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ABSTRACT

Covid-19 has become a worldwide epidemic which has caused the death of millions in a very short
time. This disease, which is transmitted rapidly, has mutated and different variations have emerged.
Early diagnosis is important to prevent the spread of this disease. In this study, a new deep learning-
based architecture is proposed for rapid detection of Covid-19 and other symptoms using CT and X-ray
chest images. This method, called CovidlDWNet, is based on a structure based on feature reuse residual
block (FRB) and depthwise dilated convolutions (DDC) units. The FRB and DDC units efficiently acquired
various features in the chest scan images and it was seen that the proposed architecture significantly
improved its performance. In addition, the feature maps obtained with the CovidDWNet architecture
were estimated with the Gradient boosting (GB) algorithm. With the CovidDWNet+GB architecture,
which is a combination of CovilDWNet and GB, a performance increase of approximately 7% in CT
images and between 3% and 4% in X-ray images has been achieved. The CovidlDWNet+GB architecture
achieved the highest success compared to other architectures, with 99.84% and 100% accuracy rates,
respectively, on different datasets containing binary class (Covid-19 and Normal) CT images. Similarly,
the proposed architecture showed the highest success with 96.81% accuracy in multi-class (Covid-
19, Lung Opacity, Normal and Viral Pneumonia) X-ray images and 96.32% accuracy in the dataset
containing X-ray and CT images. When the time to predict the disease in CT or X-ray images is
examined, it is possible to say that it has a high speed because the CovidDWNet+GB method predicts
thousands of images within seconds.

© 2022 Elsevier B.V. All rights reserved.

Code metadata

Permanent link to reproducible Capsule: https://doi.org/10.

24433/C0.2183919.v1.

1. Introduction

increasing number of deaths and cases. Due to the increasing
cases and deaths, many states have had to close their borders to
prevent the spread of the pandemic. In addition, many countries
have imposed curfews for a certain period as a precaution [3].
This disease usually affects the respiratory system, such as the
lungs, and also appears to cause pneumonia-like symptoms [4].
Patients commonly experience symptoms such as fever, cough,

Coronavirus (Covid-19) is a disease caused by severe acute res-
piratory syndrome coronavirus 2 (SARS-COV-2). After emerging
in Wuhan, China in December 2019, it soon spread around the
world and became a global pandemic [1]. According to the data
of the World Health Organization (WHO), it has been determined
that more than 410 million cases have been seen so far, and close
to 6 million people have died [2]. WHO declared the coronavirus
infection as a Covid-19 pandemic in March 2020 due to the

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
engineering/computer-science/journals.

E-mail address: gcelik@agri.edu.tr.

https://doi.org/10.1016/j.as0c.2022.109906
1568-4946/© 2022 Elsevier B.V. All rights reserved.

sneezing, and shortness of breath. It spreads rapidly through res-
piratory droplets produced by the cough or sneeze of an infected
person. Elderly people and people with chronic illnesses appear
to be more prone to Covid-19 infection [5].

One of the most common methods used to diagnose Covid-19
is reverse transcription-polymerase chain reaction (RT-PCR) tests.
These tests are performed to determine whether individuals have
been infected with SARS-COV-2, the virus that causes Covid-19
disease, momentarily or in the past. The disadvantages of these
tests are that test results take time, the number of available RT-
PCR test kits is low, and the risk of health personnel contracting
the disease during the test is high [6]. It is also costly in that
special equipment, materials, and tools are often required for RT-
PCR examinations. Therefore, many countries have difficulties in
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procuring test kits due to budgetary and technical constraints [7].
At the same time, the sensitivity of the RT-PCR test is a cause
for concern because of sample and laboratory errors that may
occur [8,9]. Liu et al. [10] have expressed their opinion on the
poor performance of RT-PCR in its sensitivity. Similarly, in a study
conducted by Drame et al. [11], they expressed their reservations
about the use of RT-PCR to determine the viral load in the diag-
nosis of 2019 coronavirus disease (Covid-19). In addition, it was
stated in another study that the sensitivity of these tests could be
as low as 38% [12].

Covid-19, which manifests itself as a lung infection, computed
tomography (CT) and chest X-ray (X-ray) images are other meth-
ods used for the detection of this disease [5]. Typical radiographic
features can be reliably detected in patients with pneumonia
caused by this disease with CT imaging. Although these methods
have some advantages over RT-PCR testing in terms of early
detection of Covid-19, specialist physicians are needed to under-
stand and make sense of images. Considering the disadvantages
of RT-PCR tests, CT and X-ray imaging techniques used in the di-
agnosis of Covid-19, Artificial Intelligence (Al), and Deep Learning
(DL) based methods are seen as alternative methods. Al and DL
methods can help the early diagnosis of this disease and make the
treatment process faster by leading experts to reach a fast and
accurate diagnosis through CT and X-ray images in the detection
process of Covid-19 [13-15].

Artificial intelligence and deep learning methods are widely
used by researchers for the detection of Covid-19 infection from
X-ray and CT images. Due to the improved performance of deep
learning methods, they are widely used compared to traditional
methods. One of the most important reasons that led researchers
to this field is that, unlike machine learning and traditional meth-
ods, in deep learning architectures, there is no need for fea-
ture extraction in the data during the preprocessing stage. Deep
learning architectures can be trained with the help of the hy-
perparameters of the convolutional neural network (CNN) ar-
chitecture to learn the best features according to the dataset
used [3]. Researchers used deep learning methods in many areas
classification of white blood cells [16], segmentation of brain
MRI images [17], synthetic image generation [18], generating
images from EEG signals [19], skin cancer classification [20],
fundus image segmentation [21], diagnose different types of Oti-
tis media [22], breast cancer detection [23], breast lymph node
segmentation [24], brain disease classification [25], lung seg-
mentation [26,27], detection of arrhythmia [28-30] and detect-
ing pneumonia from chest X-ray images [31]. With the pan-
demic, the use of deep learning methods for the detection of
coronavirus symptoms from X-ray and CT images has increased
significantly [3].

In literature, it can be seen that many deep learning-based
studies have been carried out for the diagnosis of Covid-19 with
the help of radiological images [32-42].

In the study by Leracitano et al. [32], The authors proposed a
fuzzy logic-based deep learning approach to differentiate X-ray
images of patients with Covid-19 pneumonia and non-Covid-
19-related interstitial pneumonia. The model developed here,
called CovNNet, uses the blurry edge detection algorithm to-
gether with the blurry images to extract some relevant fea-
tures from the X-ray images. This study [32] for the detection
of Covid-19 from binary class (Covid, Non-Covid) X-ray images,
performed poorly compared to many other studies in the litera-
ture, with an accuracy rate of 81%. Ahamed et al. [33] proposed
a deep learning-based Covid-19 case detection model trained
with a dataset of chest CT scans and X-ray images. A modified
ResNet50V2 architecture is used as a deep learning architecture
in the proposed model. High performance was achieved in this
study using two, three, and four classes CT and X-ray images.
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However, a complex architecture with high processing power was
used. Verma et al. [34] proposed different models such as vanilla
(vanilla) LSTM, stacked LSTM, ED_LSTM, BiLSTM, CNN, and hybrid
CNN+LSTM model to capture the complex trend of the COVID-19
outbreak and perform the Covid-19 prediction. In another study
by Khan et al. [35], two new deep learning-based models named
deep hybrid learning (DHL) and deep boosted hybrid learning
(DBHL) are proposed for effective Covid-19 detection in X-ray
datasets. In the proposed DHL architecture, the representation
learning capability of the two developed COVID-RENet-1 & 2
models and a machine learning classifier is used separately. In
the Covid-RENet model, region and edge-based attention mecha-
nisms were applied to extract boundary features and learn region
homogeneity. In addition, the transfer learning method was used
in chest X-rays in the proposed architectures. In this study, in
which two-class (Covid, Non-Covid) X-ray images are used, it
is seen that it has an accuracy of 98.53%. In this study, perfor-
mance evaluation with only binary class X-ray images is seen as
a disadvantage in terms of the performance of the architectures.
Because it is important to use different data sets for Covid-19
detection. The success of CNN architectures may vary according
to the number of classes and image type.

In the study by Loey et al. [36], a bayesian optimization-
based CNN model was proposed for the classification of chest
X-ray images. In the proposed model, CNN architecture is used
to extract and learn deep features. In addition, CNN hyperpa-
rameters are adjusted according to an objective function using
a Bayes-based optimizer method. In another study by Lahsaini
et al. [37], they used a dataset of Covid and non-Covid CT im-
ages validated by RT-PCR tests at Tlemcen hospital in Algeria.
A comparative study was carried out on Inception, Resnet-V2,
VGG16, VGG19, DenseNet121, DenseNet201, ImageNet, and Xcep-
tion deep models using the transfer learning method. Also, a
model based on DenseNet201 architecture and the GradCam algo-
rithm is proposed. In another study by Togacar et al. [38], images
were preprocessed using the fuzzy color technique to classify
X-ray images. Then, the features obtained with MobileNetV2,
and SqueezeNet models were processed with the help of the
social mimic optimization method. The productive features ob-
tained were classified using support vector machines (SVM). The
DarkCovidNet method developed by Ozturk et al. [39] was used
as a classifier for the YOLO real-time object detection system.
By applying seventeen convolution layers and adding different
filtering to each layer. As in previous studies for the detection
of Covid-19, only CT in [37] and only X-ray images were used
in [38,39].

In addition, when the studies were examined, different models
were developed by the researchers, defined by the names Coro-
Net [40], CovidXrayNet [41], and CovXNet [42]. The CoroNet [40]
model, which is proposed as a deep CNN model, is based on
the Xception architecture pre-trained on the ImageNet dataset.
The CovidXrayNet [41] method, based on the EfficientNet-BO
model and based on the optimization method, is proposed. In
this study [41], the data augmentation method is used to increase
accuracy and CNN hyperparameters are optimized. In the Cov-
XNet [42] technique, deep CNN-based architecture and a model
that uses depthwise convolution and varying dilation rates to
extract features efficiently are proposed. In the proposed method,
different forms of CovXNets are designed and trained with X-ray
images of various resolutions. In addition, a stacking algorithm
was used to increase the performance rate, and abnormal regions
of X-ray images were distinguished by integrating a gradient-
based discriminative localization. Looking at the time complexity
of the CovXNets architecture (Fig. 10), it was seen that it had
a higher time complexity compared to the other architectures
studied. This shows that the CovXNets architecture has a complex
structure.
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Fig. 1. Example images are included in the datasets.

When the studies for the detection of Covid-19 disease with
deep learning methods are examined, it is seen that researchers
generally use X-ray [43-53] or CT [54-58] images, but few studies
use both X-ray and CT images [59-62]. At the same time, it
has been seen that the researchers only examined the perfor-
mance of their architectures on the dataset used or compared
them only with traditional architectures. In addition, it has been
determined that no performance evaluation has been made ac-
cording to the training and test times in the literature reviews. In
our study, contrary to these studies, CT and X-ray images were
used, and a performance evaluation was carried out on the same
dataset, including traditional architectures as well as different
current architectures. In addition, performance evaluation was
made by considering the training and test times of the architec-
tures. The proposed model was developed to reduce the workload
of specialist physicians by providing effective, efficient, and rapid
detection of Covid-19 and similar cases. With the thought that
the CovidDWNet+GB architecture will guide different studies, it
has been opened to everyone’s access on the Github page (https:
//github.com/GaffariCelik/Covid-19).

Our main contributions to this work are listed as follows:

e A new deep learning-based model (CovidDWNet) has been
proposed for the detection of Covid-19 and other pneumo-
nia cases.

e The performance of the CovidlDWNet architecture has been
increased by using multiple feature reuse residual blocks
and depthwise dilated convolutions neural networks. In ad-
dition, the success rate has been increased by performing
the disease prediction process with the Gradient boosting
algorithm of the feature vectors obtained with the Covid-
DWNet architecture.

e By using different CT and X-ray datasets, a real performance
evaluation was made among the current architectures in the
literature.

2. Material

In this study, three datasets were used: Covid-CT [63] and
Sars-Cov-2 [64] datasets containing CT images, and Dataset-X-
ray [65] dataset containing X-ray images. These datasets have
been made publicly available for researchers to carry out their
work. Example images in datasets are given in Fig. 1.

The Covid-CT [63] consists of 812 CT images, 349 of which are
Covid-19 and 463 normal, taken from 216 patients. This dataset
has been validated by a senior radiologist at Tongji Hospital
in Wuhan, China, who diagnosed and treated a large number
of Covid-19 patients at the time of emergence of this disease
between January and April 2019. The Sars-Cov-2 [64] dataset
contains a total of 2482 CT chest scan images, of which 1252
are Covid-19 and 1230 are normal. This dataset was obtained
from different hospitals in Sao Paulo, Brazil. The Database-X-
ray [65] dataset was created for COVID-19 positive cases with
the collaboration of a team of researchers from the University
of Qatar, Dhaka University, Bangladesh, and medical doctors in
Pakistan and Malaysia. This dataset includes X-ray images of
Covid-19, normal and other lung infection diseases. It consists
of 21165 X-ray images in total, including 3616 Covid-19, 10192
normal, 6012 lung opacity (Non-Covid lung infection), and 1345
Viral pneumonia.

3. Method

As a method, a CNN-based architecture has been proposed for
the detection of Covid-19 and other pneumonia symptoms. This
architecture is a method based on feature reuse residual block
(FRB) and depthwise dilated convolutions (DDC) units.

Convolutional Neural Networks (CNNs) are models that pro-
vide high classification performance in multi-class problems and
have self-learning capabilities. CNNs are coordinated combina-
tions of multilayer perceptrons, in which every neuron in one
layer is associated with all neurons in the next. A convolutional
network consists of a convolutional layer and a rectified lin-
ear unit (ReLu). Convolution layers form the basic structure of
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Fig. 2. Feature reuse residual block architecture-(a) and depthwise dilated con-
volutions architecture-(b), which constitute the basic structure of the proposed
architecture.

CNN models. Inputs are convolutionalized and applied with nu-
clei across the entire visual field with convolution filters. Thus,
simpler, small patterns are obtained with more complex, de-
tailed patterns. In this way, the hierarchical network structure
enables the extraction of the highest feature maps, enhanced
generalization capability, and reduced computational complex-
ity [15,53,66,67]. The basic convolution operation can be written
mathematically as [33]:

F(i.j)= (%K) @.j)=Y_ Y Ili+m,j+nK(m,n) (1)

Here, I represents the input matrix (may be an image), mxn
filter size, and K the two-dimensional filter.

3.1. Feature reuse residual block (FRB)

The feature reuse block (FRB) is a widely used technique in
computer vision. In this method, feature maps of previous layers
are given as input to all subsequent layers. Thus, the performance
of the network is highly increased by reusing the features of the
previous layers in all subsequent layers [68,69]. The mathematical
formulation of the FRB technique used in this study is defined as
follows:

FRB =y = F (x, w;) 0X (2)

Here, x and y represent the inputs and outputs of the consid-
ered layers, w; weights, and the combination of those features.
The architecture of the FRB technique is presented in Fig. 2(a).

3.2. Depthwise dilated convolutions (DDC)

As shown in Fig. 3, dilated convolutions can be expanded
in the scope of the convolution kernel by changing the dila-
tion ratio compared to standard convolution. By expanding the
scope of the convolution kernel, multi-scale features (informa-
tion) can be obtained. Choosing a dilation rate of one captures
the same properties as standard convolution. However, in dilated
convolution, when the dilation ratio is selected as greater than
one, more detailed features can be obtained than in standard
convolution [70-72].
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In depthwise dilated convolutions operation, the convolution
operation is applied to each input channel separately. With point
convolution (conventional convolution with 1 x 1 window),
inter-channel features are projected into a new space. More
efficient features are obtained by using a combination of 1 x 1
convolution and 3 x 3 deep convolution instead of 3 x 3 standard
convolution. Therefore, various spatial information is extracted
from local information to broader generalized information. In this
way, different features extracted with varying dilation ratios with
different convolution operations will result in greater diversity
in the feature extraction process [42,73,74]. The mathematical
formulation of depthwise convolution is as follows:

K.L

DeptwiseConv(W., y)ij = » Wik © Viiskjh (3)
ki

Here, y represents layer, K, and L layer size, i and j layer index,
and k, and [ filter respectively. W denotes a learnable convolution
filter and © an element-wise multiplication operator.

In addition, if the pneumonia disease has spread over a larger
area rather than just one region in X-ray images, it may be
necessary to combine features from different observation levels.
Therefore, the depthwise dilated convolution technique can be
used effectively in the diagnosis of pneumonia [42] (see Fig. 4).

3.3. Gradient boosting (GB)

Gradient boosting (GB) is a machine learning algorithm used
for classification and regression problems [76]. GB aims to com-
bine strong learner models to obtain a weak learner with high
prediction accuracy [77,78]. The GB method tries to minimize
the cost function to find an additive model. Therefore, the GB
algorithm iteratively adds weak learners (a new decision tree)
to the model, reducing the cost function at the highest rate at
each step [77]. The steps of the GB algorithm are given below
mathematically [76,77]:

1. Input variable (x) and target variable (y) are determined.
The cost function (L(y, f(x))) is defined.

2. A simple decision tree (DTp) is initialized that establishes
the relationship f(x) between x and y. Here, it is aimed to
minimize the cost function (f(x) = DTp).

3. A pseudo-residue is defined to obtain a new target vari-
able. The defined pseudo-residue is used as the new target
variable (r,=y; —f (x);,yi=r,i=i+1).

4. A new decision tree (DT;) suitable for the pseudo-residual
is developed. By including DT; in the model, f(x) is updated
((f(x) = >_DT).

5. Step 3 and step 4 are repeated for the specified number of
cycles.

6. Finally, all decision trees are combined and the result of the
GB model is obtained (f(x) = Y DT).

3.4. Proposed architecture

In this study, a new architecture named CovidDWNet+GB is
proposed. This architecture consists of four blocks as shown in
detail in Fig. 5. First, the input image is represented in the larger
area of the input information by two successive convolution
operations. In the second stage, new features are extracted af-
ter the obtained information FRB and then DDC operations. The
same operations were repeated four times with different filter (f)
numbers and dilation ratios (maxd) to increase the depth of the
mesh. The depth of the DDC unit was determined by reducing the
dilation rate by five at the beginning and by one in the next steps.
Then, the obtained feature map is applied to the global average
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Fig. 3. Dilated Convolution, covering different areas for different dilation ratios when the kernel size (3 x 3) is selected.

(a) Normal Convolution

(b) Deptwise Convolution

Fig. 4. (a) Normal convolution and (b) depthwise convolutions operations. In depthwise convolutions, the number of filters is equal to the number of channels of

the input [75].

pooling layer (GAP) and three fully connected layers, respectively.
In addition, after each convolution operation, Relu was used as
the activation function and BatchNormalization was used as the
normalization operation. Finally, after the CovidDWNet architec-
ture was trained, the feature vectors obtained from the second
fully connected (FC(64, R)) layer were estimated using Gradient
Boosting (GB) machines. The proposed architecture is detailed in
Fig. 5 and its methodology is shown in Eq. (4)-(5).

CovidDWNet (x,y) = CL — CL — {FRB; — DDC; — CLi}iL,
— GAP — FC; — FC, — Z¥ (4)

prediction = yo, = GB(FGy) (5)

Here, CL stands for convolution layer, GAP global average
pooling, FC fully connected, Z* softmax activation function, and
GB gradient boosting classifier. {..}{_; represents the number of
repetitions of the operation (n> = 1).

Blocks in the proposed architecture include DDC, FRB units,
and Convolution layer. The FRB unit (Fig. 2(a)) consists of four
interconnected Convolution layers. The features obtained in the
last step are combined with the input features. In this way, it adds
depth to the architecture by reusing previous features. The FRB
unit is mathematically shown in Eq. (6).

X =@ (wﬁ *x)
X = ()
X3 =& (wé *x2> (6)
Xo =@ (wg #x; )
FRBy, = [x4, x]

Here, wlf weights represent x; outputs. * indicates the convolu-
tion operation. @ means applying the Relu and BatchNormaliza-
tion (BN) operations of the layer output, respectively. [ | denotes
the merge operation. FRBy refers to the FRB operation of the kth
block.

The DDC unit, detailed in Fig. 2(b), is expanded with vary-
ing dilatation rates and the receptive area of X-ray and CT im-
ages. In this way, distinctive features are obtained effectively and
more diversity is provided in the feature extraction process. The
mathematical notation of the DDC unit used in the proposed
architecture is given in Eq. (7).

01 = ®(w{ O FRBy)
02 = P(wl © 01)

(7)

Op = ¢(w,‘f © On—])
DDCk = [O],Oz...,On]

Here, wf shows weights, o; outputs, and ©® DeptwiseConv

operation. [01, 05 ..., 0,] means the join operation. DDC; refers
to the DDC operation of the k™ block.

Finally, the features obtained by FRB and DCC operations in
blocks are given to the Convolution layer. In this way, important
properties are obtained. The mathematical expression required
for this operation is given in Eq. (8).

CL,( = @(wk * DDCk) (8)
Here wj weights, * denotes the convolution operation.

3.5. Training and optimization of the proposed architecture
The CovidDWNet architecture is trained with a backpropaga-

tion algorithm using Cross-Entropy Eq. (9) for training multi-class
datasets and binary cross-entropy Eq. (10) cost functions for
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Fig. 5. Proposed architecture (CovidlDWNet+GB).

training two-class datasets. These cost functions can be expressed
mathematically as:

L(3.y)=—_yilog () 9)
1 ~ N
Loce = —— D _((vi-log(§)) + (1 = yi).log(1 = ) (10)

Here, n is the number of samples, y is the actual value, and y
is the predicted value.

Adam optimization [42,76] algorithm is used as the optimiza-
tion algorithm for updating the weights in the architecture. Adam
optimization algorithm with learning coefficient » at time t:

ﬁﬂ=ﬂd—n7%%§—X& (11)
Vi=P1 X Vi1 — (1= B1) X & (12)
St =2 X seo1 — (1= B) x g (13)

Here w stands for weights, hyperparameters 8; and 3, time t
n learning rate coefficient. g; represents the gradient at time t.v;
and s; represent the exponential mean of gradients and squares
of gradients along, w;. In the proposed architecture, the Relu
activation function used after each convolution operation is given
in Eq. (14) [34].

S (X)gers = max {0, x} (14)

Fully connected layers (FC) form a fundamental part of CNN
architectures, where all neurons in the previous layer connect
to all neurons in the next layer and calculate how much each
value matches the class. As the last layer, the output of the FC is
combined with the activation functions of sigmoid, SVM, softmax,
etc. for class prediction. Softmax activation function used for
classification in this study, a probability distribution of n number
of output categories is calculated according to Eq. (15) [33,79].

e

- n n
> €

Here, x is the input vector, n is the number of classes, up to,

k=1....n,and Z is the output vector. The sum of all Z values is
equal to 1.

k

zk (15)

4. Experimental results and discussion

For the detection of Covid-19, some literature studies based
on deep learning using X-ray and CT images are presented in
Table 1. It can be said that there are differences in success rates
according to the datasets that researchers use by developing
different architectures. In general, it is seen that the success
rates of studies with two classes are higher than those with
multiple classes. Marques et al. [80] performed binary and triple
classification on X-ray images with the CNN-based architecture
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Some deep learning approaches and success results for Covid-19 diagnosis from X-ray and CT images.

Study Architecture Class Scanning Accuracy (%)
Sethy et al. [83] ResNet50 plus 2-class (Covid-19, noncovid-19) CT 95.38
Li et al. [84] Stacked-autoencoder 2-class (Covid-19, Pneumonia, normal) CT 94.7
Gifani et al. [82] CNNs models 2-class( Covid-19, noncovid-19) CT 85.0
Xu et al. [85] ResNet + Loc-ation Attention 3-class (Influenza-A, Normal, covid-19) CT 86.7
Heidarian et al. [86] COVID-FACT 3-class (Covid-19, Pneumonia, normal) CT 90.82
Mukherjee et al. [87] Tailored Deep NN 2-class (Covid-19, noncovid-19) CT 95.83
Mukherjee et al. [87] Tailored Deep NN 2-class (Covid-19, noncovid) X-ray 96.13
Wang et al. [88] COVID-Net 3-class (Covid-19, pneumonia, normal) X-ray 93.3
Heidari et al. [89] VGG16-based CNN 3-class (Covid-19, pneumonia, normal) X-ray 94.5
Chakraborty [90] Corona-Nidaan 3-class (Covid-19, normal, pneumonia,) X-ray 95.0
Umer et al. [81] COVINet 2-class (Covid-19, normal) X-ray 97.0
Umer et al. [81] COVINet 3-class (Covid-19, normal, virus pneumonia) X-ray 90.0
Umer et al. [81] COVINet 4-class (Covid-19, normal, virus pneumonia, bacterial pneumonia) X-ray 85.0
Babukarthik et al. [91] Genetic deep CNN 2- class (Covid-19, normal) X-ray 98.8
Apostolopouloset al. [92] Pretrained CNNs 3-class (Covid-19, nonCovid-19 pneumonia, normal) X-ray 96.7
Ismael et al [93] Deep CNNs 2- class (Covid-19, normal) X-ray 92.6
Oh et al. [94] ResNet-18 4-class (Covid-19+viral pneumonia, bacterial pneumonia, X-ray 91.9
tuberculosis, normal)
Ezzat et al. [95] GSA-DenseNet121 2-class (Covid-19, pneumonia) X-ray 934
Marques et al. [80] CNN + EfficientNet 2- class (Covid-19, normal) X-ray 99.6
Marques et al. [80] CNN + EfficientNet 3- class (Covid-19, nonCovid-19 pneunomia, normal) X-ray 96.7
Hussain et al. [96] CoroDet 2- class (Covid-19, normal) X-ray 99.1
Hussain et al. [96] CoroDet 3- class (Covid-19, normal, pneumonia) X-ray 94.2
Hussain et al. [96] CoroDet 4- class (Covid-19, normal, non-Covid-19 pneumonia, non-Covid-19 X-ray 91.2
bacterial pneumonia)

Proposed CovidDWNet 2- class (Covid-19, normal) CT 100.0
proposed CovidDWNet 4-class (Covid-19, Lung Opacity, Normal, Viral pneumonia) X-ray 96.8

they developed using the EfficientNet architecture. This method
has shown the highest success in the classification of binary class
(Covid-19, normal) X-ray images with an accuracy rate of 99.6%
compared to other architectures. On four-class X-ray datasets,
Umer et al. [81] showed the lowest performance with 85.0%
accuracy, while the proposed architecture achieved the highest
performance with 96.8% accuracy. In addition, when studies using
two-class CT images containing Covid-19 and Normal images
were examined, Gifani et al. [82] showed the lowest performance
with 85% accuracy using CNNs-based architecture, while the rec-
ommended architecture showed the highest performance with
100% accuracy. However, when the results here are examined, it
is seen that the datasets used by the researchers affect the success
rates of the methods. At the same time, the number of samples
and the number of classes in the datasets are the factors affecting
the success of the architectures.

To evaluate the performance of the architectures developed
by the researchers more fairly, it is important to conduct ex-
perimental studies using common datasets. Therefore, in this
study, four different experimental applications were carried out
using three different datasets containing CT and X-ray images
for the diagnosis of Covid-19. To objectively evaluate the perfor-
mance of current architectures mentioned in the literature with
CovidDWNet+GB (Our model), training was carried out on the
same dataset by keeping certain parameters the same. The results
obtained according to different metrics by training each model
200 epochs are presented in Table 4, 5, 6, and 7. Commonly used
metrics accuracy, precision, recall, F1-Score, specificity, and AUC
were used to evaluate the results. These metrics are:

TP + TN

Accuracy = (16)
TP + TN + FP + FN
P
Precision/PPV = ——— (17)
TP + FP
Recall/Sensivi _P (18)
v =
4 TP + FN
2 % Precision * Recall
F1 — Score = __ (19)
Precision + Recall
. IN
Specificity = (20)

TN + FP

Here, TP (True Positives) denotes correctly classified diseased
cases, TN (True Negatives) correctly defined healthy cases, FP
(False Positives) misclassified diseased cases, FN (False Negatives)
misclassified healthy cases [3,97]. The receiver operating charac-
teristic (ROC) curve is used in classification problems to evaluate
the performance of models by plotting the true positive rate (TPR)
versus the false positive rate (FPR). The area under the curve
(AUC) indicates the area under the ROC, which is a probability
curve [3].

FP
FPR= ——— (21)
FP + TN
TP
TPR= — (22)
TP + FN

The hyperparameters of the architectures during the training
phase are presented in Table 2. CovidDWNet architecture, de-
veloped on Keras/Tensorflow platform, takes images as input by
scaling 128 x 128; Adam (Learning_rate = 0.001) optimization
function and batch size value 32 are given.

The image distribution of the datasets used in experimental
applications for the detection of Covid-19 and other pneumonia
diseases according to training and test sets is given in Table 3
in detail. At the same time, the number of images according
to the types of diseases in each application is presented in this
table. Datasets are reserved for approximately 80% training and
20% testing. In the first application, the Sars-Cov-2 [64] dataset
was used. This dataset is divided into two datasets, training and
testing. The training dataset contains a total of 1986 images, 1002
Covid, and 984 Normal. The test dataset contains 495 images,
250 of which are Covid and 245 are normal. Similarly, a second
application was performed using the Covid-CT [63] and Sars-Cov-
2 [64] datasets containing CT images. In this application, there are
2589 images (1288 Covid, 1301 Normal) in the training dataset
and 645 images (320 Covid, 325 Normal) in the test dataset. In
the third application, Dataset-X-ray [65] dataset containing X-
ray images was used. In this application, there are 16933 images
(2893 Covid, 8154 Normal, 4810 Lung Opacity, and 1079 Viral
Pneumonia) in the training dataset and 4232 images (723 Covid,
2038 Normal, 1202 Lung Opacity, and 269 Viral Pneumonia)
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Table 2
Hyperparameters of architectures for Covid-19 detection.
Model Data Software Input size Optimizer Learning Batch size
augmentation rate
DenseNet No Keras, TensorFlow 224 x 224 Adam 0.0001 32
AlexNet No Keras, TensorFlow 224 x 224 Adam 0.0001 32
ResNet No Keras, TensorFlow 224 x 224 Adam 0.0001 32
CspNet [98] No Keras, TensorFlow 224 x 224 Adam 0.0001 32
VGG16 No Keras, TensorFlow 224 x 224 Adam 0.0001 32
VGG19 No Keras, TensorFlow 224 x 224 Adam 0.0001 32
CovXNet [42] Yes Keras, TensorFlow 128 x 128 Adam 0.001 16
CoroNet [40] Yes Keras, TensorFlow 150 x 150 Adam 0.0001 10
CovidXrayNet [41] Yes Fastai, PyTorch 256 x 256 Adam - 32
DarkCovidNet [39] No Fastai, PyTorch 256 x 256 Adam 0.003 32
Proposed (No DDC) No Keras, TensorFlow 128 x 128 Adam 0.001 32
Proposed No Keras, TensorFlow 128 x 128 Adam 0.001 32
Table 3
Number of records in datasets used in applications.
Application (s) Data set(s) Image (s) Train/Test Covid Normal Lung Opacity Viral Pneumonia Total
A Train Set 1002 984 - - 1986
Application1 Sars-Cov-2 [64] CT Test Set 250 245 B B 495
Application2 Covid-CT [63] and T Train Set 1288 1301 2589
PP Sars-Cov-2 [64] Test Set 320 325 645
Application3 Dataset-X-ray X-ra Train Set 2893 8154 4810 1076 16933
pp [65] Y Test Set 723 2038 1202 269 4232
. Train Set 4174 9455 4810 1076 19515
Application4 All datasets X-ray + CT Test Set 1043 2363 1202 269 4877
Table 4
The success of the models in detecting Covid-19 on the Sars-Cov-2 dataset containing CT images.
Model Accuracy (%) Precision Recall F1-Score Specificity(%) AUC (%)
DenseNet 97.37 0.97 0.97 0.97 98.57 97.37
AlexNet 94.14 0.94 0.94 0.94 94.12 94.12
ResNet 95.96 0.96 0.96 0.96 95.97 95.97
CspNet [98] 95.15 0.95 0.95 0.95 95.14 95.14
VGG16 50.51 0.50 0.34 0.25 50.00 50.00
VGG19 50.51 0.50 0.34 0.25 50.00 50.00
CovXNet [42] 98.18 0.98 0.98 0.98 98.18 98.18
CoroNet [40] 98.59 0.99 0.99 0.99 98.57 98.57
CovidXrayNet [41] 97.97 0.98 0.98 0.98 98.00 98.00
DarkCovidNet [39] 95.35 0.95 0.95 0.95 95.35 95.35
Proposed (No DDC) 98.38 0.98 0.98 0.98 98.39 98.39
Proposed+ DataAug. 97.78 0.98 0.98 0.98 97.78 97.78
Proposed (No GB) 98.59 0.99 0.99 0.99 98.58 98.58
Proposed(CovidDWNet+GB) 100.0 1.00 1.00 1.00 100.0 100.0

in the test dataset. The fourth application was performed by
combining all datasets containing X-ray and CT images. In this
application, a total of 19515 images, including 4174 Covid, 9455
Normal, 4810 Lung Opacity, and 1079 Viral Pneumonia, in the
training dataset; In the test dataset, there are a total of 4877
images, including 1043 Covid, 2363 Normal, 1202 Lung Opacity
and 269 Viral Pneumonia.

The results of the experimental study with the SARS-COV-
2 [64] dataset containing CT images for Covid-19 detection are
given in Table 4. The success rate has been increased by adding
a DDC module to the proposed architecture. In addition, high
performance has been achieved by adding GB classifier to the
proposed architecture. However, when the data augmentation
method is applied to the proposed architecture, it is seen that
the success decreases. When the results obtained in this ap-
plication are examined in a general way, we can say that our
model exhibits the highest performance in all metrics with a 100%
success rate. Also, the confusion matrix results of the proposed
architecture for this application are given in Fig. 6(a). When the
results are examined, it is seen that the proposed architecture
correctly predicts Covid-19 patients and non-patients with 100%
high performance.

In the second application, an experimental study was per-
formed by combining the Covid-CT [63] and Sars-Cov-2 [64]
datasets containing Covid-19 and Normal CT images, and the
results are presented in Table 5. When the results are examined,
the proposed architecture (CovidDWNet+GB) showed the highest
success with 99.84% according to the accuracy metric and 100%
(1.00) according to the precision, recall, and F1-Score metrics.
Similarly, the CovidDWNet architecture achieved the highest suc-
cess with 99.85% performance according to specificity and AUC
metrics. In addition, when the confusion matrix results are exam-
ined in Fig. 6(b), It is seen that the CovidDWNet+GB architecture
detects Covid-19 patients and normal people who are not sick
with 100% accuracy.

In the third experimental study for Covid-19 detection, the
four-class Dataset-X-ray [65] dataset was used. The results of the
experimental study are shown in Table 6. When the results of the
application are examined, our model (CovidDWNet+GB) achieved
the highest performance with 96.81% accuracy, 0.98 precision,
0.97 recall, 0.98 F1-Score, 95.54% specificity, and 97.98% AUC. At
the same time, when the training and testing times of the third
application (Application3) are examined (in Table 8), it is seen
that the proposed architecture is faster than the CovidXrayNet



G. Celik

Applied Soft Computing 133 (2023) 109906

Table 5

Success rates of models according to different metrics in detecting Covid-19 on the Covid-CT and Sars-Cov-2 datasets containing CT images.
Model Accuracy Precision Recall F1-Score Specificity AUC (%)
DenseNet 92.09 0.92 0.92 0.92 92.09 92.09
AlexNet 86.51 0.87 0.86 0.87 86.49 86.49
ResNet 87.44 0.88 0.97 0.87 87.47 87.47
CspNet [98] 85.58 0.86 0.86 0.86 85.53 85.53
VGG16 50.39 0.25 0.50 0.34 50.00 50.00
VGG19 50.39 0.25 0.50 0.34 50.00 50.00
CovXNet [42] 88.99 0.89 0.89 0.89 89.03 89.03
CoroNet [40] 92.25 0.92 0.92 0.92 92.26 92.26
CovidXrayNet [41] 91.16 0.92 0.91 0.91 91.12 91.12
DarkCovidNet [39] 88.92 0.88 0.87 0.87 88.92 88.92
Proposed (No DDC) 91.63 0.92 0.92 0.92 91.62 91.62
Proposed+ DataAug. 86.36 0.86 0.86 0.86 86.33 86.33
Proposed (No GB) 93.33 0.93 0.93 093 93.31 93.31
Proposed(CovidDWNet+GB) 99.84 1.0 1.00 1.00 99.85 99.85

Table 6

Results of architectures for Covid-19 detection according to different metrics on the Dataset-X-ray dataset containing X-ray images.
Model Accuracy Precision Recall F1-Score Specificity AUC (%)
DenseNet 87.10 0.88 0.89 0.88 87.66 92.12
AlexNet 90.62 091 0.91 091 88.12 93.72
ResNet 92.70 0.94 0.93 0.94 90.79 95.14
CspNet [98] 82.63 0.79 0.84 0.81 80.09 88.84
VGG16 91.09 0.92 091 0.92 87.59 93.88
VGG19 91.33 0.93 0.92 0.92 87.55 93.96
CovXNet [42] 92.44 0.95 0.89 091 89.28 92.76
CoroNet [40] 92.11 0.93 0.92 0.92 90.52 94.40
CovidXrayNet [41] 95.39 0.96 0.96 0.96 94.33 96.88
DarkCovidNet [39] 94.33 0.96 0.94 0.95 92.17 95.67
Proposed (No DDC) 93.30 0.94 0.94 0.94 90.75 95.50
Proposed+ DataAug. 93.19 0.95 0.92 0.94 89.72 94.54
Proposed (No GB) 93.76 0.95 0.94 0.94 90.91 95.67
Proposed(CovidDWNet+GB) 96.81 0.98 0.97 0.98 95.54 97.98

Table 7

Performance of Architectures for Covid-19 detection by different metrics on all datasets containing X-ray and CT images.
Model Accuracy Precision Recall F1-Score Specificity AUC (%)
DenseNet 93.05 0.94 0.93 0.94 90.41 95.11
AlexNet 90.98 0.92 0.91 0.91 86.91 93.66
ResNet 92.02 093 0.93 093 90.30 94.70
CspNet [98] 90.71 0.92 0.91 091 87.14 93.67
VGG16 89.65 091 0.90 0.90 84.90 92.88
VGG19 89.24 091 0.89 0.90 83.64 92.27
CovXNet [42] 92.45 0.94 0.91 0.93 88.85 93.86
CoroNet [40] 92.23 0.94 0.92 0.93 87.28 94.43
CovidXrayNet [41] 95.30 0.96 0.96 0.96 92.93 96.85
DarkCovidNet [39] 90.59 0.92 0.91 091 88.05 93.06
Proposed (No DDC) 92.19 0.93 0.92 0.93 87.69 94.40
Proposed+ DataAug. 91.92 0.94 091 0.90 89.90 93.10
Proposed (No GB) 93.36 0.94 0.94 0.94 91.73 95.50
Proposed(CovidDWNet+GB) 96.32 0.97 0.97 0.97 95.17 97.67

and DarkCovidNet architectures, which are the closest to the
success rate. In addition, when the success distribution of the
CovidDWNet+GB architecture according to classes is analyzed in
Fig. 6(c), we can say that it correctly predicts Covid-19 patients
99%, Lung Opacity patients 92%, people who are not sick 98% and
Viral Pneumonia patients 100%.

In the last experimental study for Covid-19 detection, an ap-
plication was performed by combining all datasets (Covid-CT,
Sars-Cov-2, and Dataset-X-ray). The results obtained according to
different metrics are given in Table 7. When the results are ex-
amined, we can say that CovidDWNet+GB, 96.32% accuracy, 0.97
precision, 0.97 recall, 0.97 F1-Score, 95.17% specificity, and 97.67%
AUC showed the highest success. Also, the confusion matrix re-
sults for the CovidlDWNet+GB architecture of this application are
given in Fig. 6(d). When the results are examined, it is seen that
he predicted Covid 19 patients at 97%, Lung Opacity patients at
93%, non-sick people at 97%, and Viral Pneumonia patients at
100% correct.

According to the experimental application results, the class
performances (confusion matrix) of the proposed architecture
(CovidDWNet+GB) for Covid-19 detection are given in Fig. 6. It
shows the results of the binary classification in (a) and (b), and
multi-classification in (c) and (d). (a) gives the results of the first
application, (b) the second application, (c) the third application,
and (d) the fourth application. In applications containing the
proposed architectural CT images (Fig. 6 (a-b)), it appears to
predict Covid-19 and Normal images extremely successfully with
100% success rates.

Similarly, multiple classification performances of the Covid-
DWNet architecture are given in Fig. 6-(c) and (d). In the third
experimental study including X-ray images, it is seen that the
proposed architecture, Covid-19, Lung Opacity, Normal and Viral
Pneumonia images were estimated with success rates of 99%, 92%,
98%, and 100%, respectively. In addition, in the fourth application
containing all datasets, it was observed that he predicted Covid-
19 images with 97%, Lung Opacity images with 93%, Normal
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Fig. 6. Performance results of the proposed architecture in binary and multiple classes. (a) The first application, (b) second application, (c) third application, (d)

fourth application results.

images with 97%, and Viral pneumonia images with a rate of
100%. It can be said that it performs extremely satisfactorily in
classes other than the Lung Opacity class. It is thought that its
lower success in images containing Lung Opacity is due to its
overlapping features with other classes.

The ROC curve of our proposed model is shown in Fig. 7.
The ROC curve is a graphical representation of the classification
performance of the network. The closer the curve is to its upper
left limit, the higher the performance. Fig. 7 (a-b) shows the
results of the CT images, (c) the results of the X-ray images, and
(d) the results of the X-ray and CT images. In CT images, it is seen
that AUC values of 99.85% and 100% results are obtained. We can
say that AUC values of 97.98% and 97.67% were obtained in X-ray
and all images, respectively.

10

Gradient-based class activation mapping (Grad-CAM) algo-
rithm [99] is used to highlight important points on X-ray and
CT images that affect the performance of CNN architectures. The
main purpose of this algorithm was developed to create stronger
deep networks. The last convolutional layer is considered to be
the stage where the best balance is achieved between important
spatial information and the highest semantics [100]. Grad-CAM
generates heatmap heat zones to highlight key locations from
features derived from the final convolution layer. This informa-
tion indicates which regions the algorithm pays more attention
to. In Fig. 8, heatmap and Grad-CAM images obtained for sample
Covid-19 images with the Grad-CAM algorithm are given. Green
and yellow areas on heatmaps highlight key regions where the
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Fig. 7. ROC analysis of the proposed model. (a) First application, (b) second application, (c) third application, (d) fourth application results.

CovidDWNet architecture is concentrated. Regions with dark yel-
low in heatmaps and red in Grad-CAM indicate important regions
with high distinctiveness.

CNNs are used for classification and recognition problems by
making use of fully connected layers of feature maps obtained
as a result of the convolution process [101]. Feature maps are
obtained with filters defined by convolution operations on the
input image. Feature maps obtained for a particular input image
are used to understand which features of the input are detected
or preserved. It is expected to detect small or fine details from
the image given as input to the models. However, the models
will capture more general feature maps close to the output [102].
In Fig. 9, an example of tens of feature maps obtained from the
images given as an introduction to the CovidDWNet architecture
is given. It is seen that the different features of the images are
emphasized in the first two convolution layers. These images
appear to be understandable images. We can say that the fea-
ture maps obtained from the last convolution layer of the next
blocks (Block1-4) capture more fine details. These attributes are
meaningful features that are not understood by humans but can
be understood by CNN models. At the same time, it is possible to
say that the feature maps show fewer and fewer details as they
go deeper and that these details are meaningful features in the
decision-making process by CNN models.

Also, the training and test times of the applications are given
in Table 8. Training times in hours and minutes; Test times

11

are shown in seconds. Training times, architectures 200 epoch
training time; test times represent the time elapsed during the
estimation of all samples in the test dataset. When the training
and testing times are examined, we can say that the AlexNet
architecture has a higher speed compared to other architectures.
However, when the overall success of the AlexNet architecture is
examined in the experimental applications, it has been observed
that it exhibits a low performance.

The time complexity of the architectures according to the
training and test times is given in Fig. 10. When the time com-
plexity diagram is carefully examined, it is seen that the AlexNet
architecture has the smallest time complexity. We can also say
that the CovXNet architecture has the highest time complexity.
It is possible to say that the proposed architecture has moderate
time complexity.

When the results of experimental studies are examined in
general, it is seen that it predicts X-ray and CT images with
high performance. A higher success was achieved with CT images
compared to X-ray images. We can say that this is due to the more
sensitive and finer detailed structures of CT images [13,42].

In addition, a higher performance has been achieved by in-
tegrating the DDC module into the CovidDWNet architecture,
providing different expansion rates and deepening the feature
map with depthwise convolution. However, when the data aug-
mentation method is applied to the proposed architecture, it has
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Fig. 8. From CovidDWNet architecture using Grad-CAM resulting sample heatmaps and Covid-19 visuals.

Table 8
Training and testing times of architectures. Training times in hours and minutes; Test times are shown in seconds.
Model Application1 Application2 Application3 Application4
Train time Test time Train time Test time Train time Test time Train time Test time
(hr.min.) (s.) (hr.min.) (s.) (hr.min.) (s.) (hr.min.) (s.)
DenseNet 0.53 1 1.18 2 5.00 6 6.10 7
AlexNet 0.53 1 1.16 1 4.50 3 6.04 4
ResNet 1.10 2 1.50 3 6.56 8 7.36 10
CspNet [80] 1.30 2 1.46 3 6.00 7 8.20 9
VGG16 1.07 3 1.30 3 7.50 18 9.13 19
VGG19 1.14 3 1.33 4 8.16 19 9.23 21
CovXNet [42] 5.05 7 6.05 8 15.33 26 18.33 29
CoroNet [40] 1.20 2 1.43 2 6.33 5 7.50 7
CovidXrayNet [41] 1.10 2 1.43 3 8.33 12 9.13 15
DarkCovidNet [39] 1.18 2 1.48 2 7.54 13 8.43 15
Proposed (CovidDWNet) 1.16 2 1.45 3 7.24 8 8.32 11
been observed that it affects success negatively. The hyperparam- Table 9 )
eters and values of the applied data augmentation method are Data augmentation hyperparameters for the
. . proposed architecture.
given in Table 9.
Parameters Value
. Width shift 0.2
5. Conclusion Height shift 0.2
. . ) . Shear 0.25
Covid-19 pandemic cases are increasing day by day and cause Zoom 0.2
the death of many people. It has caused millions of cases and Rotation 30
the death of millions of people so far. This disease, which brings Horizontal flip True
Vertical flip True

with it different health problems, poses serious threats to human
health with the emergence of new variations. Many states are
taking many measures to prevent the spread of the disease and
reduce deaths. RT-PCR tests are generally used to detect this

disease. However, considering the inadequacy of RT-PCR tests,
the risk of transmission to healthcare personnel, pain to patients,
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Fig. 10. The time complexity of architectures: (a) Time complexity based on training times (in hours), (b) Time complexity based on test times (in seconds).

and cost, it brings with it many problems. In this sense, different
researches are carried out and different solutions are offered.
Deep learning architectures with high performance are one of
these studies. When the literature is examined, it is possible to
see many studies with deep learning. In these studies, it is seen

that only one of the CT or X-ray datasets is used mostly. At the
same time, it was seen that the performance evaluation of the
studies was limited in themselves.

In this study for the detection of Covid-19 and similar symp-
toms, datasets containing CT or X-ray images were used. A new
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architecture is proposed, called CovidDWNet, based on feature
reuse residual block (FRB) and Depthwise dilated convolutions
(DDC) units. High performance has been achieved by providing
the combination of the proposed architecture and the Gradi-
ent boosting (GB) algorithm (CovidDWNet+GB). In addition, the
current architectures in the literature were examined, the archi-
tectures were trained on the same data sets and performance
evaluation was made accordingly.

It has been observed that CovidDWNet+GB exhibits the high-
est success with 99.84% and 100% accuracy rates in applica-
tions performed on CT datasets with two classes (Covid-19, and
non Covid-19). In addition, it has been observed that it pro-
vides the highest success according to precision, recall, F1-Score,
specificity, and AUC metrics. The proposed architecture showed
the highest success in the application using four classes (Covid-
19, Lung Opacity, Normal and Viral Pneumonia) X-ray images,
with 96.81% accuracy, 0.98 precision, 0.97 recall, 0.98 F1-Score,
95.54% specificity, and 97.98% AUC. Similarly, we can say that the
CovidDWNet+GB architecture showed the highest success in the
experimental study using X-ray and CT images, with 96.32% accu-
racy, 0.97 precision, 0.97 recall, 0.97 F1-Score, 95.17% specificity,
and 97.67% AUC. Also, it has been observed that the proposed
architecture predicts 4877 images in the test dataset with a high
speed of 11 s.

As a result, when the performances of different architectures
are examined by keeping certain parameters constant on the
same datasets, it is possible to say that the proposed architec-
ture exhibits a respectable success in the literature and shows a
remarkable performance among current architectures.
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