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Abstract Intracellular states probed by gene expression profiles and metabolic activities are 
intrinsically noisy, causing phenotypic variations among cellular lineages. Understanding the adap-
tive and evolutionary roles of such variations requires clarifying their linkage to population growth 
rates. Extending a cell lineage statistics framework, here we show that a population’s growth rate 
can be expanded by the cumulants of a fitness landscape that characterize how fitness distributes in 
a population. The expansion enables quantifying the contribution of each cumulant, such as variance 
and skewness, to population growth. We introduce a function that contains all the essential informa-
tion of cell lineage statistics, including mean lineage fitness and selection strength. We reveal a rela-
tion between fitness heterogeneity and population growth rate response to perturbation. We apply 
the framework to experimental cell lineage data from bacteria to mammalian cells, revealing distinct 
levels of growth rate gain from fitness heterogeneity across environments and organisms. Further-
more, third or higher order cumulants’ contributions are negligible under constant growth condi-
tions but could be significant in regrowing processes from growth-arrested conditions. We identify 
cellular populations in which selection leads to an increase of fitness variance among lineages in 
retrospective statistics compared to chronological statistics. The framework assumes no particular 
growth models or environmental conditions, and is thus applicable to various biological phenomena 
for which phenotypic heterogeneity and cellular proliferation are important.

Editor's evaluation
This manuscript presents a general statistical framework to infer selection on a quantitative trait, 
based on measurements of the values of this trait along related cell lineages. The manuscript 
provides both a detailed explanation of the mathematical underpinnings of the method and an illus-
tration of its application to existing and new cell lineage datasets. This is a general framework and is 
not tailored to particular growth models or environmental conditions, making it applicable to broad 
examples of exponentially growing populations.

Introduction
Growth rates of cellular populations are physiological quantities directly linked to the fitness of cellular 
organisms. To understand the roles of biological processes and reactions within cells, including modu-
lation of gene expression and metabolic states, one must characterize how they are eventually chan-
neled into an increase or maintenance of population growth rates.
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As documented by many single-cell studies, phenotypic states of individual cells in cellular 
populations are heterogeneous and often correlate with fitness variations among cellular lineages 
(Balázsi et  al., 2011; Elowitz et  al., 2002; Kelly and Rahn, 1932; Powell, 1956; Wakamoto 
et al., 2005; Wang et al., 2010; Cerulus et al., 2016; Susman et al., 2018). Fitness heteroge-
neity within a population causes a statistical bias on ancestral cells’ contributions to the number of 
descendants, which is broadly referred to as ‘selection’ (Leibler and Kussell, 2010). Such bias from 
growth heterogeneity makes the relations between cellular lineages and populations nontrivial. For 
example, an intriguing consequence of intra-population selection is a growth rate gain, a phenom-
enon that cell population’s growth rate becomes greater than the mean division rate of isolated 
single-cell lineages (Powell, 1956; Hashimoto et al., 2016; Rochman et al., 2018). Recent prog-
ress of single-cell measurements has enabled high-throughput acquisitions of cellular lineage trees 
and historical dynamics in each lineage (Stewart et  al., 2005; Wang et  al., 2010; Hashimoto 
et al., 2016). However, establishing the theory and method of cellular lineage statistics to quantify 
fitness differences among different phenotypic states and intrapopulation selection is still in prog-
ress (Nozoe et al., 2017; García-García et al., 2019; Levien et al., 2020; Genthon and Lacoste, 
2020; Genthon and Lacoste, 2021).

Growth of cellular populations can be described using the ensemble of individual cells’ growth 
histories (Leibler and Kussell, 2010). A theoretical approach that regards a cell lineage (history) as a 
basic unit of analysis has offered illuminating insights into population dynamics. For example, it has 
provided the formula for untangling selection from responses (Leibler and Kussell, 2010), population 
response to age-specific changes in mortality and fecundity (Wakamoto et  al., 2012), fluctuation 
relations of fitness (Kobayashi and Sughiyama, 2015; Genthon and Lacoste, 2020), and relations 
between cell size growth rate and population growth rate (Thomas, 2007; Lin and Amir, 2017).

Employing this cell history-based formulation of population dynamics, we have previously proposed 
a method of cellular lineage statistics that allows quantification of fitness landscapes and selection 
strength for any traits of cellular lineages (Nozoe et al., 2017). Here, we extend this statistical frame-
work and show that population growth rates can be expanded by the cumulants that represent various 
properties of fitness distributions, such as variance and skewness, in a population. We apply the 
framework to experimental single-cell lineage data of bacteria, yeast, and mammalian cells to quantify 
their condition-dependent growth heterogeneity and its contribution to population growth rate. We 
also apply this framework to measuring the fitness landscapes for a growth-regulating sigma factor 
in E. coli and identify the conditions where its continuum and non-genetic expression heterogeneity 
correlates with lineage fitness in cellular populations.

Examples of biological questions
Before detailing the theoretical and experimental results, we first present several biological questions 
for which cell lineage statistics could provide essential insights.

Growth rate gain
Growth of individual cells is heterogeneous in a cellular population even under constant environmental 
conditions (Stewart et al., 2005; Wakamoto et al., 2005; Wang et al., 2010; Hashimoto et al., 
2016). Whether genetic or non-genetic, such growth heterogeneity inevitably enables selection within 
a cellular population. Growth heterogeneity can increase the rate of a population’s growth compared 
to the mean replication (division) rate of individual cells, known as ‘growth rate gain’ (Hashimoto 
et al., 2016). Since population growth rate is one of the critical quantities that determine long-term 
evolutionary success, it is interesting to ask to what extent growth heterogeneity contributes to popu-
lation growth rate and how the contributions change depending on cellular phenotypes, genotypes 
(e.g. species), and environmental conditions. Answering this question may uncover strategies of each 
organism regarding how it exploits inherent stochasticity for population growth.

As we detail below, a measure of selection strength, ‍S
(1)
KL[D]‍, can quantify the growth rate gain from 

growth heterogeneity. Furthermore, we show that one can quantitatively decompose ‍S
(1)
KL[D]‍ into the 

contributions of distinct characteristics of growth heterogeneity, such as variance and skewness of 
fitness distributions. In this study, we apply the cell lineage statistics framework to single-cell lineage 
data and unravel how the growth rate gain changes across environments and organisms.

https://doi.org/10.7554/eLife.72299
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Selection in changing environments
When a population of cells faces environmental changes, response of individual cells can be uniform 
and heterogeneous (Lambert et al., 2014; Julou et al., 2020). In one scenario, individual cells might 
respond to an environmental change uniformly and contribute to the future population nearly equally 
with respect to the number of descendants. In another scenario, only a tiny fraction of the cell popu-
lation could respond to an environmental change, and the descendants of the responders might 
dominate the entire future population. In this case, the selection within a population is intense, and 
the nature of a population’s response exclusively depends on these rare cell lineages. Typically, the 
responses of real cell populations would fall between these two extremes; it is therefore critical to 
ask how strongly selection occurs within cellular populations in response to environmental changes to 
understand their response and adaptation strategies.

The framework enables such quantification by evaluating the selection strength ‍S
(1)
KL[D]‍ of 

responding cell populations. Importantly, quantifying the selection strength ‍S
(1)
KL[D]‍ requires only the 

information of division counts in cellular lineages. Hence, the selection strength is measurable even for 
complex processes where clarifying the transitions of environmental conditions around cells is tech-
nically challenging. We indeed analyze cellular populations of E. coli regrowing from an early or late 
stationary phase and characterize distinct levels of selection depending on the duration of stationary 
phase.

Correlations between cellular lineage traits and fitness
Since various traits of individual cells, such as expression levels of particular genes (Elowitz et al., 
2002), are heterogeneous in cellular populations, it is natural to ask how strongly trait heterogeneity 
correlates with the fitness of individual cell lineages. Quantifying such correlations will allow us to 
understand which traits are under strong selection and potentially crucial for long-term evolution.

The cell lineage statistics framework quantifies relationships between traits and fitness using fitness 
landscapes ‍h(x)‍. Additionally, the overall correlation between the heterogeneity of traits and that of 
fitness can be quantified by the relative selection strength ‍Srel[X]‍. In this study, we measure ‍h(x)‍ and 

‍Srel[X]‍ for a growth-regulation sigma factor in E. coli to unravel whether its continuum expression level 
heterogeneity is correlated with the fitness heterogeneity of single cell lineages.

Clarifying trait and fitness correlations based on individual-cell-based analyses is difficult when 
growth and traits fluctuate rapidly over time and when the traits affect growth with delays. In such 
circumstances, instantaneous correlations between traits and growth might not report their relations 
correctly. On the other hand, the cell-lineage-based analysis of this framework can take the whole 
dynamics of traits in cell lineages into account. For example, if we expect that absolute expression 
levels are important for fitness, the expression level averaged in each cell lineage can be employed as 
the lineage trait, and its fitness landscape and selection strength are measurable. If large fluctuations 
affect cell fates and contribute to diversification of cell lineage fitness within a cellular population 
(Purvis and Lahav, 2013), the variances of expression levels can be taken as lineage traits, and one 
can evaluate their fitness landscape ‍h(x)‍ and relative selection strength ‍Srel[X]‍. Therefore, the assump-
tion of a cell lineage as a unit of selection can significantly extend the choice of traits, including time-
dependent properties, and can provide insights into cellular dynamics that cannot be gained without 
the lineage-based formulation of fitness and selection.

Theoretical background
First, we briefly review the analytical framework of cell lineage statistics introduced in Nozoe et al., 
2017. This framework allows us to quantitatively infer fitness differences associated with distinct 
states of cellular lineage traits and selection within a growing cell population from empirical single-
cell lineage tree data. Time-lapse single-cell measurements provide cellular growth and division infor-
mation in the form of lineage trees (Figure 1, Stewart et al., 2005). We regard a lineage ‍σ‍ as a cell 
history traceable back from a descendant cell at the final time point ‍t = τ ‍ (Figure 1B). For the case of 
cellular growth shown in Figure 1A, 22 cell lineages exist in the trees.

We assign two types of probability weight to cellular lineages. One is retrospective probability, 
in which we assign equal weight ‍Prs(σ) := 1/Nτ ‍ to all lineages, where ‍Nτ ‍ is the number of cells at 
the final time point ‍t = τ . Prs(σ)‍ represents the probability of selecting the history of a cell present at 
the endpoints of lineage trees. Another is chronological probability, in which we assign the weight 

https://doi.org/10.7554/eLife.72299
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Figure 1. Representative single-cell lineage trees. (A) Time-lapse images of a growing microcolony of Escherichia coli expressing green fluorescent 
protein (GFP) from plasmids. Scale bars, 5 μm. (B) Cellular lineage trees for the microcolony in A. Bifurcations in the trees represent cell divisions. ‍σ‍ 
denotes cell lineage labels. ‍D(σ)‍ shows the number of cell divisions in each lineage. ‍Pcl(σ)‍ and ‍Prs(σ)‍ are chronological and retrospective probabilities 
defined in the main text.

https://doi.org/10.7554/eLife.72299


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Yamauchi et al. eLife 2022;11:e72299. DOI: https://doi.org/10.7554/eLife.72299 � 5 of 40

‍Pcl(σ) := 2−D(σ)/N0‍ to the lineages, where ‍D(σ)‍ is the number of cell divisions on lineage ‍σ‍ and N0 is 
the initial number of cells at ‍t = τ . Pcl(σ)‍ represents the probability of choosing lineage ‍σ‍ descending 
the tree from one of the ancestor cells at ‍t = 0‍ and selecting one branch with the probability ‍1/2‍ at 
every cell division. ‍Prs(σ)‍ and ‍Pcl(σ)‍ can be different in general when the number of cell divisions are 
variable among the cell lineages, as shown in Figure 1B.

We define retrospective and chronological probabilities for a lineage trait ‍X ‍ as ‍Qrs(x) :=
∑

σ:X(σ)=x Prs(σ)‍ 
and ‍Qcl(x) :=

∑
σ:X(σ)=x Pcl(σ)‍, where ‍X(σ)‍ is the value of trait ‍X ‍ for lineage ‍σ‍. Here, we regard any 

measurable quantity associated with cellular lineages as a lineage trait ‍X ‍. For example, time-averaged 
expression levels and production rates of a drug-resistance protein were analyzed as lineage traits 
in the experiments of Nozoe et al., 2017. Intuitively, ‍Qcl(x)‍ and ‍Qrs(x)‍ represent the probabilities of 
finding the lineage trait value ‍X = x‍ before and after selection, respectively.

Using these retrospective and chronological distributions, we define the fitness landscape for 
lineage trait ‍X ‍ as

	﻿‍ h(x) := τΛ + ln Qrs(x)
Qcl(x) ,‍� (1)

where ‍Λ := 1
τ ln Nτ

N0 ‍ is the population growth rate. This definition relates the relative difference of the 
retrospective probability from the chronological probability to fitness. ‍h(x)‍ becomes greater than ‍τΛ‍ 
if the lineage trait state ‍X = x‍ is overrepresented in the retrospective probability relative to chrono-
logical probability and vice versa. Furthermore, if none of the states of lineage trait ‍X ‍ are overrepre-
sented nor underrepresented, ‍h(x)‍ becomes constant across the states and equals ‍τΛ‍ for all ‍x‍. The 
fitness landscape ‍h(x)‍ thus represents fitness differences mapped on the lineage trait space of ‍X ‍ (see 
Figure 2 and Box 1).

One can also define ‘selection strength’ using ‍Qrs(x)‍ and ‍Qcl(x)‍ as

	﻿‍ SJF[X] := J[Qcl(X), Qrs(X)] = ⟨h(X)⟩rs − ⟨h(X)⟩cl,‍� (2)

where ‍J[Qcl(X), Qrs(X)] :=
∑

x
(
Qcl(x) − Qrs(x)

)
ln Qcl(x)

Qrs(x)‍ is Jeffreys divergence, and ‍⟨h(X)⟩rs :=
∑

x h(x)Qrs(x)‍ and 

‍⟨h(X)⟩cl :=
∑

x h(x)Qcl(x)‍ are the retrospective and chronological mean fitness for lineage trait ‍X ‍. Jeffreys 
divergence measures dissimilarity between two probability distributions. Therefore, ‍SJF[X]‍ measures 
dissimilarity between the chronological and retrospective distributions caused by selection. Notably, 
one can link this dissimilarity to the difference in the mean fitness, as shown in Equation 2. Since 
Jeffreys divergence is non-negative, the retrospective mean fitness (mean fitness after selection) is 
equal to or greater than the chronological mean fitness (mean fitness before selection).

Lineage trait

A B

Lineage trait

C

Lineage trait

Figure 2. Conceptual illustration of the relationships between fitness landscapes, trait distributions, and selection strength. (A) Non-uniform fitness 
landscape and broad trait distribution. The gray distribution represents a chronological distribution of lineage trait ‍x‍; the cyan distribution represents a 
retrospective distribution of lineage trait ‍x‍; and the black dashed line represents a fitness landscape. Due to the non-uniform fitness landscape and the 
broad chronological distribution, there is trait fitness heterogeneity for selection to act on. The retrospective distribution therefore shifts significantly 
from the chronological distribution, and the selection strength is large (‍S[X] > 0‍). (B) Non-uniform fitness landscape and narrow trait distribution. Due 
to the lack of trait heterogeneity, there is little fitness heterogeneity for selection to act on. The retrospective distribution shifts only slightly from the 
chronological distribution, and the selection strength is small (‍S[X] ≈ 0‍). (C) Uniform fitness landscape. When the fitness landscape is constant (‍= τΛ‍) 
across the lineage trait state ‍x‍, there can be no trait fitness heterogeneity regardless of whether the trait distribution itself is narrow or broad. The 
selection strength is therefore zero (‍S[X] = 0‍).

https://doi.org/10.7554/eLife.72299
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Box 1. A glossary of the terms

Here, we provide intuitive and illustrative explanations of the essential quantities in the cell 
lineage statistics and discuss their similarities and differences compared to the common usage 
in evolutionary biology.
Fitness: In evolutionary biology, fitness refers to the expected per capita contribution of 
individuals of a particular trait (usually a genotype) to the future population (Futuyma, 2010). 
For example, if a set of N0 individuals with trait ‍X ‍ produce N1 descendants on average in 
the future population, the fitness of this trait would be ‍N1/N0‍. Since proliferation usually 
proceeds multiplicatively, the logarithm of fitness, In ‍(N1/N0)‍, is also often referred to as 
‘fitness’. Analogously, in our framework we define fitness for cell lineage traits as the expected 
contribution of lineages with a given trait value in the future population. For each cell lineage 
‍σ‍, the number of cell divisions occurring along the lineage, ‍D(σ)‍, is used to estimate the 
expected contribution of each lineage to the future population.
Fitness landscape: In evolutionary biology, fitness landscapes are visual representations 
of relationships between reproductive abilities (fitness) and genotypes (Futuyma, 2010), 
where the height along the landscape corresponds to fitness. Since “genotype space” is 
vast and usually difficult to construct or visualize, fitness landscapes are often referred to as 
a metaphorical or conceptual tool for understanding complex evolutionary processes. For 
practical applications, however, fitness landscapes are often mapped on a low dimensional 

This measure of selection strength quantifies how strongly differences in the states of lineage trait 
‍X ‍ correlate with the differences in lineage fitness. Therefore, one can unravel which traits correlate 
with lineage fitness strongly by evaluating this for traits of interest.

Likewise, we can define two alternative selection strength measures:

	﻿‍ S(1)
KL[X] := DKL[Qcl(X)||Qrs(X)] = τΛ− ⟨h(X)⟩cl,‍� (3)

	﻿‍ S(2)
KL[X] := DKL[Qrs(X)||Qcl(X)] = ⟨h(X)⟩rs − τΛ,‍� (4)

where ‍DKL[Qcl(X)||Qrs(X)] :=
∑

x Qcl(X) ln Qcl(X)
Qrs(X)‍ and ‍DKL[Qrs(X)||Qcl(X)] :=

∑
x Qrs(X) ln Qrs(X)

Qcl(X)‍ are the 

Kullback-Leibler divergence of the two distributions. Note that ‍S
(1)
KL[X] + S(2)

KL[X] = SJF[X]‍.
These three types of selection strength measures share identical properties in common: they are 

always non-negative and report the overall correlations between trait states and fitness. We exclusively 
used ‍SJF[X]‍ as the selection strength measure in our previous study (Nozoe et al., 2017). However, 

‍S
(1)
KL[X]‍, ‍S

(2)
KL[X]‍, and their difference ‍S

(2)
KL[X] − S(1)

KL[X]‍ possess their own unique biological meanings, 
as we detail in Results. We indeed evaluate both ‍S

(1)
KL[X]‍ and ‍S

(2)
KL[X]‍ for the empirical lineage data 

of various organisms and use them to unravel distinct effects of selection on fitness variances. Such 
meanings and roles of the different selection strength measures are clarified in this study.

Importantly, division count ‍D‍ is also a lineage trait, and its selection strength sets the maximum 
bound for the selection strength of any lineage trait irrespectively of a choice of the selection strength 
measures as discussed in Appendix 3. Therefore, the selection strength relative to that of ‍D‍ is bounded 
between 0 and 1 and evaluates how strongly the heterogeneity of ‍X ‍ correlates with the division count 
heterogeneity in a given cellular population. This relative measure is useful when comparing relative 
strength of correlations between lineage traits and fitness across conditions. In this study, we define 
relative selection strength as

	﻿‍
Srel[X] := S(1)

KL[X]
S(1)

KL[D]
,
‍�

(5)

and use it in the analysis.
All of the quantities introduced above are measurable without relying on any growth models. Thus, 

this cell lineage statistics framework is applicable to a wide range of single-cell lineage data.

continued on next page
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allele frequency space or a phenotypic space. Analogously, in our framework fitness 
landscapes are mapped on cell lineage trait spaces. However, they are different in that there 
is no assumption of genotypic differences underlying different trait states. Furthermore, the 
landscapes are directly measurable using cellular lineage trees and trait dynamics in each 
lineage.
For a cell lineage trait ‍X ‍, we define its fitness landscape to be a function ‍h(x)‍ that reports the 
expected reproductive success of lineages having trait value ‍X = x‍. Each lineage ‍σ‍ having trait 
value ‍x‍ contributes ‍2D(σ)‍ lineages to the future population, and by summing over lineages 
sharing the same trait value, we estimate the expected reproductive success of the trait and 
measure its fitness landscape. If differences in ‍X ‍ correlate with division count heterogeneity 
among cell lineages, ‍h(x)‍ varies across the trait space of ‍X ‍; if differences in ‍X ‍ are uncorrelated 
with division count heterogeneity, ‍h(x)‍ is constant over the entire space of ‍X ‍ (Figure 2).
Selection: The term selection refers to processes in which the frequencies of individuals with 
different traits change due to differences in their fitness (Futuyma, 2010). In evolutionary 
biology, selection is usually assessed based on changes in the distribution of traits between 
two points in times, which requires an accurate measure of fitness and a model to determine 
whether the observed changes were the result of trait fitness differences. In our cell lineage 
statistics framework, we measure selection by determining whether the observed distribution 
of lineage traits (i.e. the retrospective distribution) differs from the distribution expected in 
the absence of fitness differences (i.e. the chronological distribution). The key advantage 
that lineage-based analysis provides is the ability to construct explicitly the chronological 
distribution, which is the natural ‘null hypothesis’ against which selection can be tested in a 
model-independent manner.
Selection strength: ‍S[X]‍ (i.e., ‍SJF[X]‍, ‍S

(1)
KL[X]‍, or ‍S

(2)
KL[X]‍) is a quantitative measure that reports 

how strongly differences in the states of cell lineage trait ‍X ‍ are correlated with cell lineage 
fitness, taking the distributions of ‍X ‍ into account. The selection strength in our framework is 
measured by differences in the fitness measures or by differences between chronological and 
retrospective distributions (Equations 2–4). One can prove that these different definitions are 
mathematically equivalent.
The three situations depicted in Figure 2 would help us to gain an intuitive understanding 
of the properties and meanings of selection strength. When ‍X ‍ is correlated with fitness, a 
fitness landscape ‍h(x)‍ becomes non-uniform, as mentioned above. When the states of lineage 
trait ‍X ‍ are heterogeneous and distributed widely within a population, the selection causes a 
significant difference between chronological and retrospective distributions due to the biased 
representation of trait states by selection. Therefore, the selection strength becomes large 
(‍S[X] > 0‍, Figure 2A). In the second situation, ‍h(x)‍ is again non-uniform, but the distribution 
of ‍x‍ is narrow. In this case, there is almost no effective trait heterogeneity in the population 
on which selection can act. Consequently, the overall extent of selection becomes small, 
i.e., selection strength becomes small (‍S[X] ≈ 0‍, Figure 2B). Finally, when ‍h(x)‍ is uniform 
over the observed state of ‍x‍, selection can neither overrepresent nor underrepresent any 
states, no matter how the trait ‍x‍ distributes in a population. Therefore, the chronological 
and retrospective distributions become identical, and the selection strength becomes zero 
(‍S[X] = 0‍, Figure 2C).
These examples show that ‍S[X]‍ can gauge to what extent selection acts on a lineage trait 
‍X ‍, considering both shapes of fitness landscapes and distributions of lineage traits in a 
population. Therefore, if ‍X ‍ is a trait of interest, quantifying ‍S[X]‍ or the relative strength of 
selection ‍S[X]/S[D]‍ determines how strongly the heterogeneity of ‍X ‍ is correlated with fitness 
differences of cell lineages.
In evolutionary biology, various measures are used to quantify how strongly selection acts in a 
population of interest. For example, the ‘coefficient of selection’ measures a relative difference 
in fitness of each genotype from that of the fittest genotype (Futuyma, 2010). This measure 
is useful when considering the selection against a particular reference genotype. The overall 
intensity of selection in a population can be quantified by changes in mean fitness before 

continued on next page
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and after selection, variances of fitness before selection, changes in the mean of log fitness, 
and Jeffreys divergence between trait distributions before and after selection (Frank, 2012). 
Therefore, our definitions of selection strength follow the standard measures for the overall 
selection in evolutionary biology both conceptually and mathematically but are different in that 
the mean fitness and distributions of chronological and retrospective statistics are used.
Cumulants: In Results, we consider the contributions of the cumulants of a fitness landscape 
to population growth. The cumulants of a probability distribution are a set of quantities 
that characterize the distribution. For a discrete probability distribution ‍P(x)‍, its cumulant 
generating function is defined as

	﻿‍
K(ξ) := ln E[eξX] = ln

∑
x

eξxP(x),
‍� (6)

and the ‍n‍-th order cumulant ‍κn‍ is obtained by evaluating the ‍n‍-th order derivative of ‍K(ξ)‍ at 

‍ξ = 0‍, i.e.,

	﻿‍
κn := dnK(ξ)

dξn

∣∣∣
ξ=0

.
‍� (7)

Notably, the first few cumulants correspond to important statistical quantities. The first-
order cumulant ‍κ1‍ corresponds to the mean ‍⟨X⟩ := E[X] =

∑
x xP(x)‍, and the second-order 

cumulant ‍κ2‍ corresponds to the variance ‍Var[X] := E[X2] − E[X]2 =
∑

x x2P(x) −
(∑

x xP(x)
)2

‍. 

The skewness of a distribution is usually defined as 
‍
E
[(

X−E[X]√
Var[X]

)3
]

‍
, and this quantity can 

be expressed as ‍κ3/κ
3
2
2‍ using the third-order cumulant. Since ‍κ2‍ is positive, the sign of ‍κ3‍ 

determines the direction of the skewness: When ‍κ3 > 0‍, the distribution is skewed to the right 
with a long right tail; when ‍κ3 < 0‍, the distribution is skewed to the left with a long left tail.

Results
Growth rate gain and cumulant expansion of population growth rate
To quantify contributions of growth heterogeneity to population growth, we first rewrite the definition 
of the selection strength ‍S

(1)
KL[X]‍ (Equation 3) as follows:

	﻿‍ τΛ = ⟨h(X)⟩cl + S(1)
KL[X].‍� (8)

This shows that population growth rates can be decomposed into chronological mean fitness and 
selection strength. In particular, when we take division count ‍D‍ as a lineage trait, its fitness land-
scape is ‍̃h(d) = d ln 2‍ (Appendix 3), and ‍⟨h̃(D)⟩cl/τ ‍ represents the mean division rate of cellular lineages 
without selection. ‍S

(1)
KL[D]/τ ‍, thus, represents growth rate gain caused by the growth heterogeneity 

among the cellular lineages in a cellular population. Therefore, evaluating ‍S
(1)
KL[D]/τΛ‍ from single-cell 

lineage data provides information on the contribution of growth heterogeneity to population growth.
To further examine the connections between the disparate selection measures and elucidate their 

meaning, we define a function of a variable ‍ξ‍ as

	﻿‍
KX(ξ) := ln⟨eξh(X)⟩cl = ln

∑
x

eξh(x)Qcl(x).
‍�

(9)

This is the cumulant generating function (cgf) of ‍h(x)‍ with respect to the chronological distribution ‍Qcl‍. 
We have ‍KX(0) = 0‍, and from the definition of fitness landscape ‍h(x)‍ (Equation 1), we find

	﻿‍ KX(1) = τΛ .‍� (10)

When the radius of convergence of the Taylor expansion of ‍KX(ξ)‍ around ‍ξ = 0‍ is at least 1, ‍KX(1)‍ can 
be expressed as the series using the cumulants of a fitness landscape as

	﻿‍
KX(1) =

∞∑
n=1

κ(X)
n

n! ,
‍�

(11)

https://doi.org/10.7554/eLife.72299
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Table 1. Relationships between ‍KX(ξ)‍ and quantities in cellular lineage statistics.

Quantities in lineage statistics Symbol Correspondence to‍KX(ξ)‍

Fitness Population growth ‍τΛ‍ ‍KX(1)‍

Chronological mean fitness ‍⟨h(X)⟩cl‍ ‍K
′
X(0)‍

Retrospective mean fitness ‍⟨h(X)⟩rs‍ ‍K
′
X(1)‍

Chronological fitness variance ‍Var[h(X)]cl‍ ‍K
′′
X(0)‍

Retrospective fitness variance ‍Var[h(X)]rs‍ ‍K
′′
X(1)‍

Selection strength
Jeffreys divergence bet.  ‍Qcl(X)‍ 
and  ‍Qrs(X)‍ ‍SJF[X]‍ ‍K

′
X(1) − K′

X(0)‍

KL divergence of  ‍Qcl(X)‍  from 
‍Qrs(X)‍ ‍S

(1)
KL[X]‍ ‍KX(1) − K′

X(0)‍

KL divergence of  ‍Qrs(X)‍  from 
‍Qcl(X)‍ ‍S

(2)
KL[X]‍ ‍K

′
X(1) − KX(1)‍

Growth rate gain/loss Growth rate gain ‍S
(1)
KL[D]/τΛ‍ ‍1 − K′

D(0)/KD(1)‍

Additional growth rate loss upon perturbation ‍−S(2)
KL[D]/τΛ‍ ‍1 − K′

D(1)/KD(1)‍

where 
‍
κ(X)

n := dnKX(ξ)
dξn

∣∣∣
ξ=0‍

 is the ‍n‍-th order cumulant, satisfying ‍κ
(X)
1 = ⟨h(X)⟩cl‍, and 

‍κ
(X)
2 = Var[h(X)]cl = ⟨h(X)2⟩cl − ⟨h(X)⟩2

cl‍. Hence,

	﻿‍
τΛ =

∞∑
n=1

κ(X)
n

n! ,
‍�

(12)

which shows that population growth rates can be expanded by the cumulants of a fitness landscape 
for any lineage trait ‍X ‍. Additionally, since ‍κ

(X)
1 = ⟨h(X)⟩cl‍, comparing (Equation 8) and (Equation 12) 

yields

	﻿‍
S(1)

KL[X] =
∞∑

n=2

κ(X)
n

n! .
‍�

(13)

Therefore, ‍S
(1)
KL[X]‍ represents the total contribution of second and higher order cumulants to popula-

tion growth.
The cumulant expansion allows us to quantify the relative contributions of various statistical features 

of fitness distributions to population growth, such as mean, variance, and skewness. We define the 
cumulative contribution up to the ‍n‍-th order cumulant as

	﻿‍
W(X)

n := 1
τΛ

n∑
k=1

κ(X)
k
k! ,

‍�
(14)

and note that ‍W
(X)
n ‍ converges to 1 as ‍n → ∞‍. In particular, ‍W

(X)
1 = ⟨h(x)⟩cl

τΛ ‍ and 

‍
W(X)

2 = 1
τΛ

(
⟨h(X)⟩cl + 1

2 Var[h(X)]cl

)
‍
. We will indeed measure ‍W

(D)
n ‍ for various cellular species under 

steady and non-steady environments in the experimental sections below.
The function ‍KX(ξ)‍ defined in (Equation 9) is useful as it provides various forms of fitness and selec-

tion measures by simple algebraic calculation, as shown in Table 1. In general, evaluating ‍KX(ξ)‍ and 
its derivatives at ‍ξ = 0‍ and ‍ξ = 1‍ gives the information of chronological and retrospective statistics, 
respectively (Appendix 3). Therefore, ‍KX(ξ)‍ contains complete information on the fitness distributions 
in both chronological and retrospective statistics.

https://doi.org/10.7554/eLife.72299
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A B C D

E F G

Figure 3. Relationships among chronological distributions’ shape and selection strength measures. (A) Graphical representation of various fitness and 
selection strength measures by ‍K

′
X(ξ)‍-plot. Blue curve represents ‍K

′
X(ξ)‍. The area between the horizontal axis and ‍K

′
X(ξ)‍ in the interval ‍0 ≤ ξ ≤ 1‍ 

outlined in red corresponds to population growth ‍τΛ‍. The gray and hatched regions correspond to ‍⟨h(X)⟩cl‍ and ‍S
(1)
KL[X]‍, respectively. The area between 

‍K
′
X(ξ)‍ and ‍y = ⟨h(X)⟩rs‍ corresponds to ‍S

(2)
KL[X]‍. (B-D) Representative shapes of ‍K

′
X(ξ)‍ depending on ‍κ

(X)
3 ‍. Assuming that the contributions from fourth 

or higher-order cumulants are negligible, ‍K
′
X(ξ)‍ becomes convex downward when ‍κ

(X)
3 > 0‍ (B); a straight line when ‍κ

(X)
3 = 0‍ (C); and convex upward 

when ‍κ
(X)
3 < 0‍ (D). (E-G) Relationships between third-order fitness cumulant and skewness of chronological distribution ‍Qcl(h)‍.

Difference in the selection strength measures reveals the effect of 
selection on fitness variance
The difference between the two selection strength measures ‍S

(1)
KL[X]‍ and ‍S

(2)
KL[X]‍ is determined by the 

higher order cumulants by the relation

	﻿‍
S(2)

KL[X] − S(1)
KL[X] =

∞∑
n=3

κ(X)
n

n! (n − 2)
‍�

(15)

(Appendix 3). When fourth or higher order cumulants are negligible, the third-order fitness cumu-
lant ‍κ

(X)
3 ‍, that is the skewness of fitness distribution, determines which selection strength measure is 

greater.
The relations among the fitness and selection strength measures can be graphically depicted 

by plotting ‍K
′
X(ξ)‍ in the interval ‍0 ≤ ξ ≤ 1‍ (Figure  3A). ‍S

(1)
KL[X]‍ corresponds to the area between 

‍y = ⟨h(X)⟩cl‍ and ‍y = K′
X(ξ)‍; and ‍S

(2)
KL[X]‍ corresponds to the area between ‍y = K′

X(ξ)‍ and ‍y = ⟨h(X)⟩rs‍ 
(Figure  3A). Therefore, the skewness of fitness distribution primarily determines the convexity of 

‍K
′
X(ξ)‍ (Figure 3B–G).

The difference between the two selection strength measures can reveal the effect of selection on 
fitness variances. The slope of the tangent lines to ‍K

′
X(ξ)‍ at ‍ξ = 0‍ and 1 corresponds to the chronolog-

ical and retrospective fitness variances, respectively (Table 1). Therefore, when ‍K
′
X(ξ)‍ is convex upward 

in the interval ‍0 ≤ ξ ≤ 1‍ (‍κ
(X)
3 < 0‍, i.e., ‍S

(1)
KL[X] > S(2)

KL[X]‍, as in Figure 3D), the effect of selection is to 
decrease the lineage fitness variance in the retrospective distribution relative to the chronological 
distribution, whereas if ‍K

′
X(ξ)‍ is convex downward (‍κ

(X)
3 > 0‍, i.e., ‍S

(1)
KL[X] < S(2)

KL[X]‍, as in Figure 3B), 
selection increases the fitness variance. We indeed find cases of both kinds of behavior in the experi-
mental lineage data, as will be seen below. Therefore, one can probe the effect of selection on fitness 
variances by comparing the two selection strength measures ‍S

(1)
KL[X]‍ and ‍S

(2)
KL[X]‍.

Significant differences between ‍S
(1)
KL[X]‍ and ‍S

(2)
KL[X]‍ indicate non-negligible contributions of higher-

order cumulants. In such circumstances, the fitness distributions are far from Gaussian with significant 
skews or multiple peaks. Therefore, higher-order cumulants can also be used to probe the existence 
of sub-populations in cellular populations.

https://doi.org/10.7554/eLife.72299
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Population growth rate under fitness perturbations
We mentioned above that the selection strength measure ‍S

(1)
KL[D]‍ represents growth rate gain caused 

by fitness heterogeneity. Likewise, another selection strength measure ‍S
(2)
KL[D]‍ represents a different 

consequence of fitness heterogeneity, that is, additional loss of growth rate under fitness perturbations.
From (Equation 1), and taking division count as a lineage trait, one can express population growth 

rate as

	﻿‍
Λ = 1

τ ln
∑
d

eh̃(d)Qcl(d).
‍�

(16)

We now consider the response of population growth rate to perturbations that cause lineage fitness 
to change from ‍D(σ) ln 2‍ to ‍(1 − ϵ)D(σ) ln 2‍, and rewrite the population growth rate as

	﻿‍
Λ(ϵ) := 1

τ ln
∑
d

e(1−ϵ)h̃(d)Qcl(d).
‍�

(17)

We have ‍Λ(0) = Λ‍, and note that ‍Λ(ϵ) = 1
τ KD(1 − ϵ)‍ from (Equation 9). Differentiating ‍Λ(ϵ)‍ with respect 

to ‍ϵ‍, and evaluating at ‍ϵ = 0‍, we find

	﻿‍
dΛ(ϵ)

dϵ

∣∣∣
ϵ=0

= − ⟨h̃(D)⟩rs
τ ‍�

(18)

(see Appendix 3). This relation shows that the change of population growth rate for small ‍ϵ‍ is propor-
tional to the retrospective mean fitness of the unperturbed population. Since ‍⟨h̃(D)⟩rs = τΛ + S(2)

KL[D]‍ 
(Equation 4), the relative change of population growth rate is

	﻿‍
1
Λ

dΛ(ϵ)
dϵ

���
ϵ=0

= −
(

1 + S(2)
KL[D]
τΛ

)
.
‍�

(19)

Therefore, a population with higher selection strength will exhibit a greater change in population 
growth rate upon perturbation. The selection strength measure ‍S

(2)
KL[D]‍ represents additional loss of 

population growth rate due to division count heterogeneity before perturbation.
As we see below, one manifestation of ‍ϵ‍ occurs via a cell removal operation. Consider the removal 

of a branch in the genealogical tree just after each cell division with the probability of ‍1 − 2−ϵ‍ (‍ϵ > 0‍) 
(Figure 4A). In this case, the probability that a cell remains in the population after a cell division is ‍2−ϵ‍, 
and the growth of cell lineages that originally divided ‍d‍ times will be effectively reduced by the factor 

‍(2−ϵ)d
‍. Consequently, the number of cell lineages that reach the end time point will also be effectively 

reduced from 
‍
N0

(∑
d 2dQcl(d)

)
‍
 to 

‍
N0

(∑
d 2(1−ϵ)dQcl(d)

)
‍
. Therefore, the population growth rate under 

this branch removal operation is given by (Equation 17), and the relative change of population growth 
rate is

	﻿‍
∆Λ
Λ := Λ(ϵ)−Λ

Λ = −
(

1 + S(2)
KL[D]
τΛ

)
ϵ + O(ϵ2).

‍�
(20)

We validated this relation by simulating population growth with and without the cell removal operation 
(Figure 4B–E and Figure 4—figure supplement 1). The result confirmed that the relative changes of 

population growth rates by the probabilistic removal of cells followed 
‍
−
(

1 + S(2)
KL[D]
τΛ

)
ϵ
‍
 in all the condi-

tions (Figure 4C–E). We also tested this relation for cell populations with positive mother-daughter 
correlations of division intervals, which are often found for eukaryotic cells (Nozoe and Kussell, 2020; 
Seita et al., 2021; Mosheiff et al., 2018; Kuchen et al., 2020). We confirmed that the response 
relation was valid irrespectively of the strength of mother-daughter correlations (Figure 4—figure 
supplement 1), which shows that the relation is general and independent of the specific dynamics of 
the cell division process.

Applications to models
In Appendices 1 and 2, we calculate the exact form of ‍KD(ξ)‍ for analytically-tractable models. We 
derive chronological and retrospective mean fitness, selection strength, and the cumulants of fitness 
landscapes from ‍KD(ξ)‍ to observe how the framework works. In particular, we show the analytical 

https://doi.org/10.7554/eLife.72299
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Figure 4. Population growth rate response to cell removal perturbation. (A) Scheme of random cell removal. Here, we consider the situation where 
cells were removed probabilistically after each cell division. Red crosses represent cell removal positions in the tree. The lineages after cell removal 
points disappear from the tree. Consequently, the number of cells at the end time point decreases. (B) Generation time distributions used in the 
simulation. We assumed that cellular generation time follows gamma distributions in the simulation. We set the shape parameter to either 1 (‍g1(x)‍), 2 
(‍g2(x)‍), or 5 (‍g3(x)‍). (C-E) Population growth rate changes by cell removal perturbation. Gray points show the relative changes in population growth rate 

‍∆Λ/Λ := (Λ(ϵ) − Λ(0))/Λ(0)‍. Cell removal probability was set to ‍1 − 2−ϵ‍ in each condition of perturbation strength ‍ϵ‍. Broken red lines represent the 

theoretical prediction 
‍
∆Λ/Λ ≈ − ⟨h̃(D)⟩rs

τΛ ϵ = −
(

1 + S(2)
KL[D]
τΛ

)
ϵ
‍
. The lines of ‍∆Λ/Λ = −ϵ‍ (blue) and ‍−

⟨h̃(D)⟩cl
τΛ ϵ‍ (green) are shown for reference. The 

generation time distributions used in the simulation are ‍g1(x)‍ for C, ‍g2(x)‍ for D, and ‍g3(x)‍ for E.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Response of population growth rate to cell removal perturbation with positive mother-daughter correlations of generation time.

calculation for a cellular population in which cells divide with gamma-distributed uncorrelated inter-
division times in Appendix 2 to understand the effect of inherent stochasticity on population growth. 
This analysis yields two conclusions: (1) Unlike the central limit theorem, the contribution of higher-
order cumulants to population growth remains even in the long-term limit, and (2) the shape of the 
generation time distribution influences the cell population’s long-term growth rate by constantly intro-
ducing selection within the population. Therefore, the details of inherent stochasticity of interdivision 
times are essential for the long-term population growth rate.

Experimental evaluation of contributions of growth heterogeneity to 
population growth
Next, we apply this framework of cell lineage statistics to experimental single-cell lineage data of 
various organisms. The list includes bacterial cells (Escherichia coli and Mycobacterium smegmatis), 
unicellular eukaryotic cells (Schizosaccharomyces pombe), and mammalian cancer cells (L1210 mouse 
leukemia cells). This analysis aims to unravel whether the extent of growth rate gain from growth 

https://doi.org/10.7554/eLife.72299
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Table 2. Summary of cellular species, culture conditions, and observation setup used in the experiments in Figure 5.

Species Label Strain Medium Temperature (°C) Device

E. coli
rpoS-mcherry 
glucose_30°C

MG1655 F3 
rpoS-mcherry /
pUA66-PrpsL-
gfp

M9 minimal medium +0.2%(w/v) 
glucose +1/2 MEM amino acids solution 
(Sigma) 30

Microchamber 
array This study

E. coli
rpoS-mcherry 
glucose_37°C

MG1655 F3 
rpoS-mcherry /
pUA66-PrpsL-
gfp

M9 minimal medium +0.2%(w/v) 
glucose +1/2 MEM amino acids solution 
(Sigma) 37

Microchamber 
array This study

E. coli
rpoS-mcherry 
glycerol_37°C

MG1655 F3 
rpoS-mcherry /
pUA66-PrpsL-
gfp

M9 minimal medium +0.1%(v/v) 
glycerol +1/2 MEM amino acids solution 
(Sigma) 37

Microchamber 
array This study

E. coli f3nw -sm F3NW

M9 minimal medium +0.2%(w/v) 
glucose +1/2 MEM amino acids solution 
(Sigma)+0.1mM Isopropyl β-D-1 
thiogalactopyranoside (IPTG) 37 Agar pad Nozoe et al., 2017

E. coli f3nw +sm F3NW

M9 minimal medium +0.2%(w/v) 
glucose +1/2 MEM amino acids solution 
(Sigma)+0.1 mM Isopropylβ-D-1 
thiogalactopyranoside (IPTG)+100
μg/ml streptomycin 37 Agar pad Nozoe et al., 2017

E. coli f3ptn001 -sm F3/pTN001

M9 minimal medium +0.2%(w/v) 
glucose +1/2 MEM amino acids solution 
(Sigma)+0.1 mM Isopropylβ-D-1 
thiogalactopyranoside (IPTG) 37 Agar pad Nozoe et al., 2017

E. coli f3ptn001+sm F3/pTN001

M9 minimal medium +0.2%(w/v) 
glucose +1/2 MEM amino acids solution 
(Sigma)+0.1 mM Isopropylβ-D-1 
thiogalactopyranoside (IPTG)+200
μg/ml streptomycin 37 Agar pad Nozoe et al., 2017

M. 
smegmatis mc2155 7H9 mc2155

Middlebrook 7H9 
medium +0.5% albumin +0.2% 
glucose +0.085% NaCl+0.5% 
glycerol +0.05% Tween-80 37

Membrane 
cover

Wakamoto et al., 
2013

S. pombe EMM28 HN0025
Edinburgh minimal medium +2% (w/v) 
glucose 28

Mother 
machine

Nakaoka and 
Wakamoto, 2017

S. pombe EMM30 HN0025
Edinburgh minimal medium +2%(w/v) 
glucose 30

Mother 
machine

Nakaoka and 
Wakamoto, 2017

S. pombe EMM32 HN0025
Edinburgh minimal medium +2%(w/v) 
glucose 32

Mother 
machine

Nakaoka and 
Wakamoto, 2017

S. pombe EMM34 HN0025
Edinburgh minimal medium +2%(w/v) 
glucose 34

Mother 
machine

Nakaoka and 
Wakamoto, 2017

S. pombe YE28 HN0025 Yeast extract medium +3%(w/v) glucose 28
Mother 
machine

Nakaoka and 
Wakamoto, 2017

S. pombe YE30 HN0025 Yeast extract medium +3%(w/v) glucose 30
Mother 
machine

Nakaoka and 
Wakamoto, 2017

S. pombe YE34 HN0025 Yeast extract medium +3%(w/v) glucose 34
Mother 
machine

Nakaoka and 
Wakamoto, 2017

L1210 
mouse 
leukemia 
cell

L1210 
RPMI-1640

L1210 (ATCC 
CCL-219)

RPMI-1640 medium (Wako)+10% fetal 
bovine serum (Biosera) under 5% CO2 
atmosphere 37

Mother 
machine Seita et al., 2021

https://doi.org/10.7554/eLife.72299
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Table 3. Summary of the data used in the analysis in Figure 5.
tstart and tend are the start and end times for the analysis time window ‍τ ‍.

Species label ‍τ ‍(hr) ‍tstart‍(hr) ‍tend‍(hr) ‍N0‍ ‍Nτ ‍

E. coli rpoS-mcherry glucose_37°C 5 0.95 5.95 163 3989

E. coli rpoS-mcherry glucose_30°C 8 0.95 8.95 197 6173

E. coli rpoS-mcherry glycerol_37°C 6.5 0.95 7.45 253 5825

E. coli f3nw-sm 5 0 5 305 4343

E. coli f3nw +sm 5 0 5 291 3164

E. coli f3ptn001-sm 5 0 5 984 9229

E. coli f3ptn001+sm 5 0 5 977 7429

M. smegmatis mc2155 7H9 10 1.75 11.75 39 311

S. pombe EMM28 167 0 167 1148 -

S. pombe EMM30 131 0 131 963 -

S. pombe EMM32 123.5 0 123.5 883 -

S. pombe EMM34 152 0 152 1078 -

S. pombe YE28 108 0 108 1177 -

S. pombe YE30 90 0 90 866 -

S. pombe YE34 78 0 78 863 -

L1210 mouse leukemia cell L1210 RPMI-1640 60 0 60 474 -

heterogeneity depends on the organisms and environments under constant growth conditions. As 
summarized in Tables 2 and 3, we used cellular lineage data newly obtained in this study as well 
as other existing datasets (Nozoe et al., 2017; Wakamoto et al., 2013; Nakaoka and Wakamoto, 
2017; Seita et al., 2021). The E. coli and S. pombe data include several culture conditions to compare 
cumulants’ contributions to population growth across environments. The E. coli data were obtained 
using either agarose pad or the microchamber array microfluidic device, yielding genealogical tree 
information such as the one shown in Figure 1. The S. pombe and L1210 cell data were obtained with 
mother machine microfluidic devices (Wang et al., 2010), which provide isolated cell lineage informa-
tion but discard tree information due to its cell exclusion scheme. We assumed that these isolated cell 
lineages would follow chronological statistics and evaluated chronological distributions and selection 
strength according to the method described in Materials and methods. All the data analyzed in this 
section were taken from cell populations growing at approximately constant rates.

First, we evaluated the first-order cumulants’ contributions ‍W
(D)
1 = κ(D)

1
τΛ = ⟨h̃(D)⟩cl

τΛ ‍ (Equation 14), 
finding that ‍W

(D)
1 < 1‍ for all the samples and conditions (Figure  5A). This result confirms that the 

chronological mean fitness cannot fully account for the population growth rates. This means that the 
division count heterogeneity present even in constant environments contributes to increasing the 
population growth rate. However, the extent of the contributions was different: ‍W

(D)
1 ‍ for S. pombe 

was consistently closer to 1 than those for the other cell types except one condition (EMM, 34 °C), 
suggesting that S. pombe’s growth is less heterogeneous under most culture conditions.

We next evaluated ‍W
(D)
2 = κ(D)

1 +κ(D)
2 /2

τΛ ‍, finding that ‍W
(D)
2 ≈ 1‍ for most of the conditions (Figure 5A). 

This result indicates small contributions of the third or higher-order cumulants to population growth. 
Consistent with this result, ‍S

(1)
KL[D]‍ and ‍S

(2)
KL[D]‍ were almost identical in most conditions (Figure 5B). 

Note that ‍S
(2)
KL[D] − S(1)

KL[D]‍ depends only on the third or higher order cumulants (Equation 15). The 
chronological distributions ‍Qcl(D)‍ of these samples were nearly symmetric in most cases; however, 
under the conditions where the deviations of ‍W

(D)
2 ‍ from 1 are larger, such as S. pombe in EMM medium 

and L1210, the distributions were skewed slightly (Figure 5C–E and Figure 5—figure supplement 
1). Such distribution skew was reflected in the convexity directions of ‍K

′
D(ξ)‍-plots (Figure 5F–H and 

Figure 5—figure supplement 2). These results imply that cellular populations of S. pombe in EMM 

https://doi.org/10.7554/eLife.72299
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Figure 5. Application of cell lineage statistics to experimental data. (A) Contributions of the cumulants of a fitness landscape to population growth. 

‍W
(D)
1 ‍ and ‍W

(D)
2 ‍ were evaluated for the experimental cell lineage data from E. coli (red), M. smegmatis (blue), S. pombe (green), and L1210 mouse 

leukemia cells (yellow). The E. coli rpoS-mcherry data were newly obtained in this study (see Materials and methods). The other data were taken from 

literature: E. coli f3nw and f3ptn001 from Nozoe et al., 2017; M. smegmatis from Wakamoto et al., 2013; S. pombe from Nakaoka and Wakamoto, 
2017; and L1210 from Seita et al., 2021. Circles and triangles represent ‍W

(D)
1 ‍ and ‍W

(D)
2 ‍, respectively. Error bars represent the two standard deviation 

ranges estimated by resampling the cellular lineages (see Materials and methods). (B) Relationship between ‍S
(1)
KL[D]/τΛ‍ and ‍S

(2)
KL[D]/τΛ‍. Colors 

correspond to the cellular species as in A. The S. pombe data were further categorized into two groups: Circles for the EMM conditions; and triangles 
for the YE conditions. (C-E) Representative chronological distributions of division count, ‍Qcl(D)‍. (F-H) Graphical representation of ‍K

′
D(ξ)‍. F for S. pombe 

EMM30; G for L1210 RMPI-1640; and H for E. coli f3nw-sm.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Chronological distributions of division count, ‍Qcl(D)‍.
Figure supplement 2. Graphical representation of ‍K

′
D(ξ)‍.
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medium and of L1210 contain small subpopulations that follow distinct division statistics. In fact, it 
was previously demonstrated that the L1210 cell populations contain slow-cycling cell lineages that 
can survive for longer durations under exposure to an anticancer drug (Seita et al., 2021). Therefore, 
this analysis confirms that the differences in the two strength measures can be used for detecting 
subpopulations in cellular populations.

In S. pombe EMM medium conditions, ‍K
′
D(ξ)‍ was convex downward in the interval ‍0 ≤ ξ ≤ 1‍ except 

for EMM 34°C (Figure 5F and Figure 5—figure supplement 2). Therefore, under certain conditions 
selection can increase fitness variance in the retrospective distributions relative to chronological distri-
butions among cellular lineages.

The contributions of higher order cumulants become significant in the 
regrowth from a late stationary phase
We further applied the framework to the cell lineage data of E. coli populations regrowing from 
an early or late stationary phase. This analysis aims to uncover how strongly selection occurs upon 
environmental changes and whether the selection strength can differ under identical conditions 
depending on the conditions before regrowth. To conduct time-lapse observations of regrowing cell 
populations, we used a microfluidic device equipped with microchambers etched on a glass coverslip. 
We sampled E. coli cells either from an early or late stationary phase batch culture and enclosed the 
cells into the microchambers by a semipermeable membrane (Inoue et al., 2001; Hashimoto et al., 
2016). We switched flowing media from stationary-phase conditioned medium to fresh medium at the 
start of time-lapse measurements and recorded the growth and division of individual cells (Figure 6A, 
see Materials and Methods).

The growth curves reconstructed by counting the number of cells at each time point showed lags 
in regrowth (Figure 6B). The lag time was shorter for the populations from the early stationary phase. 
The lineage tree structures in the cell populations were markedly different between the conditions 
(Figure  6C and D). The tree structures were more uniform for the early stationary phase sample 
with multiple divisions in most cell lineages (Figure 6C), whereas those for the late stationary phase 
sample were more heterogeneous, with 90% of cells showing no divisions within the observation time 
(Figure 6D).

We analyzed these data and found ‍W
(D)
1 = 0.95 ± 0.02‍ for the population from the early stationary 

phase and ‍W
(D)
1 = 0.27 ± 0.04‍ for the population from the late stationary phase (Figure 6E). There-

fore, the chronological mean fitness, ‍⟨h̃(D)⟩cl‍, explains only 27% of the growth rate of the population 
regrowing from the late stationary phase. In other words, significantly strong selection occurred in the 
regrowth from the late stationary phase. We also found that ‍W

(D)
2 ≈ 1‍ for the population from the early 

stationary phase, as observed for the E. coli populations growing at constant rates. In constrast, ‍W
(D)
2 ‍ 

for the population from the late stationary phase was ‍0.61 ± 0.04‍, and ‍W
(D)
n ‍ converged to 1 only after 

taking the cumulants up to approximately 10th-order into account (Figure 6E). This indicates a skew 
of the fitness distribution and validates the existence of subpopulations following distinct division 
statistics in the population from the late stationary phase in this time scale of regrowth (Figure 6F). 
Reflecting the extreme skew to the right of the chronological distributions ‍Qcl(D)‍ (Figure 6F), ‍S

(2)
KL[D]‍ 

was significantly greater than ‍S
(1)
KL[D]‍ for the late stationary phase sample (Figure 6G).

These results indicate that the levels of selection in the regrowing processes strongly depend on 
the durations under stationary phase conditions. Therefore, the ability to quickly resume growth under 
favorable conditions is gradually lost in most cells in the stationary phase; only a fraction of cells in the 
population can contribute to the future cell population. However, we also remark that preserving such 
non-growing cell lineages can be beneficial when cell populations are exposed to harsh environments 
in unpredictable manners (Kussell and Leibler, 2005).

Lineage statistics reveal condition-dependent fitness landscapes and 
selection strength for a growth-regulating sigma factor
RpoS is a sigma factor that controls the transcription of a large set of genes (10% of the genome) in 
E. coli (Battesti et al., 2011). High RpoS expression usually correlates with growth suppression; RpoS 
is induced when cells enter stationary phases or encounter stress conditions, such as starvation, low 
pH, oxidative stress, high temperature, or osmotic stress. Elevated RpoS expression provokes the 
intracellular programs to shut down growth and resist the stress (Battesti et al., 2011). However, it 

https://doi.org/10.7554/eLife.72299
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Figure 6. Strong selection in the E.coli population regrowing from a late stationary phase. (A) Time-lapse images. Cellular regrowing dynamics from 
early and late stationary phases were observed by time-lapse microscopy. Cells were enclosed in the microchambers etched on coverslips. The top three 
images show representative images of the cells from an early stationary phase. The bottom three images show the cells from a late stationary phase. 
Scale bar, 5 μm. (B) Population dynamics. The number of cells at each time point normalized by the initial cell number (‍N(t)/N(0)‍) was plotted against 
time ‍t ‍ was 307 for the early stationary sample and 295 for the late stationary sample. (C, D) Representative cellular lineage trees in the regrowing kineics 
from the early stationary phase (C) and the late stationary phase (D). The trees correspond to the time-lapse images in A. (E) Cumulative contributions 
of the cumulants of the fitness landscape ‍h(D)‍ to population growth. Error bars represent the two standard deviation ranges estimated by resampling 

Figure 6 continued on next page
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the cellular lineages (see Materials and methods). (F) Chronological distributions of division count ‍Qcl(D)‍. (G) Relationships between ‍S
(1)
KL[D]‍ and 

‍S
(2)
KL[D]‍. The blue and black points show the results for the early stationary phase sample and the late stationary phase sample, respectively. Gray points 

represent the results for the cell populations growing at approximately constant growth rates shown in Figure 5B.

Figure 6 continued

remains poorly understood how the continuum heterogeneity of RpoS expression levels is linked to 
the lineage fitness and selection in exponentially growing cellular populations. We therefore applied 
the lineage statistics framework to the single-cell time-lapse data of an E. coli strain expressing an 
RpoS-mCherry fusion protein from the native chromosomal locus and green fluorescent protein (GFP) 
from a low copy plasmid.

We quantified the time-scaled fitness landscapes ‍h(X)/τ ‍ and relative selection strength ‍Srel[X]‍ 
(Equation 5) under three growth conditions, taking the time-averaged mean fluorescent intensity of 
RpoS-mCherry or GFP along each cell lineage (proxies of time-averaged intracellular concentrations) 
as ‍X ‍ (Figure 7). Since fluorescent intensity is a trait that takes continuous values, we binned the inten-
sity values with the bin sizes around which selection strength values are relatively stable (Materials and 
methods). Furthermore, since the calculation of relative selection strength from empirical data always 
gives positive values, we compared the relative selection strength values with those calculated from 
the data in which the correspondences between division counts and trait values were randomized to 
confirm the confidence levels (Figure 7—figure supplement 1).

The result shows that the fitness landscapes and selection strength of RpoS expression level differ 
significantly among the growth conditions (Figure 7). Under the glucose-37°C condition, the fitness 
landscapes of RpoS-mCherry and GFP expression were both decreasing functions (Figure 7A and 
B). Thus, high expression of RpoS-expression and GFP in an exponentially growing population are 
both linked with lower lineage fitness. However, while the fitness landscape of GFP expression were 
nearly constant and showed significant decrease of fitness only at high expression levels, the fitness 
landscape of RpoS-mCherry decreased steadily in the observed expression range (Figure 7A and B). 
Consequently, the relative selection strength for RpoS-mCherry was 2.6-fold larger than that for GFP 
(Figure 7C).

Under the glucose-30°C and glycerol-37°C conditions, the fitness landscapes for RpoS-mCherry 
level were also decreasing functions and close to each other but significantly downshifted from that 
for the glucose-37°C condition (Figure 7A). This result reveals that cells could have different fitness 
for the same expression levels of RpoS, depending on the growth conditions. The selection strength 
for RpoS-mCherry was larger than that for GFP under the glucose-37°C and glucose-30°C condi-
tions (Figure 7C), which proves that the heterogeneity of RpoS expression in a population correlates 
with the lineage fitness more strongly than that of GFP under those conditions. On the other hand, 
the relative selection strength of RpoS-mCherry under the glycerol-37°C condition was the smallest 
among the three conditions and not significantly different from that of GFP (Figure 7C). This is due 
to the relatively flat fitness landscapes in the central ranges of the distributions ‍Qcl(x)‍ (Figure 7A and 
B) and the smaller variations of ‍x‍ in the population (Figure 7D and E). These results reveal that the 
continuum heterogeneity of RpoS expression level in a population does correlate with the lineage 
fitness, but its contribution to selection depends on growth conditions. In other words, the hetero-
geneity in the RpoS-mCherry expression levels can barely correlate with fitness heterogeneity under 
some conditions.

We also evaluated the contributions of fitness cumulants for RpoS-mCherry expression to the 
population growth rate. Under all the conditions, ‍W

(X)
1 ‍ was lower than 1 (Figure 7F–H). Therefore, 

the contributions of the higher-order fitness cumulants are non-negligible. However, the deviation 
of ‍W

(X)
1 ‍ from 1 for RpoS-mCherry under the glycerol-37°C condition was small (Figure 7H). Hence, in 

this growth condition, RpoS-mCherry expression barely correlated with fitness heterogeneity in the 
population.

Importantly, this analysis can simultaneously reveal the changes in fitness landscapes (Figure 7A) 
and chronological distributions (Figure  7D). Interestingly, the distributions of the RpoS-mCherry 
expression levels are close between the Glucose-37°C and the Glycerol-37°C conditions, but the 
fitness landscapes are close between the Glucose-30°C and the Glycerol-37°C conditions. These 
results imply that the distributions and the fitness landscapes may vary independently in different 

https://doi.org/10.7554/eLife.72299
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Figure 7. Fitness landscapes and selection strength for RpoS expression levels. (A) Fitness landscapes for the time-averaged concentration (mean 
fluorescent intensity) for RpoS-mCherry. The time-averaged mean fluorescent intensity of RpoS-mCherry was adoped as a lineage trait ‍X ‍ and changes 
in fitness were plotted against the trait values ‍x‍. Fitness landscapes were scaled by the lineage length (observation duration) ‍τ ‍. Error bars represent 
the two standard deviation ranges estimated by resampling the cellular lineages. (B) Fitness landscapes for the time-averaged concentration for GFP. 
The time-averaged mean fluorescent intensity of GFP was adoped as a lineage trait ‍X ‍ and changes in fitness were plotted against the trait values ‍x‍. (C) 
Relative selection strength for the time-averaged concentrations of RpoS-mCherry (red) and GFP (green). (D, E) Chronological distributions ‍Qcl(x)‍ for 

the time-averaged concentrations of RpoS-mCherry (D) and GFP (E). (F-H) Cumulative contributions of fitness cumulants to population growth, ‍W
(X)
n ‍, 

assuming that ‍X ‍ is either time-averaged concentration of RpoS-mCherry (red) or time-averaged concentration of GFP (green). Error bars represent the 
two standard deviation ranges estimated by resampling the cellular lineages. Panel F is for the Glucose-37°C condition; Panel G for the Glucose-30°C 
condition; and Panel H for the Glycerol-37°C condition.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. The relative selection strength values for time-averaged RpoS-mCherry and GFP fluorescence intensity compared with the 
randomized data.

conditions. Therefore, cells can potentially modulate the selection strength in each environment either 
by changing the fitness landscape or by changing the distribution of expression levels.

Discussion
Growth and division of individual cells are intrinsically variable, which causes division count hetero-
geneity among cellular lineages in a population. Such heterogeneity is ubiquitous across prokaryotic 

https://doi.org/10.7554/eLife.72299
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and eukaryotic cells, and its statistical properties could depend on the mechanisms and regulations 
determining cell division timings. Notably, division count heterogeneity influences population growth 
rate and, consequently, a population’s survival and evolutionary success. Therefore, understanding 
what statistical features are produced among cellular lineages and how these features contribute to 
population growth is essential for unraveling each organism’s survival and evolutionary strategy.

This report presents a cell lineage statistics framework to uncover the linkage between fitness 
distributions and population growth rate. We reveal that a population’s growth rate can be expanded 
by the cumulants of a fitness landscape for any lineage trait. The cumulant expansion allows us to 
quantify the contribution of each fitness cumulant, such as variance and skewness, to population 
growth rate. Applying this framework to the experimental cell lineage data revealed the cumulants’ 
contributions to population growth for various organisms and environmental conditions. In particular, 
higher-order cumulants became significant in the regrowth of E. coli from a late stationary phase. We 
remark that the cumulant expansion of population growth rate is valid only when all the cumulants 
are finite and when the Taylor expansion of ‍KX(ξ)‍ around ‍ξ = 0‍ also converges at ‍ξ = 1‍. However, all 
the experimental data examined in this study exhibited stable convergence, including in the regrowth 
condition from the late stationary phase.

An advantage of this framework is its independence from any growth and division models. The 
mechanisms driving the growth and division of individual cells are diverse among organisms. For 
example, the properties of cellular growth and division, such as whether a cell’s size increases expo-
nentially or linearly and whether cell size regulation follows sizer or adder models, could depend on cell 
types, organisms, and environmental conditions (Jun et al., 2018; Kohram et al., 2021). Therefore, 
any model assumptions restrict applicability and necessitate model validation before application. The 
model independence of the framework presented here comes from the definitions of two essential 
quantities: the chronological and retrospective probabilities. Quantifying these probabilities requires 
only the information of the numbers of cells at initial and end time points and of division counts on 
each cellular lineage. Consequently, this formalism can be applied even to non-stationary conditions 
without modifications. However, we also remark that this independence from the details other than 
cell lineage structures imposes a limitation on the framework because it cannot report any potential 
influences from factors such as heterogeneous environments around cells and non-quantified traits. 
Furthermore, the fitness landscape ‍h(x)‍ and the relative selection strength ‍Srel[X]‍ evaluate only the 
correlations between the trait and fitness, not causal relationships. However, causal traits should have 
large selection strength values, and this framework helps narrow down the candidates for essential 
traits. Most importantly, division statistics is the focal information that connects molecular details 
underlying cellular growth and division to population growth. Regulatory mechanisms can influence 
population growth only by modulating the division statistics in a cellular population.

Growth heterogeneity in a cellular population plays a critical role in its adaptation and survival against 
stressful conditions. In antibiotic persistence, bacterial cell populations often harbor small populations 
of non-growing or slow-growing cells which can survive under antibiotic exposures (Balaban et al., 
2004). Such structures of growth heterogeneity can be investigated in a unified manner by the selec-
tion strength measures introduced here. For example, the differences in ‍S

(1)
KL[D]/τΛ‍ among organisms 

can reveal the distinct levels of the overall growth heterogeneity of these organisms. Furthermore, 
the differences between ‍S

(1)
KL[D]‍ and ‍S

(2)
KL[D]‍ characterize the structure of growth heterogeneity: If 

‍S
(1)
KL[D] > S(2)

KL[D]‍, the distribution of lineage fitness is skewed negatively, and the cell population 
harbors small subpopulations of slow-growing cell lineages; on the contrary, if ‍S

(1)
KL[D] < S(2)

KL[D]‍, the 
population harbors small populations of fast-growing cell lineages. Untangling the linkage between 
the structures of growth heterogeneity and their adaptability would help us understand the adaptive 
strategies of various organisms.

In general, heredity is also crucial for the growth and evolution of a population. The role of the 
heredity of a particular trait might be unravelled by taking the correlation length as a lineage trait 
‍X ‍ and quantifying its selection strength. Since the modes of heredity can also be important targets 
of natural selection (Rivoire and Leibler, 2014), such measurements might provide insights into the 
evolution of heredity.

We remark that the distribution of interdivision time (generation time) influences the long-term 
growth rate, as demonstrated by the analytical model in Appendix 2. Therefore, statistical properties 
of generation time, such as distribution shapes and transgenerational correlations, can contribute to 

https://doi.org/10.7554/eLife.72299


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Yamauchi et al. eLife 2022;11:e72299. DOI: https://doi.org/10.7554/eLife.72299 � 21 of 40

organisms’ evolutionary success by constantly introducing selection within a population. Unlike the 
central limit theorem, the contributions of higher-order cumulants can remain even in the long-term 
limit. Importantly, even when cell division processes seem purely stochastic, different states in some 
traits might underlie these variations in generation times. In such cases, ‍h(x)‍ and ‍Srel[X]‍ for these traits 
can still unravel the correlations between the trait values and fitness.

This framework is applicable even to cell populations growing under non-constant environmental 
conditions. We indeed utilized this framework to analyze the regrowth of growth-arrested cells from 
the stationary phase conditions. The selection strength contributions to population growth, ‍S

(1)
KL[D]/τΛ‍, 

were below 10% in most cases under constant growth conditions. Nevertheless, it became over 70% 
in the regrowth of E. coli from the late stationary phase. While increased selection in non-constant 
environments may not be surprising itself, it is intriguing to ask how its contribution changes quantita-
tively depending on the conditions of environmental changes, such as nutrient upshift and downshift. 
The selection strength contribution in the regrowth from the early stationary phase was only 5%. This 
result clearly shows that how strongly selection acts in regrowing processes depends on stationary 
phase incubation durations. However, we also remark that the differences in the selection strength 
values depend on the time window and might be valid only in this time scale. Clarifying the differences 
in the selection strength in longer time scales requires the detail of their lag time distributions, which 
we did not measure in this study.

We identified the cellular populations in which selection acts to increase fitness variance in the 
retrospective statistics compared with the chronological statistics (Figures 5F and 6G and Figure 5—
figure supplement 2). When a decrease in fitness variance by selection is mentioned in evolutionary 
biology, an upper bound and inheritance of fitness across the generations of individuals are usually 
assumed. In such circumstances, selection drives the fitness distribution toward the maximum value, 
and the selection eventually causes fitness variance to decrease. However, even in this process, 
a decrease is not assured for every step; whether selection reduces fitness variance at each step 
depends on the fitness distribution at that time. Likewise, whether the fitness variance increases or 
decreases in the retrospective distribution depends on the shape of the fitness distribution before 
selection, that is, chronological distribution. Such conditions are graphically recognized by the down-
ward convexity of ‍K

′
D(ξ)‍ (Figure 3). When the fourth or higher order fitness cumulants are negligible, 

the convexity of ‍K
′
D(ξ)‍ is determined primarily by the skewness of ‍Qcl(d)‍; positive skew of ‍Qcl(d)‍ with 

a long right tail makes ‍K
′
D(ξ)‍ convex downward and ‍Var[h̃(D)]rs‍ greater than ‍Var[h̃(D)]cl‍. This conse-

quence is intuitively understandable since the right tail of ‍Qcl(d)‍ is accentuated in proportion to ‍eD‍ by 
selection, which leads to greater variance of ‍Qrs(d)‍. On the other hand, when the skew is negative with 
the long left tail, the effect of applying ‍eD‍ is to diminish the tail and compress the distribution toward 
the fittest lineages. It is of note that greater fitness variance in the retrospective statistics is possible 
even in the long-term limit, as demonstrated by the model in Appendix 2.

We showed that division count heterogeneity among cellular lineages has dual facets: increasing 
population growth rate while sensitizing populations to perturbations. These two effects are quan-
titatively represented by ‍S

(1)
KL[D]/τΛ‍ and ‍S

(2)
KL[D]/τΛ‍, respectively. Therefore, the difference between 

these selection strength measures gauges which aspect of growth heterogeneity is more significant 
in the population. Even though ‍S

(1)
KL[X]‍ and ‍S

(2)
KL[X]‍ are different in general, the analysis revealed that 

they were nearly identical in most of the cellular populations growing at constant rates (Figure 5). 
This result might suggest that, from a practical viewpoint, the contribution of higher-order cumulants 
becomes negligible under steady growth conditions, and the significant difference between ‍S

(1)
KL[X]‍ 

and ‍S
(2)
KL[X]‍ could be used as a probe for the non-stationarity of the population growth. This specula-

tion must be examined experimentally using various organisms and cell types across diverse environ-
mental conditions.

This framework is premised on complete lineage tree information. However, many methods of 
single-cell measurements continuously exclude cells from observation areas and provide only a part 
of the tree information. Therefore, extending this framework so that one can infer both chronolog-
ical and retrospective probabilities from incomplete tree information is an essential future research 
direction. In this study, we calculated the fitness landscapes and selection strength measures for the 
cell lineage data obtained with the mother machine devices, assuming that these cell lineages would 
follow the chronological statistics. Such a simple approach is not yet available for larger scale lineage 
tree data obtainable with the other single-cell measurement devices such as dynamics cytometer 
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Key resources table 

Reagent type (species) or 
resource Designation

Source or 
reference Identifiers Additional information

Recombinant DNA reagent
pUA66-PrpsL-gfp 
(plasmid)

Zaslaver et al., 
2006

Strain, strain background 
(Escherichia coli) MG1655 F3 Wakamoto lab MG1655ΔfliCΔfimAΔflu

Strain, strain background 
(Escherichia coli)

MG1655 F3 rpoS-
mcherry /pUA66-P rplS-
gfp Wakamoto lab

MG1655ΔfliCΔfimAΔflu rpoS-mcherry /pUA66-
PrplS-gfp

Microfabrication of microchamber array
We constructed and used a microchamber array for conducting single-cell time-lapse observation 
under controlled environmental conditions. A microchamber is a well etched on a glass coverslip. We 
used two types of microchamber array. One is an array of microchamber, whose dimension is 70 μm 
(w) × 55 μm (h) × 1 μm (d). This microchamber has a 21-μm×7-μm pillar for supporting the membrane 
in the middle. We used this microchamber array for the exponential-phase experiment of E. coli. 
Another is an array of microchamber, whose dimension is 40 μm (w) × 30 μm (h) × 1 μm (d). We used 
this type of microchamber array for the stationary-phase-regrowth experiment in Figure 6. We fabri-
cated these microchamber arrays following similar procedures described in Hashimoto et al., 2016; 
Inoue et al., 2001.

The photomasks for the microchamber array were created by laser drawing (DDB-201-TW, Neoark) 
on mask blanks (CBL4006Du-AZP, CLEAN SURFACE TECHNOLOGY). The photoresist on mask blanks 
was developed in NMD-3 (Tokyo Ohka Kogyo). The uncovered chromium (Cr)-layer was removed in 
MPM-E30 (DNP Fine Chemicals), and the remaining photoresist was removed by acetone. Lastly, the 
slide was rinsed in MilliQ water and air-dried.

The microchamber array was created in glass coverslips by chemical etching. First, we coated a 
1,000-angstrom Cr-layer on a clean coverslip (NEO Micro glass, No. 1., 24 mm × 60 mm, Matsunami) 
by evaporative deposition and AZP1350 (AZ Electronic Materials) by spin-coating on the Cr-layer. 
We transferred the photomask patterns using a mask aligner (MA-20, Mikasa). After developing the 
photoresist in NMD-3 and the Cr-layer in MPM-E30, the coverslip was soaked in buffered hydrofluoric 
acid solution (110-BHF, Morita Kagaku Kogyo) for 14 minutes 20 seconds at 23°C for glass etching. 
The etching reaction was stopped by soaking the coverslip in milliQ water. The remaining photoresist 
and the Cr-layer were removed by acetone and MPM-E30, respectively.

(Hashimoto et al., 2016) and chemoflux (Lambert et al., 2014). Furthermore, it has been shown that 
the inference precision of population growth rate has non-monotonic dependence on the length of 
cell lineages obtained with mother machine devices (Levien et al., 2020). Even though the difficul-
ties to overcome are present, a comprehensive framework may permit a unified treatment of cellular 
lineage data obtained using various single-cell measurement methods.

Phenotypic heterogeneity is widely observed in diverse cellular systems, including both prokaryotic 
and eukaryotic cells. It is often considered that phenotypic heterogeneity allows bet-hedging against 
unpredictable environments and promotes the survival of cellular population (Kussell and Leibler, 
2005). However, quantitative evaluation of correlations between the traits of interest and fitness is 
usually an intricate problem. The cell lineage statistical framework described in this study offers a 
straightforward procedure applicable to any cellular genealogical data, which are now becoming 
increasingly available for various biological phenomena, including cancer metastasis (Quinn et al., 
2021) and stem cell differentiation (Filipczyk et al., 2015; Frieda et al., 2017; Chow et al., 2021). 
Another important advantage of this framework is that it allows decomposing a population growth 
rate into chronological fitness and selection strength. It is thus intriguing to apply this framework to 
long-term evolutionary dynamics and quantify how the contributions of chronological mean fitness 
and selection underlie the transitions of population growth rate. Such analysis might clarify the crucial 
roles of phenotypic heterogeneity in facilitating evolution.

Materials and methods

https://doi.org/10.7554/eLife.72299
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Fabrication of PDMS pad
We used a polydimethylsiloxane (PDMS) pad to flow culture medium and control the environmental 
conditions around the cells in the microchamber array. The PDMS pad was designed to have a square 
bubble-trap groove, which prevents interference with bright-field microscopic imaging by air bubbles 
in flowing media.

To create a mold for the bubble-trap groove, we spin-coated SU-8 3050 (Kayaku Advanced Mate-
rials) on a silicon wafer (ID 447, ‍ϕ‍ = 76.2 mm, University Wafer) and baked it at 95°C for 2 hr on a hot 
plate. The SU-8 layer was exposed to UV light on a mask aligner using a photomask and postbaked 
at 95°C for 2 hr. After cooled down to room temperature, the SU-8 photoresist was developed in the 
SU-8 developer (Kayaku Advanced Materials) and rinsed with isopropanol (Wako).

Part A and Part B of PDMS resin (SYLGARD 184 Silicone Elastomer Kit, DOW SILICONES) were 
mixed at 10:1 and poured onto the SU-8 mold. The air bubbles were removed under a decreased 
pressure for 30 min. The PDMS was cured at 65°C for 1 hour, and 20 mm × 20 mm square PDMS pad 
was cut out using a blade. We punched out two holes (‍ϕ‍ = 2 mm) in the PDMS pad for the inlet and 
outlet, and 10-cm silicone tubes (SR-1554, Tigers Polymer Corp., outer ‍ϕ‍ = 2 mm, inner ‍ϕ‍ = 1 mm) 
were inserted into the holes. The tubes were fixed to the holes by gluing a small amount of PDMS 
around the tubes at the holes. This PDMS pad was washed in isopropanol by sonication and auto-
claved for the single-cell measurements.

Chemical decoration of coverslip and cellulose membrane
We washed the microfabricated coverslips by sonication in contaminon (Wako), ethanol (Wako), and 
0.1 M NaOH solution (Wako). The washed coverslips were rinsed in milliQ water by sonication and 
dried at 140°C for 30 min. The washed coverslip was soaked in 1% (v/v) 3-(2-aminoethylaminopropyl)
trimethoxysilane solution (Shinetsu Kagaku Kogyo) for 30 min and incubated at 140°C for 30 min to 
create an amino group on the glass surface. The treated coverslip was washed in milliQ water for 15 
min and dried at 140°C for 30 min. 1 mg NHS-LC-LC-Biotin (Funakoshi) was dissolved in 25 μl dimethyl 
sulfoxide and dispersed in 1 ml phosphate buffer (0.1 mM, pH8.0). A total of 200 μl of this biotin solu-
tion was placed on the coverslip and incubated at room temperature for 4 hr. The biotin solution was 
removed by soaking the coverslip in milliQ water.

We prepared a streptavidin-decorated cellulose membrane to enclose cells in the microchamber 
array while retaining a flexible environmental control. First, a 3 cm × 3 cm square cellulose membrane 
(Spectra/Por7 Pre-treated RC Tubing MWCO:25kD) was cut out and washed in milliQ water for 10 
min. The membrane was incubated in a 0.1 M NaIO4 solution with gentle shaking for 4 hr at 25°C. 
After the wash in milliQ water, the treated membrane was incubated in a 500-μl solution of strepta-
vidin hydrazide (Funakoshi) (10 μg/ml, dissolved in 0.1 mM phosphate buffer (pH7.0)) with gentle 
shaking for 14 hr at 25°C. The membrane was again washed in milliQ water and stored at 4°C.

E. coli strains
We used two E. coli strains: MG1655 and MG1655 F3 rpoS-mcherry (MG1655 ΔfliCΔfimAΔflu rpoS-
mcherry/pUA66-PrplS-gfp). MG1655 was used in the regrowth experiment from the stationary phases 
(Figure 6). MG1655 F3 rpoS-mcherry was used for analyzing the growth in constant environments 
(Figures 5 and 7). In MG1655 F3 rpoS-mcherry, the three genes, fliC, fimA, and flu, were deleted, and 
mcherry gene was inserted downstream of rpoS gene to express RpoS-mCherry translational fusion 
protein. This strain also expresses green fluorescent protein (GFP) from a low-copy plasmid, pUA66-
PrplS-gfp, taken from a comprehensive library of fluorescent transcriptional reporters (Zaslaver et al., 
2006).

Culture conditions and sample preparation (exponential growth)
We used MG1655 F3 rpoS-mcherry E. coli strain and cultured the cells in M9 minimal medium (Difco) 
supplemented with 1/2 MEM amino acids solution (SIGMA) and 0.2% (w/v) glucose or glycerol as a 
carbon source. We set the cultivation temperature either at 37°C or 30°C.

To prepare E. coli cells for single-cell observation, we first inoculated a glycerol stock into a 3-ml 
culture medium and incubated it with shaking overnight under the same conditions of culture medium 
and temperature as those used in the time-lapse measurement. 30 μl of the overnight culture was 
inoculated in a 3-ml fresh medium and incubated with shaking until the optical density at ‍λ‍ = 600 nm 

https://doi.org/10.7554/eLife.72299
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reaches 0.1-0.3. This exponential-phase culture was diluted to OD600 = 0.05, and 0.5 μl of the diluted 
cell suspension was spotted on the microchamber array on a biotin-decorated coverslip. A 5-mm × 
5-mm streptavidin-decorated cellulose membrane was placed gently on the cell suspension on the 
coverslip, and an excess cell suspension was removed by a clean filter paper. A small piece of agar 
pad made with the culture medium and 1.5% (w/v) agar was placed on the cellulose membrane to 
maintain the culture conditions around the cells until tight streptavidin-biotin bonding was formed 
between the coverslip and the membrane. After 5-min incubation, the agar pad was removed, and 
the PDMS pad for medium perfusion was attached on the coverslip via a square-frame two-sided seal 
(Frame-Seal Incubation Chambers, Bio-rad). We immediately filled the device with the fresh medium 
and connected it to a syringe pump on the microscope stage.

Culture conditions and sample preparation (regrowth from stationary 
phases)
We used E. coli MG1655 strain and cultured the cells in Luria-Bertani (LB) medium at 37°C. To prepare 
the cells for the time-lapse experiment, a glycerol stock of this strain was inoculated into a 2 ml 
LB medium and cultured with shaking for 15 hours. The cell culture was diluted in 50 ml fresh LB 
medium to OD600 = 0.005 and again cultured with shaking as a pre-culture. For preparing the early-
stationary-phase conditioned medium, 7 ml pre-culture cell suspension at 8 hr (OD600 ≈ 4.3) was spun 
down at 2600 G for 12 min. The supernatant was filtered through a 0.22-μm filter. For preparing 
cells for time-lapse observation, a 10-μl pre-culture cell suspension at 8 hr was mixed with 240 μl 
early-stationary-phase conditioned medium. One μl of this diluted cell suspension was placed on the 
microchamber array on a biotin-decorated glass coverslip. A 5-mm × 5-mm streptavidin-decorated 
cellulose membrane was placed gently on the cell suspension on the coverslip, and an excess cell 
suspension was removed by a clean filter paper. A small piece of a conditioned medium agar pad 
made with 1.5% (w/v) agar was placed on a cellulose membrane to maintain the early stationary 
phase condition during the incubation. After 5-min incubation, the conditioned medium agar pad was 
removed, and the PDMS pad for medium perfusion was attached on the coverslip via a square-frame 
two-sided seal. We immediately filled the device with the conditioned medium and connected it to a 
syringe pump. We maintained the chamber filled with the conditioned medium until we started the 
time-lapse observation. The conditioned medium was flushed away immediately before starting the 
time-lapse measurement by flowing fresh LB medium. After flowing 2 ml fresh LB medium at 32 ml/
hr, the flow rate was decreased and maintained at 2 ml/hr throughout the time-lapse measurement.

We followed the same procedures for the late stationary phase sample except that we sampled 
the cells and prepared the conditioned medium from a 24-hr pre-culture cell suspension (OD600 ≈ 3.0).

Time-lapse measurements and image analysis
We used Nikon Ti-E inverted microscope equipped with Plan Apo ‍λ‍ 100× phase contrast objec-
tive (NA1.45), ORCA-R2 cooled CCD camera (Hamamatsu Photonics), Thermobox chamber (Tokai 
hit, TIZHB), and LED excitation light source (Thorlabs, DC2100). The microscope was controlled by 
Micromanager (Edelstein et al., 2014). In the exponential phase experiments, we monitored 25-30 
microchambers in parallel in one measurement and acquired the phase-contrast, RpoS-mCherry fluo-
rescence, and GFP fluorescence images from each position with a 3-min interval. We repeated the 
time-lapse measurement for each culture condition three times. In the regrowth experiment from the 
stationary phases, we monitored 150-250 microchambers in parallel with a 3-min interval and acquired 
only phase-contrast images.

We analyzed the time-lapse images by ImageJ (Schneider et al., 2012). We extracted the infor-
mation of cell size (projected cell area), RpoS-mCherry fluorescence mean intensity, and GFP fluo-
rescence mean intensity of individual cells along with division timings on each cell lineage for the 
exponential phase experiment. We extracted only division timings on each cellular lineage for the 
regrowth experiments from the stationary phases and used this information for further analysis.

Data analysis
Distributions and selection strength measures for division count
We calculated the distributions and selection strength measures of ‍D‍ as follows. With the list of divi-
sion counts ‍{D}‍ for each lineage ‍σ‍, the chronological and retrospective probabilities were evaluated 
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as ‍Pcl(σ) = 2−D(σ)/N0‍ and ‍Prs(σ) = 1/Nτ ‍, respectively, where N0 is the number of cells at ‍t = 0‍ and ‍Nτ ‍ 
is that at ‍t = τ ‍. From these probabilities, the chronological and retrospective distributions of ‍D‍ were 
obtained by summing the lineage probabilities for each division count, that is,

	﻿‍
Qcl(d) =

∑
σ:D(σ)=d

Pcl(σ),
‍� (21)

	﻿‍
Qrs(d) =

∑
σ:D(σ)=d

Prs(σ).
‍� (22)

The selection strength measures, ‍S
(1)
KL[D]‍ and ‍S

(2)
KL[D]‍, were calculated as

	﻿‍
S(1)

KL[D] =
∑

d∈Dsupp

Qcl(d) ln Qcl(d)
Qrs(d) ,

‍�
(23)

	﻿‍
S(2)

KL[D] =
∑

d∈Dsupp

Qrs(d) ln Qrs(d)
Qcl(d) ,

‍�
(24)

where ‍Dsupp‍ is the support of both chronological and retrospective probabilities with respect to ‍D‍, 
which is common between the two probabilities.

Distributions and selection strength measures for time-averaged fluores-
cence intensity of RpoS-mCherry and GFP
We obtained the mean fluorescence intensity of RpoS-mCherry and GFP along with the genealog-
ical trees in the time-lapse measurements of E. coli MG1655 F3 rpoS-mcherry strain. We analyzed 
the time-averaged fluorescence intensity of RpoS-mCherry and GFP as a lineage trait ‍X ‍ and evalu-
ated their distributions, fitness landscapes, and selection strength measures (Figure 7). For each cell 
lineage, the time-averaged fluorescence intensity was calculated as

	﻿‍
X(σ) = 1

N+1

N∑
i=0

xσ(ti),
‍�

(25)

where ‍ti = tstart + i∆t‍ min (tstart is the start time of the cell lineage; ‍∆t = 3‍ min is the time-lapse interval), 
and ‍xσ(ti)‍ is the mean fluorescence intensity at time ti.

Generally, bin sizes for the fluorescence intensity affect the selection strength values. However, one 
can usually find the ranges of bin sizes where the results are relatively insensitive to the choice (Nozoe 
et al., 2017). Following an empirical rule, we set the bin width ‍∆X ‍ to

	﻿‍ ∆X = 0.4 ∗ IQR({X}),‍� (26)

where ‍IQR(X)‍ is the interquartile range of the set of ‍X(σ)‍ from all the cell lineages. Then, the interval 

was defined as 
‍
Ix,∆X =

[
x − ∆X

2 , x + ∆X
2

]
‍
 for ‍x = min({X}), min({X}) + ∆X, · · · , min({X}) + (L − 1)∆X ‍, 

where ‍L‍ is the number of total bins given by ‍L = ⌊max({X})−min({X})
∆X ⌋ + 2‍.

We calculated the chronological and retrospective probability distributions of ‍X ‍ by

	﻿‍
Qcl(x) =

∑
σ:X(σ)∈Ix,∆X

2−D(σ)

N0
,
‍�

(27)

	﻿‍
Qrs(x) =

∑
σ:X(σ)∈Ix,∆X

1
Nτ

.
‍�

(28)

‍h(x)‍ The fitness landscape was evaluated by

	﻿‍ h(x) = ln Nτ
N0

Qrs(x)
Qcl(x) .‍� (29)

The selection strength measures were evaluated by

	﻿‍
S(1)

KL[X] =
L−1∑
l=0

Qcl(min(X) + l∆X) ln Qcl(min(X)+l∆X)
Qrs(min(X)+l∆X) ,

‍�
(30)

	﻿‍
S(2)

KL[X] =
L−1∑
l=0

Qrs(min(X) + l∆X) ln Qrs(min(X)+l∆X)
Qcl(min(X)+l∆X) .

‍�
(31)
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Cumulant generating functions and cumulants
To plot the differential of the cumulant generating functions in Figure  5F-H, we evaluated 

‍
K′

D(ξ) =

∑
d∈Dsupp

(d ln 2)2ξdQcl(d)
∑

d∈Dsupp
2ξdQcl(d)

‍
 by changing ‍ξ‍ from 0 to 1 with the step size 0.01.

We calculated the cumulative contributions of fitness cumulants to the population growth ‍W
(X)
n ‍ 

(Figures 5A, 6E and 7F-H) using a julia package, JuliaDiff/​TaylorSeries.​jl (Benet and Sanders, 2019; 
Benet and Sanders, 2021).

Error estimations by resampling method
To evaluate the error ranges of the quantities calculated in the analysis, we created 20,000 randomly 
resampled datasets for each condition and reported the means and two standard deviation ranges in 
the results.

For the datasets of colony growth (E. coli and M. smegmatis), ‍Nτ ‍ lineages were randomly sampled 
with replacement according to the probability weight ‍Prs(σ)‍ for each resampled dataset. In each resa-
mpled dataset, the initial number of cells was estimated as ‍N̂0 =

∑
σ∈{σ}resampled

2−D(σ)
‍.

For the datasets taken using the mother machines (S. pombe and L1210), we randomly sampled N0 
lineages with an equal weight, which corresponds to the chronological probability in this setting. ‍Nτ ‍ 
was estimated as ‍N̂τ =

∑
σ∈{σ}resampled

2D(σ)
‍.

Simulating the effect of cell removal on population growth rates
We simulated cell population growth with cell removal using a custom C script. The gamma distribu-
tions were adopted as generation time distributions. We assigned the shape parameter to ‍k =‍ 1, 2, 
or 5 and the scale parameter to ‍θ = 21/k − 1‍. The perturbation strength ‍ϵ‍ was changed from 0 to 0.2 
with the interval 0.01.

As a pre-run, we started a simulation from a newborn cell and assigned its generation time randomly 
according to a pre-defined gamma probability distribution. We assumed that this cell divided into two 
daughter cells at the end of the generation. Each daughter cell was removed with probability ‍1 − 2−ϵ‍ 
and assigned with generation time from the same pre-defined probability distribution if it escaped 
removal. Repeating this procedure, we let the population grow until all of the remaining cell lineages 
in the population exceed the maximum duration ‍Tmax = 8.0‍. The time to the next division of each 
cell lineage at ‍Tmax‍ was exported as the first division time in the main simulation. This pre-run was 
repeated 1000 cycles to export a sufficiently sizable list of first division times.

In the main simulation, we started from a progenitor cell with its division time randomly assigned 
from the first division time list exported in the pre-rum. For the daughter cells born from the first divi-
sions and their descendants, the assignment of generation time and the cell removal were done as in 
the pre-run. We stopped further production of daughter cells in each lineage if it exceeded ‍Tmax = 8.0‍. 
We repeated this main simulation 1,000 cycles starting from different progenitor cells. The number of 
cell divisions in each cell lineage until ‍Tmax‍ was exported for analysis.

We calculated the population growth rate at each perturbation strength as

	﻿‍ Λ(ϵ) = 1
Tmax

ln N(Tmax,ϵ)
1000 ,‍� (32)

where ‍N(Tmax, ϵ)‍ is the number of cell lineages at ‍Tmax‍ when the perturbation strength was ‍ϵ‍. The 
chronological and retrospective mean fitness of division count without cell removal was calculated as

	﻿‍
⟨h̃(D)⟩cl =

N(Tmax,0)∑
σ=1

(D(σ) ln 2)2−D(σ)

1000 ,
‍�

(33)

	﻿‍
⟨h̃(D)⟩rs =

N(Tmax,0)∑
σ=1

D(σ) ln 2
N(Tmax,0) .

‍�
(34)

When simulating the cell population with mother-daughter correlation time, we randomly assigned 
the generation time from the gamma probability distribution with its shape parameter ‍

rτm/θ+k(1−r)
1−r2 ‍ 

and scale parameter ‍(1 − r2)θ‍, where ‍τm‍ is the generation time of the mother cell, ‍r‍ is the correla-
tion coefficient of generation time between neighboring generations. The stationary distribution of 
this transition probability approximates the gamma distribution with shape parameter ‍k‍ and scale 

https://doi.org/10.7554/eLife.72299


 Research article﻿﻿﻿﻿﻿﻿ Computational and Systems Biology

Yamauchi et al. eLife 2022;11:e72299. DOI: https://doi.org/10.7554/eLife.72299 � 27 of 40

parameter ‍θ‍ to good precision with identical first and second-order moments irrespective of the 
parameters ‍k‍, ‍θ‍, and ‍r‍. In Figure 4—figure supplement 1, we fixed ‍k = 2‍ and ‍θ =

√
2 − 1‍ and set ‍r‍ 

to 0, 0.2, 0.4, or 0.6.

Data and code availability
The raw data obtained in this study, the Matlab codes for data analysis, and the C code for simu-
lation have been deposited in Github repositories (https://github.com/Wakamoto-lab/Lineag-
eAnalysis, (copy archived at swh:1:rev:1865d167f1c24625c98d3c493a9a180b1aa2035d; Yamauchi, 
2021), https://github.com/Wakamoto-lab/LineageAnalysis-Julia, (copy archived at swh:1:rev:e22fb-
ce8a713582a18fbe2bcc57dc9078090f121; Nozoe and Wakamoto, 2021) and https://github.com/​
Wakamoto-lab/LineageSimulation (copy archived at swh:1:rev:ef1166620396835168ca9061851898
993a091976; Wakamoto, 2021).
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Data availability
All data generated or analyzed during this study and the Matlab codes for data analysis have been 
deposited in a GitHub repository (https://github.com/Wakamoto-lab/LineageAnalysis; copy archived 
at swh:1:rev:1865d167f1c24625c98d3c493a9a180b1aa2035d).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL Database and Identifier

Yamauchi S, Nozoe 
T, Okura R, Kussell E, 
Wakamoto Y

2021 LineageAnalysis https://​github.​com/​
Wakamoto-​lab/​
LineageAnalysis

Github, LineageAnalysis

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier

Nozoe T, Kussell E, 
Wakamoto Y

2018 Data from: Inferring fitness 
landscapes and selection 
on phenotypic states from 
single-cell genealogical 
data

https://​doi.​org/​10.​
5061/​dryad.​4539d

Dryad Digital Repository, 
10.5061/dryad.4539d

Nakaoka H, 
Wakamoto Y

2018 Data from: Aging, mortality, 
and the fast growth trade-
off of Schizosaccharomyces 
pombe

https://​doi.​org/​10.​
5061/​dryad.​s2t5t

Dryad Digital Repository, 
10.5061/dryad.s2t5t

Seita A, Nakaoka H, 
Okura R, Wakamoto Y

2021 Data from: Intrinsic growth 
heterogeneity of mouse 
leukemia cells underlies 
differential susceptibility 
to a growth-inhibiting 
anticancer drug

https://​doi.​org/​
10.​5061/​dryad.​
80gb5mkpr

Dryad Digital Repository, 
10.5061/dryad.80gb5mkpr
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Appendix 1

Analytical calculations of fitness measures, selection strength, and the 
cumulants of a fitness landscape
To observe how the framework works, we show the exact form of ‍KD(ξ)‍ for a class of discrete 
probability distributions containing Poisson, binomial and negative binomial distributions. Let ‍̄D‍ 
and ‍̄Dϕ‍ denote the mean and the variance of ‍Qcl(D)‍ respectively (i.e., ‍ϕ‍ is the Fano factor of division 
counts). When ‍Qcl(D)‍ is Poisson, binomial or negative binomial distributions, ‍̄D‍ and ‍ϕ‍ uniquely 
determine the form of probability distribution: ‍ϕ = 1‍ for Poisson; ‍ϕ < 1‍ for binomial; and ‍ϕ > 1‍ for 
negative binomial (Appendix 1—figure 1A). Then, ‍KD(ξ)‍ for these distributions have a closed form

Appendix 1—figure 1. Analytical calculations of ‍KD(ξ)‍ and related relations given specific form of division 
count distributions. (A) Chronological division count distributions. ‍ϕ = 0.3‍ and ‍ϕ = ϕ0(= 0.5857...)‍ are 
binomial, ‍ϕ = 1‍ is Poisson and ‍ϕ = 1.6‍ is negative binomial. ‍̄D = 20(1 − ϕ0)‍ is fixed. (B) Cumulative 
contributions of fitness cumulants. Parameter values are given in panel A legend. (C) The relation between two 
selection strength measures. Binomial (blue curve), Poisson (closed black circle) and negative binomial (orange 
curve) are indicated on the single curve plotted using Equations 37 and 38 within the range of ‍0 < ϕ < 2‍. 

The point where ‍S
(

1
)

KL
[
D
]

= S
(

2
)

KL
[
D
]
‍ (‍ϕ = ϕ0‍) is indicated by the open black circle. The grey dotted line 

corresponds to ‍S
(

1
)

KL
[
D
]

= S
(

2
)

KL
[
D
]
‍. (D) Convexity of ‍K

′
D(ξ)‍. Y-axis shows a rescaling of ‍K

′
D(ξ)‍ according to 

‍
(
K′

D(ξ) − K′
D(0)

)
/
(
K′

D(1) − K′
D(0)

)
‍. The same values of ‍ϕ‍ as in A are used; ‍ϕ = 0.3‍ (blue), ‍ϕ = ϕ0‍ (orange), 

‍ϕ = 1‍ (green) and ‍ϕ = 1.6‍ (red). The grey dotted line indicates the case that ‍K
′
D(ξ)‍ is a linear function of ‍ξ‍

	﻿‍

KD(ξ) =





D̄
ln
(

2ξ
(

1−ϕ
)

+ϕ
)

1−ϕ , ϕ ̸= 1

D̄
(

2ξ − 1
)

, ϕ = 1
‍�

(35)
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(Appendix 3). We then immediately obtain

	﻿‍

τΛ = KD
(
1
)

=





D̄ ln
(

2−ϕ
)

1−ϕ , ϕ ̸= 1

D̄, ϕ = 1
‍�

(36)

Since ‍limϕ→2 KD
(
1
)

= ∞‍, ‍0 < ϕ < 2‍ is the range that the Fano factor of division counts can take 
within this scheme.

Using (Equation 35) allows us to calculate the cumulative contribution of cumulants of a fitness 
landscape ‍W

(D)
n ‍ (Equation 14). Plotting ‍W

(D)
n ‍ shows that the contribution of higher-order cumulants 

becomes significant when ‍ϕ‍ is large (Appendix 1—figure 1B). Also, evaluating the values of the 
derivative of Equation 35 at ‍ξ = 0‍ and ‍ξ = 1‍, we have

	﻿‍
S
(

1
)

KL
[
D
]

τΛ = 1 − K′
D
(

0
)

KD
(

1
) = 1 −

(
1−ϕ

)
ln 2

ln
(

2−ϕ
) ,

‍�
(37)

	﻿‍
S
(

2
)

KL
[
D
]

τΛ = K′
D
(

1
)

KD
(

1
) − 1 = 2

(
1−ϕ

)
ln 2(

2−ϕ
)

ln
(

2−ϕ
) − 1.

‍�
(38)

Therefore, ‍S
(

1
)

KL
[
D
]

/τΛ‍ and ‍S
(

2
)

KL
[
D
]

/τΛ‍ depend only on the Fano factor ‍ϕ‍. In particular, 

‍S
(

1
)

KL
[
D
]

= S
(

2
)

KL
[
D
]
‍ has 2 roots ‍ϕ = 0,ϕ0(= 0.5857)‍; ‍S

(
1
)

KL
[
D
]

> S
(

2
)

KL
[
D
]
‍ if ‍0 < ϕ < ϕ0‍ and 

‍S
(

1
)

KL
[
D
]

< S
(

2
)

KL
[
D
]
‍ if ‍ϕ0 < ϕ < 2‍ (Appendix 1—figure 1C). Plotting ‍K

′
D(ξ)‍ confirms that the covexity 

direction changes around ‍ϕ0‍ (Appendix 1—figure 1D). These analyses demonstrate how one can 
extract detailed information regarding selection in populations from ‍Qcl

(
D
)
‍.
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Appendix 2
Long-term limit for gamma-distributed uncorrelated generation times
To understand how inherent stochasticity affect long-term population growth rate and selection, we 
consider a cellular population in which cells divide stochastically following a probability distribution 
of generation times (interdivision times).

Let ‍g
(
x
)
‍ and ‍z‍ denote the probability density function of generation time ‍x‍ and the mean number 

of offsprings per generation, respectively. We assume that the generation time correlation between 
parent and offspring can be ignored; i.e., ‍g(x)‍ gives the probability density that offspring’s generation 
time becomes ‍x‍. The Malthusian parameter ‍λ‍ is the real root of the so-called Euler-Lotka equation 
(Fisher, 1930):

	﻿‍
z
ˆ ∞

0
g
(
x
)

e−λxdx = 1.
‍�

(39)

We remark that (Equation 39) also holds for correlated generation times such as Markov models 
(Lebowitz and Rubinow, 1974) by reinterpreting ‍g(x)‍ as the probability distribution of generation 
times of parent cells across a steadily growing population. In such cases, ‍g(x)‍ depends on ‍z‍, and 
we cannot treat ‍g(x)‍ in (Equation 43) independent of ‍z = 2ξ‍. Here, we ignore any transgenerational 
correlations in generation time to illustrate the effect of the variation in generation time on ‍KD(ξ)‍ and 
selection strength measures with simple calculations. For this purpose, we further choose gamma 
distributions as ‍g(x)‍, i.e.,

	﻿‍
g
(
x
)

= xα−1e−x/θ

Γ
(
α
)
θα , x ≥ 0,

‍� (40)

where ‍α > 0‍ is a shape parameter; and ‍θ > 0‍ is a scale parameter. In this case, the Malthusian 
parameter is

	﻿‍ λ = z1/α−1
θ .‍� (41)

The probability distribution of division count ‍Qcl(D)‍, in this case, is known as gamma count distribution 
(Winkelmann, 1995). Though any closed-form expression of the corresponding cumulant generating 
function is not known, it has a simple limiting form for ‍τ → ∞‍ as shown below. We define the 
rescaled cumulant generating function by

	﻿‍ K̃D
(
ξ
)

:= limτ→∞
KD

(
ξ
)

τ .‍� (42)

Since ‍K̃D
(
ξ
)
‍ represents the population growth rate, or Malthusian parameter with the mean number 

of offspring ‍z = 2ξ‍, we have

	﻿‍
2ξ
ˆ ∞

0
g
(
x
)

e−K̃D
(
ξ
)

xdx = 1 .
‍�

(43)

When ‍g‍ is a gamma distribution with a shape parameter ‍α‍ and a scale parameter ‍θ‍, we obtain

	﻿‍ K̃D
(
ξ
)

= 2ξ/α−1
θ ,‍� (44)

and

	﻿‍ K̃′
D
(
ξ
)

= 2ξ/α ln 2
αθ .‍� (45)

Note that ‍α = 1‍ corresponds to the case where division counts follow the Poisson distribution with 
mean ‍θ−1‍. The scaled key quantities derived from ‍̃KD(ξ)‍ are as follows.

	﻿‍ Λ = K̃D
(
1
)

= 21/α−1
θ ,‍� (46)

	﻿‍ K̃′
D
(
0
)

= ln 2
αθ ,‍� (47)
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	﻿‍ K̃′
D
(
1
)

= 21/α ln 2
αθ ,‍� (48)

	﻿‍ S̃
(

1
)

KL
[
D
]

:= K̃D
(
1
)
− K̃′

D
(
0
)

,‍� (49)

and

	﻿‍ S̃
(

2
)

KL
[
D
]

:= K̃′
D
(
1
)
− K̃D

(
1
)

.‍� (50)

Hence,

	﻿‍
S̃
(

1
)

KL
[
D
]

Λ = 1 − K̃′
D
(

0
)

K̃D
(

1
) = 1 − ln 2

α
(

21/α−1
) ,

‍�
(51)

and

	﻿‍
S̃
(

2
)

KL
[
D
]

Λ = K̃′
D
(

1
)

K̃D
(

1
) − 1 = 21/α ln 2

α
(

21/α−1
) − 1 .

‍�
(52)

‍S̃
(

2
)

KL
[
D
]

> S̃
(

1
)

KL
[
D
]
‍ is always true for ‍0 < α < ∞‍ because

	﻿‍

S̃
(

2
)

KL
[
D
]
−S̃

(
1
)

KL
[
D
]

Λ =
(
γ−2

)
eγ+γ+2

eγ−1

>
(
γ−2

)(
γ+1

)
+γ+2

eγ−1

= γ2

eγ−1 > 0 , ‍�

(53)

where ‍γ = α−1 ln 2‍ and the inequality ‍eγ > 1 + γ‍ (‍γ > 0‍) are used.
Since the Taylor expansion of ‍K̃D

(
ξ
)
‍ at ‍ξ = 0‍ is

	﻿‍
K̃D

(
ξ
)

= 2ξ/α−1
θ =

∑
n≥1

ξn

n!
1
θ

(
ln 2
α

)n
,
‍�

(54)

the time-scaled ‍n‍-th order fitness cumulant is

	﻿‍
κ̃n := limτ→∞

κn
τ = 1

θ

(
ln 2
α

)n
, n = 1, 2, · · ·

‍� (55)

Therefore,

	﻿‍
Wn = 1

Λ

n∑
m=1

κ̃m
m! =

∑n
m=1

1
m!
( ln 2

α

)m

21/α−1 .
‍�

(56)

These results show that, unlike the central limit theorem, higher-order cumulants remain even in the 
long-term limit. Selection strength also remains in the long-term limit, which means that inherent 
stochasticity of generation times continuously introduces selection within a cellular population. 
Importantly, the time-scaled cumulants and the selection strength depend on ‍α‍. Therefore, the shape 
of generation time distributions influences the long-term population growth rate and selection. Since 

‍S̃
(

2
)

KL
[
D
]
‍ is always greater than ‍S̃

(
1
)

KL
[
D
]
‍, the fitness variance is larger in the retrospective distribution 

than in the chronological distribution.
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Appendix 3
Theoretical details on selection strength and cumulant generating 
function

The properties of the selection strength of division count
Below we derive several important properties of the selection strength of division count. We focus 
on the selection strength measure ‍S

(1)
KL‍ and write it as ‍S‍ this section for conciseness. However, the 

conclusions are likewise valid for ‍SJF‍ and ‍S
(2)
KL‍.

The most detailed description of cellular lineage statistics is based on individual lineages ‍σ‍. From 
the definitions of ‍Pcl(σ)‍ and ‍Prs(σ)‍ in the main text, the relation

	﻿‍ Prs(σ) = Pcl(σ)eD(σ) ln 2−τΛ
‍� (57)

is held. We define the selection strength of cellular lineages as

	﻿‍

S[σ] :=
∑

σ Pcl(σ) ln Pcl(σ)
Prs(σ)

=
∑

σ Pcl(σ) ln Pcl(σ)
Pcl(σ)eD(σ) ln 2−τΛ

= τΛ− ⟨D(σ) ln 2⟩cl, ‍�

(58)

where ‍⟨D(σ) ln 2⟩cl =
∑

σ(D(σ) ln 2)Pcl(σ)‍
From the definition of fitness landscape (Equation 1),

	﻿‍

h̃(d) = τΛ + ln Qrs(d)
Qcl(d)

= τΛ + ln
∑

σ:D(σ)=d Prs(σ)∑
σ:D(σ)=d Pcl(σ)

= τΛ + ln
∑

σ:D(σ)=d Pcl(σ)eD(σ) ln 2−τΛ

∑
σ:D(σ)=d Pcl(σ)

= d ln 2. ‍�

(59)

On the other hand,

	﻿‍

⟨D(σ) ln 2⟩cl =
∑
σ

(D(σ) ln 2)Pcl(σ) =
∑
d

∑
σ:D(σ)=d

(D(σ) ln 2)Pcl(σ)

=
∑
d

(d ln 2)
∑

σ:D(σ)=d
Pcl(σ) =

∑
d

h̃(d)Qcl(d)

= ⟨h̃(D)⟩cl. ‍�

(60)

This proves that the chronological mean fitness of cellular lineages equals the chronological mean 
fitness of division count.

Since ‍S[D] = τΛ− ⟨h̃(D)⟩cl‍ and ‍S[σ] = τΛ− ⟨D(σ) ln 2⟩cl‍ (Equations 3; 58),

	﻿‍ S[D] = S[σ]‍� (61)

is also held. This result shows that the selection strength of ‍D‍ is equivalent to the selection strength 
of cellular lineages despite ‍D‍ being a coarse-grained lineage trait.

Another important property of ‍S[D]‍ is that it sets the maximum bound for the selection strength 
of any lineage traits. Now we consider the joint probability distributions of ‍D‍ and lineage trait ‍X ‍, 
which we write ‍Qcl(d, x)‍ and ‍Qrs(d, x)‍. We define the joint selection strength as

	﻿‍
S[D, X] :=

∑
d

∑
x

Qcl(d, x) ln Qcl(d,x)
Qrs(d,x) .

‍�
(62)

Using ‍Qcl(d, x) = Qcl(d|x)Qcl(x)‍ and ‍Qrs(d, x) = Qrs(d|x)Qrs(x)‍,

	﻿‍

S[D, X] =
∑
x

(∑
d

Qcl(d|x)
)

Qcl(x) ln Qcl(x)
Qrs(x) +

∑
d

∑
x

Qcl(d, x) ln Qcl(d|x)
Qrs(d|x)

= S[X] + S[D|X], ‍� (63)
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where 
‍
S[D|X] :=

∑
d

∑
x

Qcl(d, x) ln Qcl(d|x)
Qrs(d|x)

‍
, and we used 

‍

∑
d

Qcl(d|x) = 1
‍
.

Likewise, ‍S[D, X]‍ can also be decomposed as

	﻿‍ S[D, X] = S[D] + S[X|D].‍� (64)

However, ‍S[X|D] = 0‍ because

	﻿‍

h(d, x) := τΛ + ln Qrs(d,x)
Qcl(d,x)

= τΛ + ln

∑
σ:D(σ)=d,

X(σ)=x
Prs(σ)

∑
σ:D(σ)=d,

X(σ)=x
Pcl(σ)

= d ln 2 = h̃(d), ‍�

(65)

and

	﻿‍

S[X|D] :=
∑
d

∑
x

Qcl(d, x) ln Qcl(x|d)
Qrs(x|d)

=
∑
d

∑
x

Qcl(d, x) ln Qcl(d,x)Qrs(d)
Qrs(d,x)Qcl(d)

=
∑
d

∑
x

Qcl(d, x)
{

h̃(d) − h(d, x)
}

= 0
‍�

(66)

from (Equation 1) and (Equation 65). This leads to

	﻿‍ S[D] = S[X] + S[D|X]‍� (67)

from (Equation 63) and (Equation 64). Furthermore, ‍S[D|X] ≥ 0‍ from Jensen’s inequality. Thus,

	﻿‍ S[D] ≥ S[X].‍� (68)

The equality is held when ‍D‍ is a deterministic function of ‍X ‍. This inequality shows that ‍S[D]‍ (‍= S[σ]‍) 
sets the maximum bound for the selection strength of any lineage trait ‍X ‍.

The cumulant generating function ‍KX(ξ)‍ provides both chronological and 
retrospective fitness cumulants
In the main text, we introduced the cumulant generating function of ‍h(x)‍ with respect to the 
chronological distribution ‍Qcl(x)‍,

	﻿‍
KX(ξ) := ln⟨eξh(x)⟩cl = ln

∑
x

eξh(x)Qcl(x).
‍�

(69)

This function can also be written as

	﻿‍
KX(ξ) =

∞∑
n=1

κ(X)
n

n! ξn

‍�
(70)

when the fitness cumulants ‍κ
(X)
n ‍ are all finite, and the Taylor expansion converges at ‍ξ‍. Also,

	﻿‍
κ(X)

n = dnKX(ξ)
dξn

∣∣∣
ξ=0

.
‍�

(71)

Below we prove that ‍KX(ξ)‍ also gives the fitness cumulants on the retrospective distributions.
We define a cumulant generating function on the retrospective probability as

	﻿‍
RX(ξ) := ln⟨eξh(x)⟩rs = ln

∑
x

eξh(x)Qrs(x).
‍� (72)

This function can be expanded by the fitness cumulants of the retrospective statistics ‍ρ
(X)
n ‍ as

	﻿‍
RX(ξ) =

∞∑
n=1

ρ(X)
n
n! ξn.

‍� (73)
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Therefore,

	﻿‍
ρ(X)

n = dnRX(ξ)
dξn

∣∣∣
ξ=0

.
‍�

(74)

For example, ‍ρ
(X)
1 = ⟨h(X)⟩rs‍ and ‍ρ

(X)
2 = Var[h(X)]rs = ⟨h(X)2⟩rs − ⟨h(X)⟩2

rs‍.
Inserting ‍Qrs(x) = eh(x)−τΛQcl(x)‍ into (Equation 72),

	﻿‍

RX(ξ) = ln
∑
x

eξh(x)
(

eh(x)−τΛQcl(x)
)

= −τΛ + ln
∑
x

e(ξ+1)h(x)Qcl(x)

= −τΛ + KX(ξ + 1). ‍�

(75)

Hence,

	﻿‍
dnRX(ξ)

dξn = dnKX(ξ+1)
dξn ,‍� (76)

for ‍n ≥ 1‍. This relation proves that evaluating ‍
dnKX(ξ)

dξn ‍ at ‍ξ = 1‍ gives the ‍n‍-th order fitness cumulant on 
the retrospective statistics; i.e.,

	﻿‍
ρ(X)

n = dnKX(ξ)
dξn

∣∣∣
ξ=1

.
‍�

(77)

Furthermore, this leads to

	﻿‍
ρ(X)

n =
∞∑
k=n

κ(X)
k

(k−n)! ,
‍�

(78)

from (Equation 70) and (Equation 77). Similarly, evaluating (Equation 76) at ‍ξ = −1‍ gives

	﻿‍
κ(X)

n = dnRX(ξ)
dξn

���
ξ=−1

=
∞∑
k=n

ρ(X)
k (−1)k−n

(k−n)! .
‍�

(79)

Analogously to (Equation 12), we can also expand the population growth rate in terms of the 
retrospective cumulants, by evaluating (Equation 75) at ‍ξ = −1‍,

	﻿‍
τΛ = KX(0) − RX(−1) =

∞∑
n=1

(−1)n−1ρ(X)
n

n! .
‍�

(80)

For example, when the fitness distribution is Gaussian for the chronological statistics,

	﻿‍

⟨h(X)⟩rs = ρ(X)
1 = κ(X)

1 + κ(X)
2

= ⟨h(X)⟩cl + Var[h(X)]cl,‍�
(81)

	﻿‍

Var[h(X)]rs = ρ(X)
2 = κ(X)

2

= Var[h(X)]cl,‍�
(82)

since ‍κ
X
n = 0‍ for ‍∀n ≥ 3‍.

These results confirm that the function ‍KX(ξ)‍ contains the information of both chronological and 
retrospective statistics.

Relationships between fitness cumulants and selection strength 
measures
In the main text, we have shown that the selection strength ‍S

(1)
KL[X]‍ corresponds to the contribution 

of the second or higher-order fitness cumulants to population growth, i.e.,

	﻿‍
S(1)

KL[X] =
∞∑

n=2

κ(X)
n

n! .
‍� (83)
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or alternatively, by substituting (Equation 79) and (Equation 80) we obtain

	﻿‍

S(1)
KL[X] =

∞∑
n=1

ρ(X)
n (−1)n−1

n! −
∞∑

n=1

ρ(X)
n (−1)n−1

(n−1)!

=
∞∑

n=2

ρ(X)
n (−1)n

n! (n − 1) .
‍�

(84)

Similar expressions can also be found for ‍S
(2)
KL[X]‍. Since ‍S

(2)
KL[X] = ⟨h(X)⟩rs − τΛ‍ (Equation 4), 

substituting (Equation 80) yields

	﻿‍
S(2)

KL[X] =
∞∑

n=2

(−1)nρ(X)
n

n! ,
‍�

(85)

or alternatively, by substituting (Equation 78) and (Equation 12) we obtain

	﻿‍

S(2)
KL[X] =

∞∑
n=1

κ(X)
n

(n−1)! −
∞∑

n=1

κ(X)
n

n!

=
∞∑

n=2

κ(X)
n

n! (n − 1) .
‍�

(86)

These show that both of ‍S
(1)
KL[X]‍ and ‍S

(2)
KL[X]‍ can be expanded by the chronological or retrospective 

fitness cumulants.
The difference between these two selection strength measures is

	﻿‍
S(2)

KL[X] − S(1)
KL[X] =

∞∑
n=3

κ(X)
n

n! (n − 2) =
∞∑

n=3

ρ(X)
n (−1)n−1

n! (n − 2)
‍�

(87)

from (Equation 83) to (Equation 86). Thus, it depends only on the third or higher-order fitness 
cumulants.

Finally, another selection strength measure ‍SJF[X]‍ can also be expanded by the fitness cumulants 
as

	﻿‍
SJF[X] = S(1)

KL[X] + S(2)
KL[X] =

∞∑
n=2

κ(X)
n

(n−1)! =
∞∑

n=2

ρ(X)
n (−1)n

(n−1)!
‍�

(88)

from (Equation 83) to (Equation 86). When the chronological fitness distribution is Gaussian 
(‍κ

(X)
n = 0‍ for ‍∀n ≥ 3‍),

	﻿‍

S(1)
KL[X] = S(2)

KL[X] = κ(X)
2
2 = Var[h(X)]cl

2 ,

SJF[X] = κ(X)
2 = Var[h(X)]cl.‍�

(89)

Analytical calculations of ‍KD(ξ)‍ and related relations given specific form 
of division count distributions
Here we derive (Equations 35–38) in the main text. We begin with the case where ‍Qcl(D)‍ follows a 
Poisson distribution. Let ‍̄D‍ denote the chronological mean division count.

	﻿‍ Qcl
(
D
)

= D̄De−D̄

D! ‍� (90)

By the definition of ‍KD(ξ)‍,

	﻿‍
KD

(
ξ
)

= ln
∑

D≥0
2ξD D̄De−D̄

D! = D̄
(

2ξ − 1
)
‍�

(91)

By the Taylor expansion of ‍2ξ = eξ ln 2‍, the ‍n‍-th order cumulant is ‍κ
(D)
n = D̄

(
ln 2

)n
‍. Since

	﻿‍ τΛ = KD
(
1
)

= D̄,‍� (92)

we derive
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	﻿‍
Wn =

n∑
m=1

(
ln 2

)m

m! .
‍�

(93)

For example, ‍W
(D)
1 = 0.693‍, ‍W

(D)
2 = 0.933‍, ‍W

(D)
3 = 0.988‍, and ‍W

(D)
4 = 0.998‍. The first order derivative of 

‍KD(ξ)‍ is

	﻿‍ K′
D
(
ξ
)

= D̄2ξ ln 2,‍� (94)

and thereby we have

	﻿‍ ⟨D⟩cl ln 2 = K′
D
(
0
)

= D̄ ln 2,‍� (95)

	﻿‍ ⟨D⟩rs ln 2 = K′
D
(
1
)

= 2D̄ ln 2,‍� (96)

	﻿‍
S
(

1
)

KL
τΛ = 1 − K′

D
(

0
)

KD
(

1
) = 1 − ln 2 ≃ 0.31,

‍�
(97)

and

	﻿‍
S
(

2
)

KL
τΛ = K′

D
(

1
)

KD
(

1
) − 1 = 2 ln 2 − 1 ≃ 0.39.

‍�
(98)

Next we derive ‍KD(ξ)‍ for binomial and negative binomial distributions. Let ‍̄D‍ and ‍̄Dϕ‍ denote the 
mean and the variance of ‍Qcl

(
D
)
‍. When ‍Qcl

(
D
)
‍ is binomial,

	﻿‍ Qcl
(
D
)

=
(Dmax

D
)
pD (

1 − p
)Dmax−D , D = 0, 1, ..., Dmax‍� (99)

where ‍Dmax‍ and ‍p‍ satisfy ‍̄D = Dmaxp‍ and ‍̄Dϕ = Dmaxp(1 − p)‍; namely ‍Dmax = D̄/
(
1 − ϕ

)
‍ and ‍p = 1 − ϕ‍. 

Therefore,

	﻿‍

KD
(
ξ
)

= ln
∑

D≥0
2ξD(Dmax

D
)
pD (

1 − p
)Dmax−D

= Dmax ln
(

2ξp + 1 − p
)

= D̄
1−ϕ ln

(
2ξ

(
1 − ϕ

)
+ ϕ

)
.

‍�

(100)

When ‍Qcl
(
D
)
‍ is negative binomial,

	﻿‍
Qcl

(
D
)

= Γ
(
α+D

)
Γ
(
α
)

D! pD (
1 − p

)α , D = 0, 1, ...
‍�

(101)

where ‍α‍ and ‍p‍ satisfy ‍̄D = αp/(1 − p)‍ and ‍̄Dϕ = αp/(1 − p)2
‍; namely ‍α = D̄/

(
ϕ− 1

)
‍ and ‍p = 1 − ϕ−1

‍. 
Therefore,

	﻿‍

KD
(
ξ
)

= ln
∑

D≥0
2ξD Γ

(
α+D

)
Γ
(
α
)

D! pD (
1 − p

)α

= −α ln
(

1−2ξp
1−p

)

= D̄
1−ϕ ln

(
2ξ

(
1 − ϕ

)
+ ϕ

)
.

‍�

(102)

(Equation 102) is exactly the same as (Equation 100) as the function of ‍̄D,ϕ,‍ and ‍ξ‍. In addition, 
(Equation 91) is the limiting form of (Equation 100) and (Equation 102) as ‍ϕ → 1‍. Thus, (Equation 
35) in the main text represents ‍KD(ξ)‍ for Poisson, binomial or negative binomial ‍Qcl(D)‍.

The Taylor expansion of (Equation 35) is obtained as follows:

	﻿‍

KD
(
ξ
)

D̄ =
∑

m≥1

(
ϕ−1

)m−1

m

(
2ξ − 1

)m

=
∑

m≥1

(
ϕ−1

)m−1

m
∑
k≥0

(m
k
) (

−1
)m−k ∑

n≥0

(
kξ ln 2

)n

n!

=
∑
n≥0

(
ξ ln 2

)n

n! cn
(
ϕ
)

,
‍� (103)
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where

	﻿‍
cn

(
ϕ
)

=
∑

m≥1

(
ϕ−1

)m−1

m

m∑
k=0

kn(m
k
) (

−1
)m−k .

‍�
(104)

For the first five terms, for example, we have

	﻿‍ c1
(
ϕ
)

= 1‍� (105a)

	﻿‍ c2
(
ϕ
)

= ϕ‍� (105b)

	﻿‍ c3
(
ϕ
)

= ϕ(2ϕ− 1)‍� (105c)

	﻿‍ c4
(
ϕ
)

= ϕ(6ϕ2 − 6ϕ + 1)‍� (105d)

	﻿‍ c5
(
ϕ
)

= ϕ(24ϕ3 − 36ϕ2 + 14ϕ− 1)‍� (105e)

‍κ
(D)
n = D̄cn(ϕ)(ln 2)n

‍ gives the ‍n‍-th order cumulant.
The first order derivative of (Equation 35) is

	﻿‍
K′

D
(
ξ
)

= 2ξD̄ ln 2
2ξ

(
1−ϕ

)
+ϕ ,

‍� (106)

and thereby we obtain

	﻿‍ ⟨D⟩cl ln 2 = K′
D
(
0
)

= D̄ ln 2,‍� (107)

	﻿‍ ⟨D⟩rs ln 2 = K′
D
(
1
)

= 2D̄ ln 2
2−ϕ ,‍� (108)

	﻿‍
S
(

1
)

KL [D]
τΛ = 1 − K′

D
(

0
)

KD
(

1
) = 1 −

(
1−ϕ

)
ln 2

ln
(

2−ϕ
) ,

‍
 
�

(109)

and

	﻿‍
S
(

2
)

KL [D]
τΛ = K′

D
(

1
)

KD
(

1
) − 1 = 2

(
1−ϕ

)
ln 2(

2−ϕ
)

ln
(

2−ϕ
) − 1.

‍�
(110)

(Equation 109) and (Equation 110) equal if and only if

	﻿‍

(
2−ϕ

)
ln
(

2−ϕ
)

(
4−ϕ

)(
1−ϕ

) = ln 2
2 ‍�

(111)

This equation has two roots ‍ϕ = 0‍ and ‍ϕ = ϕ0 = 0.5857...‍ and LHS >RHS if and only if ‍0 < ϕ < ϕ0‍.
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