Skip to main content
. 2022 Dec 7;133:109906. doi: 10.1016/j.asoc.2022.109906

Table 5.

Success rates of models according to different metrics in detecting Covid-19 on the Covid-CT and Sars-Cov-2 datasets containing CT images.

Model Accuracy Precision Recall F1-Score Specificity AUC (%)
DenseNet 92.09 0.92 0.92 0.92 92.09 92.09
AlexNet 86.51 0.87 0.86 0.87 86.49 86.49
ResNet 87.44 0.88 0.97 0.87 87.47 87.47
CspNet [98] 85.58 0.86 0.86 0.86 85.53 85.53
VGG16 50.39 0.25 0.50 0.34 50.00 50.00
VGG19 50.39 0.25 0.50 0.34 50.00 50.00
CovXNet [42] 88.99 0.89 0.89 0.89 89.03 89.03
CoroNet [40] 92.25 0.92 0.92 0.92 92.26 92.26
CovidXrayNet [41] 91.16 0.92 0.91 0.91 91.12 91.12
DarkCovidNet [39] 88.92 0.88 0.87 0.87 88.92 88.92
Proposed (No DDC) 91.63 0.92 0.92 0.92 91.62 91.62
Proposed+ DataAug. 86.36 0.86 0.86 0.86 86.33 86.33
Proposed (No GB) 93.33 0.93 0.93 0.93 93.31 93.31
Proposed(CovidDWNet+GB) 99.84 1.0 1.00 1.00 99.85 99.85