allows between sample visualization and

comparison. The Pavian app then calculates z-scores between read counts, with higher

z-scores resulting from samples with higher than usual read counts for a given species. We

then sort the classified species by z-score, with the highest z-score species for each sample

being the most likely pathogen. The filtered table can then be saved as a tab-delimited table

that can undergo further visualization. Finally, pathogen identification can be validated using

the extract kraken reads.py script from KrakenTools. The KrakenTools script allows users to

extract classified reads and confirm potential pathogens using other tools such as BLAST 8

or Bowtie 27.

The target audience for this protocol is biologists and clinicians working in microbiome

or metagenomics analysis. This protocol does not require programming expertise, but it

does assume familiarity with the Unix command-line interface. Users should be comfortable

running programs from the command line in the Unix environment.

Differences between Kraken methods

There are currently four major versions of the Kraken software: (1) Kraken2, (2)

KrakenUniq3, (3) Kraken 24 and (4) Kraken2Uniq. All four versions are based on the same

Lu et al. Page 3

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/jenniferlu717/KrakenTools
https://bioconda.github.io/recipes/krakentools/README.html

classification algorithm which uses exact-matching of read k-mers against a Kraken database

of k-mers from existing genomes. However, the methods differ in the ways they count,

access and store the k-mer information, with each version improving upon the previous

Kraken version.

Kraken and KrakenUniq apply the same k-mer retrieval strategy, and both tools can use the

same databases. The reference database needs roughly 12 bytes per k-mer. Building and

storing the Kraken index for a thousand distinct bacterial genomes of length 4Mb would

result in an index of size ≈ 45GB.

However, the RefSeq 9;10 database already contains ~ 64K bacterial species, and trying to

store all k-mers from this ever-growing database became the main bottleneck of Kraken

and KrakenUniq. Therefore, Kraken 2 was developed as a much more efficient version of

Kraken, reducing the memory usage by 85% over Kraken and KrakenUniq. In addition

to the reduction in database size, Kraken 2 also runs about 5 times faster than Kraken/

KrakenUniq.

Another distinguishing difference is in how the Kraken methods count reads. While Kraken

and Kraken 2 provide cumulative statistics of the total read count per taxa, KrakenUniq and

Kraken2Uniq additionally count and report the number of unique k-mers per taxon, using

an efficient HyperLogLog implementation. In other words, for each species in the output,

KrakenUniq will report how many distinct k-mers from that species were observed in the

reads. Unique counts are especially useful for pathogen detection to distinguish real from

spurious signals.

Alternative analysis packages

The Kraken/KrakenUniq tools assign every read to a taxon of origin. Other software tools

solve this problem, including CLARK 11, Centrifuge 12, and Kaiju 13. Kraken 2 generally

exhibits a more advantageous combination of speed, memory footprint, and accuracy

compared to those tools 4, but it is still possible to substitute those tools into earlier steps in

this protocol. Recent benchmarking studies14, 15 evaluated multiple metagenomic classifiers

and found that Kraken, Kraken 2, and Bracken were among the best-performing methods.

Other tools seek to reduce the memory footprint of the index by including only the portions

of the genome sequences that can distinguish between taxa, e.g. MetaPhlAn216. This

reduces the size of the index, but prevents the tool from classifying many of the reads.

So, while these tools can be used in a microbiome analysis like the one described in this

protocol, they are not appropriate for pathogen identification.

While approaches based on large-scale machine learning have been shown to have

advantages in certain scenarios, e.g. for classifying reads from species that are absent

from the database16, these approaches have tended to be computationally outperformed by

classifiers that assign reads directly based on sequence content, without the need to first

train a model 17;18. For more details on competing paradigms for read classification, see

Breitwieser et al. 19.

Lu et al. Page 4

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The Bowtie 2 tool used to filter host reads can be replaced with similar read alignment tools

such as BWA-MEM or minimap2.

Limitations

Removal of host reads.

For metagenomic studies, removal of host (usually human) DNA is critical: either as a

pre-processing step, using a program such as Bowtie 27 to align all of the reads to the

host, or by including the host genome in the Kraken database. The pre-processing strategy

may be more effective because external alignment programs such as Bowtie 2 are more

sensitive than Kraken, and because pre-processing yields a greatly reduced set of reads,

making subsequent steps faster. Bowtie 2 and other alignment programs are suitable for the

pre-processing step because they can identify and remove any reads belonging to a known

host (e.g., human), while Kraken can then identify the wide variety of unknown microbial

species in the remainder of the sample.

However, this pre-processing step may cause sequences of interest to be removed from the

sample set, especially in the rare case of viral sequences found to be similar to a human

endogenous retrovirus. In this protocol, we include the pre-processing with Bowtie 2 as an

optional step that may or may not be included at the discretion of the users of the protocol.

Reference Database.

Kraken 2’s classification sensitivity and specificity highly depend on how (1) complete

and (2) accurate the used reference database is. (1) The entire microbial biosphere is still

far from being completely sequenced and thus missing or partial genomes may introduce

biases and reduce classification performance. Reads without a reference in the database will

be labeled as unknown or imprecisely assigned to the next closest taxon. (2) Additionally,

genomes can also be contaminated with DNA from other organisms 20;21 introduced during

sequencing. Contamination causes Kraken to assign wrong taxonomic labels to reads. While

this kind of classification error affects only a small fraction of reads, it can make the

detection of weak signals difficult.

For the purpose of this protocol, we use the complete genomes from RefSeq bacteria,

archaea, viral, and plasmid libraries along with extensively screened eukaryotic pathogen

genomes 22. We use only complete genomes to avoid potential contamination from draft

genomes.

For users that may have limited RAM, Kraken 2 provides the ability to generate a

minikraken database. Minikraken databases compress the full Kraken 2 database by saving

a subset, but representative set of the database k-mers. To allow all users to execute this

protocol, we use an 8Gb minikraken database.

Alternatively, Kraken 2 can also classify reads against protein databases using six-frame-

translation. Protein-level classification is more sensitive (but less specific) and therefore can

help to reduce the missing reference bias. For even longer evolutionary distances, homology

Lu et al. Page 5

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

detection alignment-based classification methods like DIAMOND 23 or MMseqs224 can be

used.

Other issues can arise as reference databases grow and as the distribution of reference

genomes per taxon becomes more lopsided. For example, Nasko et al. 25 showed that as the

RefSeq database has grown over time, Kraken has tended to assign a greater proportion of

reads to higher levels of the taxonomy. In particular, they showed that a greater proportion of

reads tend to be assign to the genus level, at the expense of assignments to the species level

and below. As public databases of reference genomes continue grow, it will be important to

continue to evaluate how classification results are affected by large or lopsided numbers of

genomes per taxon.

Long read classification

This protocol is designed for Illumina sequencing reads, which are highly accurate (error

rates under 0.5%) but short, usually 100–250bp. However, in some cases, users may want to

evaluate longer, higher error-rate reads from Pacific Biosciences or Oxford Nanopore. For

longer reads with a different error profile, users might remove host DNA using minimap226,

and they might also need to adjust the parameters of the Kraken software. Specifically,

higher error rate reads, such as those from Pacific Biosciences or Oxford Nanopore, yield

better classification with Kraken databases generated using smaller k-mer and minimizer

lengths. Previous analyses have indicated better performance using k-mer and minimizer

lengths of 26 (as opposed to the default k-mer length of 35 and minimizer length of 31.

Also the read count measurement might not be as useful for long reads, because these

experiments typically generate fewer reads that differ significantly in length. For these

experiments, it may make more sense to compare k-mer counts.

Assembly-based approaches

When a species is present in sufficiently high amounts, one might wish to assemble the reads

de novo to create large, contiguous sequences from that species. The protocols described

here do not perform genome assembly, which requires other software methods.

Materials

Equipment

The Kraken 2 protocol website http://ccb.jhu.edu/data/kraken2_protocol/ summarizes all

required software and data, along with details about how to download all required data for

the protocol.

• Data (the example corneal reads, microbiome fecal reads, and Kraken 2 database

for use in this protocol are available from NCBI SRA and Amazon AWS; see

Equipment Setup for details)

• Kraken 2 software (https://github.com/DerrickWood/kraken2/, version 2.1.1 or

later)

Lu et al. Page 6

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ccb.jhu.edu/data/kraken2_protocol/
https://github.com/DerrickWood/kraken2/

• Bracken software (https://github.com/jenniferlu717/Bracken, version 2.6.2 or

later)

• KrakenTools software (https://github.com/jenniferlu717/KrakenTools, version

1.1. or later)

• Pavian software (https://github.com/fbreitwieser/pavian, version 1.0 or later)

• Bowtie 2 (https://github.com/BenLangmead/bowtie2, version 2.4.4)

• samtools (http://www.htslib.org/download/), version 0.1.20 or later)

• R (https://www.r-project.org)

• RStudio (https://www.rstudio.com/)

• Hardware (64-bit computer running either Linux or Mac OS X (10.7 Lion or

later); 8GB of RAM; see Equipment Setup)

EQUIPMENT SETUP

Required data

• The microbiome analysis portion of this protocol is illustrated with a sample

microbiome dataset of fecal samples from Xavier et al. (2018) 27. Many

samples from the paper are available at https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA491657. Here, we use 3 samples from a single patient, T11, who began

antibiotic treatment at day 0, underwent stem cell engraftment on day 14, and

received autologous fecal microbiota transplantation (auto-FMT) to return the

patient’s gut microbiota diversity at day 29.

• The infectious disease analysis portion of this protocol is illustrated with selected

corneal samples from Li et al. (2018) 28. All 20 samples from the paper are

available at https://www.ncbi.nlm.nih.gov/bioproject/PRJNA381365. However,

for clarity, we used a select group of 10 of the corneal samples (including 2

controls).

• Both protocols require a Kraken 2 database. For this protocol, we use the

same pre-built Kraken 2 database, containing RefSeq complete genomes

from December 2020 for bacterial, archaeal, and viral genomes, the Human

reference genome GRCh38, and the cleaned eukaryotic pathogen genomes for

EuPathDB4822 (available at http://ccb.jhu.edu/data/eupathDB/). Additional pre-

built Kraken 2 databases are available in the AWS cloud, detailed here: https://

benlangmead.github.io/aws-indexes/k2. The following subsection details how to

create a Kraken 2 Database if the desired database is not already available.

Kraken 2 Databases

Several pre-built Kraken 2 databases are available at https://benlangmead.github.io/aws-

indexes/k2. The most commonly used database is the standard Kraken 2 database (which

includes RefSeq archaea, bacteria, viruses, plasmid complete genomes, UniVec Core, and

the most recent human reference genome, GRCh38). In addition to the standard database,

Lu et al. Page 7

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/jenniferlu717/Bracken
https://github.com/jenniferlu717/KrakenTools
https://github.com/fbreitwieser/pavian
https://github.com/BenLangmead/bowtie2
http://www.htslib.org/download/
https://www.r-project.org/
https://www.rstudio.com/
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA491657
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA491657
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA381365
http://ccb.jhu.edu/data/eupathDB/
https://benlangmead.github.io/aws-indexes/k2
https://benlangmead.github.io/aws-indexes/k2
https://benlangmead.github.io/aws-indexes/k2
https://benlangmead.github.io/aws-indexes/k2

we provide a database of the cleaned eukaryotic pathogens 22, 16S rRNA databases, and

expanded standard databases with RefSeq protozoa, fungi, and plant genomes. All databases

are updated monthly to include the most recent genomes.

In this protocol, we use an 8GB minikraken database of the combined standard Kraken 2

database with the cleaned eukaryotic pathogen genomes.

If the desired database is not available, we describe here how to create a custom Kraken 2

database using the kraken2-build script options:

• First, download the NCBI taxonomy.

$ kraken2-build --db krakendb --download-taxonomy

• Second, download one or more reference libraries. (The full list of available

libraries is at https://github.com/DerrickWood/kraken2/wiki/Manual#custom-

databases.)

$ kraken2-build --db krakendb --download-library bacteria

$ kraken2-build --db krakendb --download-library archaea

$ kraken2-build --db krakendb --download-library viral

$ kraken2-build --db krakendb --download-library protozoa

$ kraken2-build --db krakendb --download-library UniVec_Core

• Third, download additional genomes by adding multi-FASTA or single-FASTA

files. The FASTA sequence headers must include either 1) NCBI accession

numbers or 2) the text kraken:taxid followed by the taxonomy ID for the

genome (e.g. >sequence100|kraken:taxid|9606|). If this requirement is

met, the following commands will add the sequences to the database:

$ kraken2-build --db krakendb --add-to-library chr1.fa

$ kraken2-build --db krakendb --add-to-library chr2.fa

• Finally, build the Kraken 2 database and generate the Bracken database files.

$ kraken2-build --db krakendb --build --threads 8

$ bracken-build -d krakendb -t 8 -k 35 -l 100

Downloading and organizing required data

This section details how to organize the database and samples used in this protocol.

You should first download the database from https://genome-idx.s3.amazonaws.com/kraken/

k2_standard_eupath_20201202.tar.gz and the samples from NCBI SRA. For details on how

to download the SRA samples, see https://www.ncbi.nlm.nih.gov/sra/docs/sradownload/.

Lu et al. Page 8

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/DerrickWood/kraken2/wiki/Manual#custom-databases
https://github.com/DerrickWood/kraken2/wiki/Manual#custom-databases
https://genome-idx.s3.amazonaws.com/kraken/k2_standard_eupath_20201202.tar.gz
https://genome-idx.s3.amazonaws.com/kraken/k2_standard_eupath_20201202.tar.gz
https://www.ncbi.nlm.nih.gov/sra/docs/sradownload/

Table 1 lists the SRA accession IDs for each of the samples used in the Kraken Microbiome

Analysis Protocol and the Kraken Pathogen Identification Protocol.

• Create four folders for required data: k2protocol_db, m_samples,

p_samples, b_index

• Inside the k2protocol_db folder, unpack the database:

$ tar -xzvf k2_standard_eupath_20201202.tar.gz

• Inside the b_index folder, download the k2protocol_bowtie2indices.tgz

file from

• http://ccb.jhu.edu/data/kraken2_protocol/ and unpack the files:

$ tar -xzvf k2protocol_bowtie2indices.tgz

• Download the fastq files for SRA samples for the microbiome analysis and

for the pathogen identification analysis. Move the three microbiome analysis

files into m_samples and move the 10 pathogen identification samples into

p_samples.

Downloading and installing software

There are two ways to install the required programs: (1) using conda and (2) downloading

the binaries. Conda is an open-source package manager that helps to install software. All

the software tools mentioned here are packaged in Bioconda 29, which is a particular

repository (“channel”) within conda. (1) To install the software using conda use the

following command:

• Install all required using Conda

$ conda install -c conda-forge -c bioconda kraken 2 krakentools bracken \

 r bowtie2 samtools

• Pavian has no conda package. To run the protocol there are two ways:

• (a) Install it locally. Open the R console and use the following command:

$ R

 if (!require(remotes)) { install.packages (“remotes”)

 remotes::install_github(“fbreitwieser/pavian”)

• (b) Use the pavian webserver https://fbreitwieser.shinyapps.io/pavian/.

Lu et al. Page 9

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ccb.jhu.edu/data/kraken2_protocol/
https://fbreitwieser.shinyapps.io/pavian/

(2) Alternatively all software can be also downloaded as binary using the following

commands:

• Create a directory to store all of the executable programs used in this protocol (if

none already exists):

$ mkdir $HOME/bin

• Add the above directory to your PATH environment variable: $ export

PATH=$HOME/bin:$PATH

• To install Kraken 2, download the latest release from https://github.com/

DerrickWood/kraken2/releases, unpack the Kraken 2 zip archive, cd to the

unpacked directory, and run the install script.

$ unzip v2.1.1.zip

$ cd kraken2–2.1.1/

$./install_kraken 2.sh .

• To install Bracken, download Bracken version 2.6.2 from https://github.com/

JenniferLu717/Bracken, unpack the Bracken zip archive, cd to the unpacked

directory and run the install script.

$ unzip v2.6.2.zip

$ cd Bracken-2.6.2/

$ sh install_bracken.sh

• To install KrakenTools, download Kraken 2 version 2.1.1 from https://

github.com/JenniferLu717/KrakenTools and unpack the KrakenTools zip archive.

$ unzip v1.2

• Copy the kraken executables to a directory in your PATH and create symlinks for

the Bracken and KrakenTools executables.

$ cp kraken2–2.1.1/kraken2 $HOME/bin

$ cp kraken2–2.1.1/kraken2 -build $HOME/bin

$ cp kraken2–2.1.1/kraken2 -inspect $HOME/bin

$ ln -s Bracken-2.6.2/bracken $HOME/bin/bracken

$ ln -s Bracken-2.6.2/bracken -build $HOME/bin/bracken-build

$ ln -s KrakenTools $HOME/bin/KrakenTools

Lu et al. Page 10

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/DerrickWood/kraken2/releases
https://github.com/DerrickWood/kraken2/releases
https://github.com/JenniferLu717/Bracken
https://github.com/JenniferLu717/Bracken
https://github.com/JenniferLu717/KrakenTools
https://github.com/JenniferLu717/KrakenTools

• Download Bowtie 2 version 2.4.4 (x86 64) from https://github.com/

BenLangmead/bowtie2/releases/

$ unzip bowtie2 -2.4.4-linux-x86_64.zip

$ cp bowtie2–2.4.4-linux-x86_64/bowtie2* $HOME/bin

• To install Pavian, open RStudio or R and run the following:

if (!require(remotes)) { install.packages (“remotes”) }

remotes::install_github(“fbreitwieser/pavian”)

Procedure

There are two protocols included: Microbiome Analysis and Pathogen Identification. The

Microbiome Analysis portion details how to use the Kraken suite to analyze the overall

diversity of microbiome samples while also statistically differentiating between microbiome

compositions. We illustrate this protocol using samples of a patient’s fecal microbiome

before and after antibiotic treatment, as studied in Taur et al. 27. The Pathogen Identification

protocol demonstrates how to identify pathogenic, atypical microbes within the overall

microbiome using a set of 10 corneal samples from Li et al. 28, 8 of which contain

pathogenic microbes while 2 are control samples.

Procedure 1: Microbiome Analysis

We will explore and visualize the depletion of patient T11’s microbiota diversity due to

antibiotic treatment, using our microbiome analysis pipeline. In the study by Taur et al. 27,

all of the patients underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT)

where antibiotic treatment is essential for optimal clinical outcomes. However, antibiotics

deplete a patient’s microbiome diversity. In the paper, the authors showed that auto-FMT

treatment restores the microbial diversity to a patient’s gut microbiome. In this example,

we explicitly detail three samples from patient T11 collected before and during antibiotic

treatment. Samples 1 and 2 were taken before T11 began antibiotic treatment and sample 3

was collected during treatment.

Remove host DNA

1. Depending on the source of the metagenomic sample, users may remove host DNA by

aligning reads to the host genome. The provided sample set has already undergone removal

of host (human) DNA. We provide these command lines as a guide for how to remove

human or host DNA from other samples using Bowtie 27.

$ bowtie2 -x b_index/GRCh38 -p 8 -1 paired_reads_1.fastq -2

paired_reads_2.fastq \

 --un-conc nonhuman_reads.fastq -S human_reads.sam

Lu et al. Page 11

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/BenLangmead/bowtie2/releases/
https://github.com/BenLangmead/bowtie2/releases/

Classify Microbiome Samples using Kraken

Timing ~10 min—2. Run Kraken 24 to classify all reads, providing each read with its

taxonomy identification. Kraken 2 examines the k-mers within a query sequence and uses

this information to query a database. In normal usage, the only required inputs are the

database name, specified with --db, and the input FASTA file (or 2 files if the reads are

paired). Below is the simplest example:

$ kraken2 --db $DBNAME seqs.fq

In our protocol, we specify the number of threads to improve the timing; with more

threads the program will generally finish faster. With --report we specify the location

and name of the k2report file and output the results of the run to a kraken2 file with >

path/to/file. The --minimum-hit-groups flag specifies the minimum number of ”hit

groups” needed to make a classification call. Hit groups are overlapping k-mers sharing

the same minimizer. Kraken 2 uses minimizers to compress the input genomic sequences,

thereby reducing storage memory needed and run time. In this example we increase the

minimum number of hit groups from the default 2 groups to 3 groups for increased accuracy.

Lastly, the --report-minimizer-data flag reports minimizer and distinct minimizer

count information in addition to the normal Kraken 2 report.

$ kraken2 --db k2protocol_db --threads 8 --report kreports/

SRR14143424.k2report \

 --report-minimizer-data --minimum-hit-groups 3 samples/SRR14143424_1.fastq

\

 samples/SRR14143424_2.fastq > kraken_outputs/SRR14143424.kraken2

$ kraken2 --db k2protocol_db --threads 8 --report kreports/

SRR14092160.k2report \

 --report-minimizer-data --minimum-hit-groups 3 samples/SRR14092160_1.fastq

\

 samples/SRR14092160_2.fastq > kraken_outputs/SRR14092160.kraken2

$ kraken2 --db k2protocol_db --threads 8 --report kreports/

SRR14092310.k2report \

 --report-minimizer-data --minimum-hit-groups 3 samples/SRR14092310_1.fastq

\

 samples/SRR14092310_2.fastq > kraken_outputs/SRR14092310.kraken2

Kraken 2 has two output files, a standard Kraken 2 output, .kraken2 file, and a Kraken

2 report, .k2report file. The standard Kraken 2 file outputs lines containing five

tab-delimited fields; 1) ”C”/”U” indicating classified or unclassified, 2) sequence ID, 3)

taxonomy ID (0 if unclassified), 4) length of sequence in base pairs and 5) a space-delimited

list indicating the lowest common ancestor mapping of each k-mer. The Kraken report file

outputs lines containing 6 tab-delimited fields; 1) percentage of fragments covered by the

clade rooted at this taxon, 2) number of fragments covered by the clade rooted at this taxon

Lu et al. Page 12

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3) number of fragments assigned directly to this taxon, 4) rank code such as S for species,

5) NCBI taxonomic ID and 6) indented scientific name. This information and more can be

found in the Kraken 2 manual.

Run Bracken for Abundance Estimation of Microbiome Samples

Timing < 1 min—3. Following classification, we use Bracken 5 to estimate species

abundance in each sample. Here is a generic Bracken invocation:

$ bracken -d kraken_database-i sample.k2report -r read_length \

 -l taxonomic_level -t read_threshold -o sample.bracken -w sample.breport\

Below are the commands used to generate the abundance estimation in our example. Here

we set the read length as the average read length in the dataset: 100bp. We set the level for

abundance estimation to Species (with -l S), and with the -t 10 we require 10 reads prior

to abundance estimation to perform re-estimation. This effectively removes any species with

fewer than 10 reads, thereby removing some noise from low abundance species.

$ bracken -d k2protocol_db -i kreports/SRR14143424.k2report -r 100 -l S -t

10 \

 -o bracken_outputs/SRR14143424.bracken -w breports/SRR14143424.breport

$ bracken -d k2protocol_db -i kreports/SRR14092160.k2report -r 100 -l S -t

10 \

 -o bracken_outputs/SRR14092160.bracken -w breports/SRR14092160.breport

$ bracken -d k2protocol_db -i kreports/SRR14092310.k2report -r 100 -l S -t

10 \

 -o bracken_outputs/SRR14092310.bracken -w breports/SRR14092310.breport

Calculate Alpha Diversity

Timing ~ 35 sec—4. When trying to measure biodiversity, it is useful to quantify

differences within and between ecosystems. Whittaker et al 30 defined several forms of

alpha diversity as measures that capture the diversity within a particular ecosystem and

can be expressed by the number of species in that ecosystem. Using the KrakenTools

alpha_diversity.py script, you can calculate Berger Parker’s 31 (BP), Fisher’s 32 (F),

Simpson’s 33 (Si), Inverse Simpson’s (ISi) 33, and Shannon’s 34 (Sh) alpha diversity for each

sample after running Kraken 2 and Bracken. You can specify which alpha diversity metric

you want to output to terminal with the -a flag, as shown below.

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14143424.bracken -a BP

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14143424.bracken -a Sh

$ python KrakenTools/DiversityTools/alpha_diversity.py \

Lu et al. Page 13

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 -f bracken_outputs/SRR14143424.bracken -a F

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14143424.bracken -a Si

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14143424.bracken -a ISi

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14092160.bracken -a BP

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14092160.bracken -a Sh

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14092160.bracken -a F

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14092160.bracken -a Si

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14092160.bracken -a ISi

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14092310.bracken -a BP

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14092310.bracken -a Sh

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14092310.bracken -a F

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14092310.bracken -a Si

$ python KrakenTools/DiversityTools/alpha_diversity.py \

 -f bracken_outputs/SRR14092310.bracken -a ISi

Calculate Beta Diversity

Timing ~5 sec—5. Beta diversity is useful when trying to examine the change in species

diversity between two or more ecosystems. Next, we used the beta_diversity.py

script to compute the Bray-Curtis 35 dissimilarity matrix, which will contain the pairwise

dissimilarities among three microbiome samples. With this metric, an output of 0 means the

two samples are exactly the same and 1 means they are maximally divergent.

$ python KrakenTools/DiversityTools/beta_diversity.py -i \

bracken_outputs/SRR14092160.bracken bracken_outputs/SRR14092310.bracken \

bracken_outputs/SRR14143424.bracken --type bracken

Generate Krona Plots

Timing < 1 min—6. Krona plots are multi-layered pie charts frequently used in

metagenomic visualization for viewing data in a phylogenetic hierarchy. Using these

plots, we can view the hierarchical output from Bracken in a way to better visualize

Lu et al. Page 14

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the number of reads coming from different species, genera, etc. as percentages. We run

kreport2krona.py to generate Krona plots 36 using the following commands.

$ python KrakenTools/kreport2krona.py -r breports/SRR14143424.breport \

 -o b_krona_txt/SRR14143424.b.krona.txt --no-intermediate-ranks

$ KronaScripts/ktImportText b_krona_txt/SRR14143424.b.krona.txt \

 -o krona_html/SRR14143424.krona.html

$ python KrakenTools/kreport2krona.py -r breports/SRR14092160.breport \

 -o b_krona_txt/SRR14092160.b.krona.txt --no-intermediate-ranks

$ KronaScripts/ktImportText b_krona_txt/SRR14092160.b.krona.txt \

 -o krona_html/SRR14092160.krona.html

$ python KrakenTools/kreport2krona.py -r breports/SRR14092310.breport \

 -o b_krona_txt/SRR14092310.b.krona.txt --no-intermediate-ranks

$ KronaScripts/ktImportText b_krona_txt/SRR14092310.b.krona.txt \

-o krona_html/SRR14092310.krona.html

Generate Pavian Plots using the Shiny App

Timing < 1 min—7. Using the .breport files from the Bracken run, you can use Pavian

to create the plots shown in Figure 6A, B and C. Figure 2 shows the Pavian interface

and the steps for creating classification networks. Open the Pavian shiny app via https://

fbreitwieser.shinyapps.io/pavian/.

8. Click ”Browse...” and Upload the 3 separate SRR*.breport files.

9. Once files are uploaded, click ”Sample” to see the hierarchical classification visualization

results.

10. Click on the drop-down list to select the sample that you are viewing.

11. (Optional) Choose ”Configure Sankey” to change what taxonomical ranks to display,

number of taxa at each level, etc. there are 10 different settings that can be changed to

customize the plots.

12. Save the network by clicking ”Save Network”

Procedure 2: Pathogen Identification

Remove Human DNA using Bowtie 2—1. (Optional) Remove human DNA from the

sample set. The provided sample set has already undergone removal of host (human) DNA

using the steps shown next, so they do not need to be run again. We provide these command

lines as a guide for how to remove human or host DNA from other samples using Bowtie 27.

$ bowtie2 -x bowtie_index/GRCh38 -p 8 -f -1 paired_reads_1.fastq \

-2 paired_reads_2.fastq –-un-conc nonhuman_reads.fa -S human_reads.sam

Lu et al. Page 15

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://fbreitwieser.shinyapps.io/pavian/
https://fbreitwieser.shinyapps.io/pavian/

Classify Reads with Kraken2-Uniq

Timing ~6min, 42 seconds for 10 samples (8 Gb)—2. Following removal of

host DNA, the remaining reads undergo classification using Kraken2Uniq. The --report-

minimizer-data flag forces Kraken 2 to provide unique k-mer counts per classification.

Additionally, we use 8 threads for faster run times, and --minimum-hit-groups 3 for

increased classification precision (i.e., fewer false positives).

$ kraken2 --db k2protocol_db --threads 8 --minimum-hit-groups 3 \

 --report-minimizer-data --report SRR12486971.k2report \

 --paired SRR12486971_1.fastq SRR12486971_2.fastq > SRR12486971.kraken2

$ kraken2 --db k2protocol_db --threads 8 --minimum-hit-groups 3 \

 --report-minimizer-data --report SRR12486972.k2report \

 --paired SRR12486972_1.fastq SRR12486972_2.fastq > SRR12486972.kraken2

$ kraken2 --db k2protocol_db --threads 8 --minimum-hit-groups 3 \

 --report-minimizer-data --report SRR12486974.k2report

 --paired SRR12486974_1.fastq SRR12486974_2.fastq > SRR12486974.kraken2

$ kraken2 --db k2protocol_db --threads 8 --minimum-hit-groups 3 \

 --report-minimizer-data --report SRR12486978.k2report \

 --paired SRR12486978_1.fastq SRR12486978_2.fastq > SRR12486978.kraken2

$ kraken2 --db k2protocol_db --threads 8 --minimum-hit-groups 3 \

 --report-minimizer-data --report SRR12486979.k2report \

 --paired SRR12486979_1.fastq SRR12486979_2.fastq > SRR12486979.kraken2

$ kraken2 --db k2protocol_db --threads 8 --minimum-hit-groups 3 \

 --report-minimizer-data --report SRR12486981.k2report \

 --paired SRR12486981_1.fastq SRR12486981_2.fastq > SRR12486981.kraken2

$ kraken2 --db k2protocol_db --threads 8 --minimum-hit-groups 3 \

 --report-minimizer-data --report SRR12486983.k2report \

 --paired SRR12486983_1.fastq SRR12486983_2.fastq > SRR12486983.kraken2

$ kraken2 --db k2protocol_db --threads 8 --minimum-hit-groups 3 \

 --report-minimizer-data --report SRR12486988.k2report \

 --paired SRR12486988_1.fastq SRR12486988_2.fastq > SRR12486988.kraken2

$ kraken2 --db k2protocol_db --threads 8 --minimum-hit-groups 3 \

 --report-minimizer-data --report SRR12486989.k2report \

 --paired SRR12486989_1.fastq SRR12486989_2.fastq > SRR12486989.kraken2

$ kraken2 --db k2protocol_db --threads 8 --minimum-hit-groups 3 \

 --report-minimizer-data --report SRR12486990.k2report \

 --paired SRR12486990_1.fastq SRR12486990_2.fastq > SRR12486990.kraken2

Compare Samples to Controls using Pavian

Timing ~5 min—3. Following classification, we compare samples using Pavian 6 (Figure

3) Open the Pavian shiny app via https://fbreitwieser.shinyapps.io/pavian/.

Lu et al. Page 16

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://fbreitwieser.shinyapps.io/pavian/

4. Click ”Browse...” and upload the 10 separate SRR*.kreport2 files. Once files are

uploaded, click ”Comparison” to see how read counts vary across samples.f

5. Choose ”Species” and ”Z-score (reads)” to focus on species-level reads and calculate

z-scores.

6. Sort by maximum z-scores.

The species with the max z-score for each sample is the most likely pathogen. Note that

if two or more pathogens have a high z-score in a given sample, we should consider the

possibility that the infection has multiple causes. Species with high read counts (or high

z-scores) across all samples are considered background noise or contamination.

Verify Classification

Timing ~30 min—7. For verifying the classification results, use the

extract_kraken_reads.py script to extract reads for each of the top z-score species

for each sample. This script extracts reads that matched a particular species, identified by the

taxonomy ID that is provided with the -t parameter.

$ python extract_kraken_reads.py -k SRR12486971.kraken2 -–include-children \

 -s SRR12486971_1.fastq -s2 SRR12486971_2.fastq -t 723287 \

 -r SRR12486971.k2report -o SRR12486971_A.algerae.tid723287.1.fa \

 -o2 SRR12486971_A.algerae.tid723287.2.fa

$ python extract_kraken_reads.py -k SRR12486972.kraken2 –-include-children \

 -s SRR12486972_1.fastq -s2 SRR12486972_2.fastq -t 5059 \

 -r SRR12486972.k2report -o SRR12486972_A.flavus.tid5059.1.fa \

 -o2 SRR12486972_A.flavus.tid5059.2.fa

$ python extract_kraken_reads.py -k SRR12486974.kraken2 –-include-children \

 -s SRR12486974_1.fastq -s2 SRR12486974_2.fastq -t 5476 \

 -r SRR12486974.k2report -o SRR12486974_C.albicans.tid5476.1.fa \

 -o2 SRR12486974_C.albicans.tid5476.2.fa

$ python extract_kraken_reads.py -k SRR12486978.kraken2 –-include-children \

 -s SRR12486978_1.fastq -s2 SRR12486978_2.fastq -t 1774 \

 -r SRR12486978.k2report -o SRR12486978_M.chelonae.tid1774.1.fa \

 -o2 SRR12486978_M.chelonae.tid1774.2.fa

$ python extract_kraken_reads.py -k SRR12486983.kraken2 –-include-children \

 -s SRR12486983_1.fastq -s2 SRR12486983_2.fastq -t 10298 \

 -r SRR12486983.k2report -o SRR12486983_HSV1.tid10298.1.fa \

 -o2 SRR12486983_HSV1.tid10298.2.fa

$ python extract_kraken_reads.py -k SRR12486988.kraken2 --include–children \

 -s SRR12486988_1.fastq -s2 SRR12486988_2.fastq -t 61605 \

 -r SRR12486988.k2report -o SRR12486988_A.lugunensis.tid61605.1.fa \

 -o2 SRR12486988_A.lugdunensis.tid61605.2.fa

$ python extract_kraken_reads.py -k SRR12486989.kraken2 --include-children \

Lu et al. Page 17

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

 -s SRR12486989_1.fastq -s2 SRR12486989_2.fastq -t 1311 \

 -r SRR12486989.k2report -o SRR12486989_S.agalactiae.tid1311.1.fa \

 -o2 SRR12486989_S.agalactiae.tid1311.2.fa

$ python extract_kraken_reads.py -k SRR12486990.kraken --include-children \

 -s SRR12486990_1.fastq -s2 SRR12486990_2.fastq -t 1280 \

 -r SRR12486990.k2report -o SRR12486990_S.aureus.tid1280.1.fa \

 -o2 SRR12486990_S.aureus.tid1280.2.fa

8. Align extracted reads to the species genomes using alignment programs such as Bowtie 27

or Minimap226. We use Bowtie 2 for alignment.

$ bowtie2 -x b_index/Aalgerae -f -p 8 \

 -1 SRR12486971_A.algerae.tid723287.1.fa \

 -2 SRR12486971_A.algerae.tid723287.2.fa \

 -S SRR12486971_A.algerae_aligned.sam

$ bowtie2 -x b_index/Aflavus -f -p 8 \

 -1 SRR12486972_A.flavus.tid5059.1.fa \

 -2 SRR12486972_A.flavus.tid5059.2.fa \

 -S SRR12486972_A.flavus_aligned.sam

$ bowtie2 -x b_index/Calbicans -f -p 8 \

 -1 SRR12486974_C.albicans.tid5476.1.fa \

 -2 SRR12486974_C.albicans.tid5476.2.fa \

 -S SRR12486974_C.albicans_aligned.sam

$ bowtie2 -x b_index/Mchelonae -f -p 8 \

 -1 SRR12486978_M.chelonae.tid1774.1.fa \

 -2 SRR12486978_M.chelonae.tid1774.2.fa \

 -S SRR12486978_M.chelonae_aligned.sam

$ bowtie2 -x b_index/HSV1 -f -p 8 \

 -1 SRR12486983_HSV1.tid10298.1.fa \

 -2 SRR12486983_HSV1.tid10298.2.fa \

 -S SRR12486983_HSV1_aligned.sam

$ bowtie2 -x b_index/Alug -f -p 8 \

 -1 SRR12486988_A.lugunensis.tid61605.1.fa \

 -2 SRR12486988_A.lugdunensis.tid61605.2.fa \

 -S SRR12486988_Alug_aligned.sam

$ bowtie2 -x b_index/Sagalactiae -f -p 8 \

 -1 SRR12486989_S.agalactiae.tid1311.1.fa \

 -2 SRR12486989_S.agalactiae.tid1311.2.fa \

 -S SRR12486989_Sagalactiae_aligned.sam

$ bowtie2 -x b_index/Saureus -f -p 8 \

 -1 SRR12486990_S.aureus.tid1280.1.fa \

 -2 SRR12486990_S.aureus.tid1280.2.fa \

 -S SRR12486990_Saureus_aligned.sam

Lu et al. Page 18

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

9. Following alignment, we use SAMtools 37 to convert the SAM files to sorted BAM files.

$ samtools view -bS -F4 SRR12486971_A.algerae_aligned.sam \

 > SRR12486971_A.algerae_aligned.bam

$ samtools view -bS -F4 SRR12486972_A.flavus_aligned.sam \

 > SRR12486972_A.flavus_aligned.bam

$ samtools view -bS -F4 SRR12486974_C.albicans_aligned.sam \

 > SRR12486974_C.albicans_aligned.bam

$ samtools view -bS -F4 SRR12486978_M.chelonae_aligned.sam \

 > SRR12486978_M.chelonae_aligned.bam

$ samtools view -bS -F4 SRR12486983_HSV1_aligned.sam \

 > SRR12486983_HSV1_aligned.bam

$ samtools view -bS -F4 SRR12486988_Alug_aligned.sam \

 > SRR12486988_Alug_aligned.bam

$ samtools view -bS -F4 SRR12486989_Sagalactiae_aligned.sam \

 > SRR12486989_Sagalactiae_aligned.bam

$ samtools view -bS -F4 SRR12486990_Saureus_aligned.sam \

 > SRR12486990_Saureus_aligned.bam

$ samtools sort SRR12486971_A.algerae_aligned.bam \

 -o SRR12486971_A.algerae_sorted.bam

$ samtools sort SRR12486972_A.flavus_aligned.bam \

 -o SRR12486972_A.flavus_sorted.bam

$ samtools sort SRR12486974_C.albicans_aligned.bam \

 -o SRR12486974_C.albicans_sorted.bam

$ samtools sort SRR12486978_M.chelonae_aligned.bam \

 -o SRR12486978_M.chelonae_sorted.bam

$ samtools sort SRR12486983_HSV1_aligned.bam \

 -o SRR12486983_HSV1_sorted.bam

$ samtools sort SRR12486988_Alug_aligned.bam \

 -o SRR12486988_Alug_sorted.bam

$ samtools sort SRR12486989_Sagalactiae_aligned.bam \

 -o SRR12486989_Sagalactiae_sorted.bam

$ samtools sort SRR12486990_Saureus_aligned.bam \

 -o SRR12486990_Saureus_sorted.bam

$ samtools index SRR12486971_A.algerae_sorted.bam

$ samtools index SRR12486972_A.flavus_sorted.bam

$ samtools index SRR12486974_C.albicans_sorted.bam

$ samtools index SRR12486978_M.chelonae_sorted.bam

$ samtools index SRR12486983_HSV1_sorted.bam

$ samtools index SRR12486988_Alug_sorted.bam

$ samtools index SRR12486989_Sagalactiae_sorted.bam

$ samtools index SRR12486990_Saureus_sorted.bam

Lu et al. Page 19

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

10. Finally, upload the sorted BAM file and the index of the sorted BAM file (.bam and .bai

files) to Pavian’s Alignment Viewer for the coverage plot and statistics. Figure 4 shows

example coverage plots for the SRR12486978 reads aligned to the Mycobacterium chelonae
genome and the SRR12486989 reads aligned to the Streptococcus agalactiae genome.

Timing

Troubleshooting

Step 2. Run Kraken 2 results in large numbers of unclassified reads—If your

Kraken 2 output files have too many unclassified reads, it probably means there are

organisms missing from your working Kraken 2 database. To classify more reads, you

should download additional genomes and add them to the database.

Steps 3–6. After Kraken 2 and Bracken calls—If there are any errors during these

steps, you should check that your kraken2 and bracken files were successfully made. For

example, if the output from kraken2 looks like this, there was a problem in the kraken2

call:

Loading database information … done.

0 sequences (0.00 Mbp) processed in 0.001s (0.0 Kseq/m, 0.00 Mbp/m).

0 sequences classified (-nan %)

0 sequences unclassified (-nan %)

The command used to create the erroneous output shown above is as follows:

for sample in SRR14092160 SRR14092310; do

 kraken2 --db k2protocol_db --threads 8 --report kreports/$sample.k2report

\

 --report-minimizer-data --minimum-hit-groups 3 samples/$sample_1.fasta \

 samples/$sample_2.fasta > kraken_outputs/$sample.kraken2

done

The problem in this example is the bash syntax. Here, the input filenames are not

interpolated correctly because the “$sample” variable is not protected against trailing

underscores in the filenames. Therefore, bash is then attempting to reference a nonexistent

variable. In this example, the commands that follow will throw an error because 0 sequences

were classified and the .kraken2 file is empty. To fix this, you should check that you

are referencing the files correctly. The output of a successful Kraken 2 run for sample

SRR14092160 is as follows (you can specify as many samples as you want, separated by

spaces):

Loading database information … done.

73021500 sequences (8907.00 Mbp) processed in 154.050 s (28440.6 Kseq/m,

Lu et al. Page 20

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3469 Mbp/m).

11996432 sequences classified (16.43%)

61025068 sequences unclassified (83.57%)

There should be non-zero values for the number of sequences processed and for the number

of reads classified. This can be done by protecting the code via some form of quoting. The

following command, with double quotes around the filenames, does this:

for sample in SRR14092160 SRR14092310; do

kraken2 --db k2protocol_db --threads 8 --report “ kreports/$

{sample}.k2report” \

--report-minimizer-data --minimum-hit-groups 3 “samples/${sample}_1.fasta” \

“samples/${sample}_2.fasta” > “kraken_outputs/${sample}.kraken2”

done

Anticipated results

The accuracy of classification and abundance estimation is dependent on the quality and

composition of the genomes used in the Kraken and Bracken databases. If the database

is missing genomes present in the sequenced samples, there might be a high proportion

of unclassified reads when using Kraken. If the database contains contaminated genomes

(e.g. bacteria that have bits of human sequence in them20;21), this will lead to false

positives, where sequencing reads will be identified as incorrect species. Unclassified

reads and mis-classified reads will lead to additional problems downstream for Bracken,

which will only report abundances for species identified by Kraken. To ensure a

higher classification percentage, we recommend using a comprehensive Kraken database

containing, at minimum, the human genome and bacterial, viral, archaeal, vector, and

eukaryotic pathogen genomes. For a low rate of false positives, we recommend using only

complete or quality-controlled genomes in the building of the Kraken database.

In this protocol, we use a ”MiniKraken” version of this comprehensive database that

includes the human genome, complete bacterial, viral, and archaeal genomes from RefSeq,

and a filtered eukaryotic pathogen database. The MiniKraken version of the comprehensive

database contains sequences from all of the aforementioned genomes, but it down-samples

the k-mers from each genome sufficiently to allow Kraken to run with only 8GB of

RAM. Kraken should still detect accurate bacterial, viral, archaeal, and eukaryotic microbial

signatures, but as we limit the number of sequences, we also expect a significant fraction of

unclassified reads.

Microbiome Analysis

The three metagenomic sequencing samples that we use in this protocol illustrate the

normal state of patient T11’s microbiome prior to treatment and its depleted diversity

state after antibiotic treatment. (The original study also measured diversity after a fecal

microbial transplant restored much of the microbiome.) Supplemental Table 1 lists the read

counts per species in the final Bracken analysis of the three samples. In Figure 5, we can

Lu et al. Page 21

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

find the computed alpha diversity outputs for each sample, for each alpha diversity type

currently available. We calculate these values using the abundance estimation calculation

from Bracken using KrakenTools’ alpha diversity script. In samples 1 and 2, both taken

when patient T11 had normal microbiome diversity, we expect to see a higher value for

alpha diversity than in sample 3, which was taken during antibiotic treatment. In Figure 5 A,

we see exactly that across the board for all the alpha diversity types. In the original study,

they published the alpha diversity values shown in the last row of table A. They specified

that it is Inverse Simpson’s alpha diversity however they did not include the exact tool or

equations they used to find these values. The Inverse Simpson’s alpha value on row 4 of

table A is the value we found using Bracken’s abundance estimation and using the equations

shown. For sample 2, we found a significant discrepancy in the alpha diversity published

in the original paper (10.55) and our calculation (21.5). However, this can be explained by

the large percentage of unclassified reads for this sample (about 80%) and a difference in

formulation. Since the Kraken 2 report has many unclassified reads, the Bracken abundance

estimation is not being calculated for the entire sample but only for the 20% of reads that are

classified. In order to have more classified reads, a larger database needs to be used.

Figure 5 also shows the output of the beta diversity calculation based on the Bray-Curtis

dissimilarity matrix shown in section B. The heat map shows that when comparing the same

two samples, for example Day -2 (sample 1) with itself, the beta diversity value is 0 because

the two samples being compared are exactly the same. When comparing Day -2 with Day

12 (sample 3) the beta diversity is close to 1 because the diversity levels in each are very

different from each other. Also, as expected, we see that samples 1 and 2 (day -2 and -9) are

somewhat similar with a beta diversity value of 0.6.

In Figure 6, we have the Pavian and two of the Krona plots we created. First, focusing on

the left-side, subplots A-C are the Pavian plots for samples 1–3 respectively. Here we see

that plot C is dominated by a single species of bacteria, Enterococcus faecium, showing

patient T11 only had one species of bacteria in his microbiome while undergoing antibiotic

treatment. In plots A and B, we see several species of bacteria showing T11’s normal

variation in microbiome diversity. On the right-side of figure 6, we have two Krona plots

made using samples 2 and 3, top to bottom. Here we see the top Krona plot is divided into

several different sections which means represent the different species present in the sample.

In the bottom plot, we see much fewer partitions showing again how E. faecium dominates

the sample.

Using the MiniKraken database, there will be a large number of unclassified reads, as many

as 42,899,387 in sample 1. For plotting purposes, we simply discarded all unclassified reads

from the kreport2krona.py output when creating the plots shown in Figure 6. All of the

visualizations methods used, Krona plot, Pavian plot, and Beta diversity heatmap, show the

great difference in microbiome diversity between patient T11 before and during antibiotic

treatment.

Pathogen Detection

Because we are using the MiniKraken version of our comprehensive database, we expect

a high proportion of unclassified reads across all infectious disease samples. Table 3 lists

Lu et al. Page 22

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

the total read counts per sample and the number of unclassified and classified reads per

sample. However, because the MiniKraken database was selected from a comprehensive set

of genomes, we still expect to see classifications across all major taxonomic clades (e.g.

bacteria, archaea, viruses, fungi, etc.). Table 4 lists the read counts for major clades, showing

80K–2.7M bacterial reads per sample, along with varying numbers of reads from archaea,

fungi, and amoebae. Full species read counts for each sample are listed in Supplemental

Table 2.

Despite the many clades detected in the corneal samples, the diagnostic challenge

is determining the most likely pathogen(s) per sample. Samples SRR12486979 and

SRR12486981 are control samples, providing a baseline for read counts from species are

likely to be contaminants or possibly non-infectious components of the samples. For each of

the remaining patient samples, we are interested in any species with higher than average read

counts as compared to the control samples or other corneal samples. For example, sample

SRR12486971 has 84,000+ Anncaliia algerae reads. All other samples have 12 A. algerae
reads or fewer, making it appear that A. algerae is a likely pathogen in that sample (which

indeed it is, as was confirmed in the original study).

The easiest method for finding the most likely pathogen is by uploading a set of similar

samples to Pavian 6, as described in Step 3 of our Pathogen Identification protocol. Using

the comparison tab, Pavian can calculate and sort the species by z-scores, a metric used to

determine whether a species (or any other taxonomic clade) has significantly higher read

counts in one sample as compared to the remaining other samples. Table 5 lists the species

with the highest z-score in each sample. As shown in the table, the highest z-score correctly

identified the true pathogen for each of the non-control samples.

The highest z-score species can be further checked by using the k-mer-counting feature

in KrakenUniq3 (which is also available as a parameter in Kraken 2). As described in the

KrakenUniq paper, for most species in a metagenomics sample, each read will be a random

sample from the genome, which means that each read will tend to contribute approximately

r-k distinct k-mers to the k-mer count, where r is the read length. However, if a bacterial

genome is contaminated with a small amount of human sequence (for example), then large

numbers of human reads will incorrectly match a small part of that genome. In these

cases, the number of distinct k-mers that are observed from a genome will be very small

compared to the number of reads. Thus, if the k-mer counts listed in the Kraken 2 report

are relatively small, the species is probably not present but instead is a false positive caused

by a contaminated genome in the database. Figure 7 summarizes the pathogen identification

results for each individual sample, displaying a heat map of reads, k-mers, and z-scores

across all samples.

Finally, we validate the classification results by extracting the classified reads using

KrakenTools and aligning the reads against the suspected pathogen genomes using Bowtie

27. We upload the alignment BAM files to Pavian 6 for a clear visualization of the read

coverage across the genomes, confirming that the reads are derived from the full pathogen’s

genome.

Lu et al. Page 23

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

As a result of this protocol, we have a set of potential infectious agents discovered in the

samples. The infectious agents should be presented to pathologists and clinicians for further

verification with other independent methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Indexes for tools in the Kraken suite, including the indexes used in this protocol, are made freely available on
Amazon Web Services thanks to the AWS Public Dataset Program.

BL was supported by NIH/NIGMS grant R35GM139602 to BL. MS acknowledges support from the National
Research Foundation of Korea grant [2019R1A6A1A10073437, 2020M3A9G7103933, 2021R1C1C102065,
2021M3A9I4021220]; New Faculty Startup Fund; and the Creative-Pioneering Researchers Program through Seoul
National University.

Availability

The following website details and links all software and databases used in this protocol:

http://ccb.jhu.edu/data/kraken2_protocol/. We also provide easy-to-use jupyter notebooks

for both workflows, which can be executed in the browser using Google Collab: https://

github.com/martin-steinegger/kraken-protocol/

References

1. Rappé MS, Giovannoni SJ. The uncultured microbial majority. Annu Rev Microbiol. 2003;57:369–
394. [PubMed: 14527284]

2. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact
alignments. Genome Biol. 2014 Mar;15(3):R46. [PubMed: 24580807]

3. Breitwieser FP, Baker DN, Salzberg SL. KrakenUniq: confident and fast metagenomics
classification using unique k-mer counts. Genome Biol. 2018 Nov;19(1):198. [PubMed: 30445993]

4. Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biology.
2019 Nov:762302.

5. Lu J, Breitwieser FP, Thielen P, Salzberg SL. Bracken: estimating species abundance in
metagenomics data. PeerJ Comput Sci. 2017 Jan;3:e104.

6. Breitwieser FP, Salzberg SL. Pavian: Interactive analysis of metagenomics data for microbiome
studies and pathogen identification. Bioinformatics. 2019 Sep.

7. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012
Mar;9(4):357–359. [PubMed: 22388286]

8. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol
Biol. 1990 Oct;215(3):403–410. [PubMed: 2231712]

9. Pruitt KD, Tatusova T, Maglott DR. NCBI reference sequences (RefSeq): a curated non-redundant
sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 2007 Jan;35(Database
issue):D61–5. [PubMed: 17130148]

10. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence
(RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.
Nucleic Acids Res. 2016 Jan;44(D1):D733–45. [PubMed: 26553804]

11. Ounit R, Wanamaker S, Close TJ, Lonardi S. CLARK: fast and accurate classification of
metagenomic and genomic sequences using discriminative k -mers. BMC Genomics. 2015
Mar;16(1):1–13. [PubMed: 25553907]

Lu et al. Page 24

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://ccb.jhu.edu/data/kraken2_protocol/
https://github.com/martin-steinegger/kraken-protocol/
https://github.com/martin-steinegger/kraken-protocol/

12. Kim D, Song L, Breitwieser FP, Salzberg SL. Centrifuge: rapid and sensitive classification of
metagenomic sequences. Genome Res. 2016 Dec;26(12):1721–1729. [PubMed: 27852649]

13. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with
Kaiju. Nat Commun. 2016 Apr;7:11257. [PubMed: 27071849]

14. Ye SH, Siddle KJ, Park DJ, Sabeti PC. Benchmarking Metagenomics Tools for Taxonomic
Classification. Cell. 2019 Aug;178(4):779–794. [PubMed: 31398336]

15. Seppey M, Manni M, Zdobnov M. LEMMI: a continuous benchmarking platform for
metagenomics classifiers. Genome Research. 2020. Jul; 30: 1208–1216 [PubMed: 32616517]

16. Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic
microbial community profiling using unique clade-specific marker genes. Nat Methods. 2012
Jun;9(8):811–814. [PubMed: 22688413]

17. Vervier K, Mahé P, Tournoud M, Veyrieras JB, Vert JP. Large-scale machine learning for
metagenomics sequence classification. Bioinformatics. 2016 Apr;32(7):1023–1032. [PubMed:
26589281]

18. Luo Y, Yu YW, Zeng J, Berger B, Peng J. Metagenomic binning through low-density hashing.
Bioinformatics. 2019 Jan;35(2):219–226. [PubMed: 30010790]

19. Breitwieser FP, Lu J, Salzberg SL. A review of methods and databases for metagenomic
classification and assembly. Brief Bioinform. 2017 Sep.

20. Breitwieser FP, Pertea M, Zimin AV, Salzberg SL. Human contamination in bacterial genomes
has created thousands of spurious proteins. Genome Res. 2019 Jun;29(6):954–960. [PubMed:
31064768]

21. Steinegger M, Salzberg SL. Terminating contamination: large-scale search identifies more than
2,000,000 contaminated entries in GenBank. Genome Biol. 2020 May;21(1):115. [PubMed:
32398145]

22. Lu J, Salzberg SL. Removing contaminants from databases of draft genomes. PLoS Comput Biol.
2018 Jun;14(6):e1006277 [PubMed: 29939994]

23. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat
Methods. 2015 Jan;12(1):59–60. [PubMed: 25402007]

24. Mirdita M, Steinegger M, Breitwieser F, Söding J, Levy Karin E. Fast and sensitive taxonomic
assignment to metagenomic contigs. Bioinformatics. 2021 Mar.

25. Nasko DJ, Koren S, Phillippy AM, Treangen TJ. RefSeq database growth influences the accuracy
of k-mer-based lowest common ancestor species identification. Genome Biol. 2018 Oct;19(1):165.
[PubMed: 30373669]

26. Li H Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018
Sep;34(18):3094–3100. [PubMed: 29750242]

27. Taur Y, Coyte K, Schluter J, Robilotti E, Figueroa C, Gjonbalaj M, et al. Reconstitution of the gut
microbiota of antibiotic-treated patients by autologous fecal microbiota transplant. Sci Transl Med.
2018 Sep;10(460).

28. Li Z, Breitwieser FP, Lu J, Jun AS, Asnaghi L, Salzberg SL, et al. Identifying Corneal Infections in
Formalin-Fixed Specimens Using Next Generation Sequencing. Invest Ophthalmol Vis Sci. 2018
Jan;59(1):280–288. [PubMed: 29340642]

29. Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda:
sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018
Jul;15(7):475–476. [PubMed: 29967506]

30. Whittaker RH. Evolution and Measurement of Species Diversity. Taxon. 1972;21(2/3):213–251.

31. Berger WH, Parker FL. Diversity of Planktonic Foraminifera in Deep-Sea Sediments. Science.
1970 Jun;168(3937):1345–1347. [PubMed: 17731043]

32. Fisher RA, Corbet AS, Williams CB. The Relation Between the Number of Species and
the Number of Individuals in a Random Sample of an Animal Population. J Anim Ecol.
1943;12(1):42–58.

33. Simpson EH. Measurement of Diversity. Nature. 1949 Apr;163(4148):688–688.

34. Shannon CE. A mathematical theory of communication. The Bell System Technical Journal. 1948
Jul;27(3):379–423.

Lu et al. Page 25

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

35. Bray JR, Curtis JT. An Ordination of the Upland Forest Communities of
Southern Wisconsin. Ecological Monographs. 1957;27(4):325–349. Available from: https://
esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1942268.

36. Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser.
BMC Bioinformatics. 2011 Sep;12:385. [PubMed: 21961884]

37. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of
SAMtools and BCFtools. Gigascience. 2021 Feb;10(2).

Lu et al. Page 26

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1942268
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1942268

Fig 1. Protocol workflow.
Overview of two workflows (1) pathogen identification and (2) microbiome analysis. (1)

Here we try to detect an infectious agent using NGS reads. For this we start with a

sample from the infection site and (ideally) a negative control. As a first step, host DNA

is removed by excluding all reads aligning to the host genome using Bowtie 2. This

step usually removes a large fraction of the reads. Remaining reads are then classified

by Kraken2Uniq against a reference database, and the taxonomic reports are compared

using Pavian. Pavian can distinguish large abundance changes between controls and infected

samples using z-statistics. For all potential pathogen candidates, reads can be extracted using

extract kraken reads.py. In workflow (2) we try to estimate the abundance of species

in microbiome samples and compute the diversity changes between them. In the protocol,

we start with multiple sets of reads from a microbiome before and after fecal transfer. All

samples are classified using Kraken 2. Bracken takes the classified read counts and estimates

the abundance of each taxon in the sample. Pavian can be used to explore and visualize this

sample to spot the difference. Additionally, alpha diversity.py can be used to quantify

the diversity in a sample and beta diversity.py can be used to compare diversity across

samples.

Lu et al. Page 27

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 2. Pavian Output for Hierarchical Visualization
Upon (1) opening the Pavian app, users should (2) upload the microbiome sample files.

(3) Choose ”Sample” to view classification visualization results. (4) Select sample from

the drop-down menu. (5) Select plot settings to customize visualization. (6) Save image of

network.

Lu et al. Page 28

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 3. Pavian Output for Pathogen Identification.
Upon (1) opening the Pavian app, users should (2) upload the pathogen sample files. (3)

Choose “Comparison” to view the table of read counts per sample per taxon. (4) Select

‘Species’ and ‘Z-score (reads)’ to filter the table and calculate z-scores. (5). Finally, sort by

max z-scores to focus on species that are most likely pathogen candidates.

Lu et al. Page 29

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 4. Pavian Alignment Viewer.
A) shows the graphical interface of Pavian’s alignment viewer. Users should upload the .bam

and .bai files to the alignment viewer. B) and C) show two example coverage plots for the

pathogen identification samples. Pavian displays the coverage plot along with summarizing

coverage statistics.

Lu et al. Page 30

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 5. Alpha and Beta diversity results.
In subplot A, we can see the computed results for alpha diversity. In the equations p is

a vector of pis where pi =
number of individuals in itℎ species

total number of individuals for all i species i.e. pi =
ni
N . And

D =
∑ni ni − 1
N* N − 1 . In subplot B, we can see a heatmap of the 3 samples from 3 different

time points in patient T11’s treatment. The sample taken on day 12, was taken while T11

was taking antibiotics, marked with an ‘A’. The samples taken from days -9 and -2, were

taken before the commencement of antibiotic treatment, marked with an ‘N’. Here we

use beta_diversity.py to compare diversity across samples. This is the Bray-Curtis

dissimilarity matrix. We see that the two samples taken before commencement of treatment

are more similar to each other than either sample compared to sample A, from day 12.

Lu et al. Page 31

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 6. Microbiome Plots.
In subplots A–C we see Pavian visualization for samples 1–3. Samples 1 and 2 have

a similar taxonomic breakdown (A & B), corresponding to T11’s normal microbiome

diversity. Subplot C shows that sample 3 is dominated by a few bacteria when T11 is taking

antibiotics. On the right are Krona plots generated from samples 2 and 3. The plot on top

(2) shows the diversity of patient T11 before receiving any antibiotic treatment (sample 2)

and the plot below it (3) shows how depleted his microbiome diversity while he is taking

antibiotics (sample 3).

Lu et al. Page 32

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Fig 7. Pathogen Identification Results.
The above plot summarizes the Kraken2Uniq results across the 10 corneal samples. The

number of reads, number of k-mers, and z-scores reveals the most likely pathogen for each

sample. For example, Acanthamoeba quina has high read and k-mer counts in S88 alone,

Staphylococcus aureus is prevalent in S90, and Human alphaherpesvirus 1 is likely to infect

S83. For each sample, the true pathogen is the pathogen with the highest z-score for that

particular sample.

Lu et al. Page 33

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 34

Table 1.

NCBI SRA Samples

Microbiome Analysis

Sample SRA ID File size Description Expected Diversity

1 SRR14143424 5.9Gb Paired, Day -2 Normal

2 SRR14092160 3.4Gb Paired, Day -9 Normal

3 SRR14092310 2.3Gb Paired, Day 12 Low

Pathogen Identification

Sample SRA ID File size Case ID Expected Pathogen

1 SRR12486971 178.2Mb Case 10 Anncaliia algerae

2 SRR12486972 318.5Mb Case 9 Aspergillus fumigatus

3 SRR12486974 141Mb Case 7 Candida albicans

4 SRR12486978 110.5Mb Case 3 Mycobacteroides chelonae

5 SRR12486979 112.3Mb Case 20 Control

6 SRR12486981 311.1Mb Case 18 Control

7 SRR12486983 236.5Mb Case 16 HSV 1

8 SRR12486988 351Mb Case 11 Acanthamoeba castellanii

9 SRR12486989 228.2Mb Case 2 Streptococcus agalactiae

10 SRR12486990 465.7Mb Case 1 Staphylococcus aureus

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 35

Table 2.

Estimated time required for the microbiome analysis steps

Step Description Timing

1 Download and Setup 26 min

2 Classify/Estimate abundance 10 min

3 Alpha Diversity 15 sec

4 Beta Diversity 5 sec

5 Generate Krona 5 sec

6 Run Pavian 10 sec

Total 37 min

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 36

Table 3.

Classification read counts from corneal samples using the MiniKraken database

Sample Total Reads Unclassified Reads Unclassified % Classified Reads Classified %

SRR12486971 3,664,512 2,899,189 79.1% 765,323 20.9%

SRR12486972 7,594,644 7,285,624 95.9% 309,020 4.1%

SRR12486974 3,335,998 3,162,788 94.8% 173,210 5.2%

SRR12486978 2,625,249 2,496,107 95.1% 129,142 4.9%

SRR12486979 2,371,302 2,023,600 85.3% 347,702 14.7%

SRR12486981 6,730,160 6,093,775 90.5% 636,385 9.5%

SRR12486983 4,819,760 3,234,956 67.1% 1,584,804 32.9%

SRR12486988 8,369,736 8,122,882 97.1% 246,854 2.9%

SRR12486989 5,440,369 5,252,849 96.6% 187,520 3.4%

SRR12486990 9,402,750 6,619,669 70.4% 2,783,081 29.6%

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 37

Table 4.
Cornea samples per-clade read counts.

This table lists the per-clade read counts for the major clades in these samples. Only select major clades are

listed with read counts for clarity.

Sample Bacteria Archaea Virus Fungi Amoeba

SRR12486971 649,685 34 228 85,396 45

SRR12486972 150,302 10 50 31,602 54

SRR12486974 85,361 7 14 36,833 18

SRR12486978 91,448 2 763 87 3

SRR12486979 317,804 21 64 885 36

SRR12486981 465,581 51 157 2,082 110

SRR12486983 888,749 44 646,017 1,496 54

SRR12486988 80,095 12 698 325 5587

SRR12486989 97,912 7 37 256 83

SRR12486990 2,674,036 152 1,109 4,449 166

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lu et al. Page 38

Table 5.
Species with the highest Z-scores in cornea samples.

This table lists the species with the highest z-scores for each of non-control samples.

Sample True Infection Z-score Species Taxid Reads Z-score

SRR12486971 Anncaliia algerae Anncaliia algerae 723287 84,409 56930

SRR12486972 Aspergillus flavus Aspergillus flavus 5059 3,814 3814

SRR12486974 Candida albicans Candida albicans 5476 36,609 1452

SRR12486978 Mycobacterium chelonae Mycobacterium chelonae 1774 11,320 3817

SRR12486979 Control - - - -

SRR12486981 Control - - - -

SRR12486983 HSV 1 HSV 1 10298 635,691 65960

SRR12486988 Acanthamoeba Acanthamoeba lugdunensis 61605 1,004 338

SRR12486989 Streptococcus agalactiae Streptococcus agalactiae 1311 797 797

SRR12486990 Staphylococcus aureus Staphylococcus aureus 1280 1,414,661 76330

Nat Protoc. Author manuscript; available in PMC 2022 December 06.

	Abstract
	Introduction
	Overview of the protocol
	Differences between Kraken methods
	Alternative analysis packages
	Limitations
	Removal of host reads.
	Reference Database.
	Long read classification
	Assembly-based approaches

	Materials
	Equipment

	EQUIPMENT SETUP
	Required data
	Kraken 2 Databases
	Downloading and organizing required data
	Downloading and installing software
	Procedure
	Procedure 1: Microbiome Analysis
	Remove host DNA
	Classify Microbiome Samples using Kraken
	Timing ~10 min

	Run Bracken for Abundance Estimation of Microbiome Samples
	Timing < 1 min

	Calculate Alpha Diversity
	Timing ~ 35 sec

	Calculate Beta Diversity
	Timing ~5 sec

	Generate Krona Plots
	Timing < 1 min

	Generate Pavian Plots using the Shiny App
	Timing < 1 min

	Procedure 2: Pathogen Identification
	Remove Human DNA using Bowtie 2

	Classify Reads with Kraken2-Uniq
	Timing ~6min, 42 seconds for 10 samples (8 Gb)

	Compare Samples to Controls using Pavian
	Timing ~5 min

	Verify Classification
	Timing ~30 min

	Timing
	Troubleshooting
	Step 2. Run Kraken 2 results in large numbers of unclassified reads
	Steps 3–6. After Kraken 2 and Bracken calls

	Anticipated results
	Microbiome Analysis
	Pathogen Detection

	References
	Fig 1.
	Fig 2.
	Fig 3.
	Fig 4.
	Fig 5.
	Fig 6.
	Fig 7.
	Table 1.
	Table 2.
	Table 3.
	Table 4.
	Table 5.

