Table 5.
Success rates of models according to different metrics in detecting Covid-19 on the Covid-CT and Sars-Cov-2 datasets containing CT images.
Model | Accuracy | Precision | Recall | F1-Score | Specificity | AUC (%) |
---|---|---|---|---|---|---|
DenseNet | 92.09 | 0.92 | 0.92 | 0.92 | 92.09 | 92.09 |
AlexNet | 86.51 | 0.87 | 0.86 | 0.87 | 86.49 | 86.49 |
ResNet | 87.44 | 0.88 | 0.97 | 0.87 | 87.47 | 87.47 |
CspNet [98] | 85.58 | 0.86 | 0.86 | 0.86 | 85.53 | 85.53 |
VGG16 | 50.39 | 0.25 | 0.50 | 0.34 | 50.00 | 50.00 |
VGG19 | 50.39 | 0.25 | 0.50 | 0.34 | 50.00 | 50.00 |
CovXNet [42] | 88.99 | 0.89 | 0.89 | 0.89 | 89.03 | 89.03 |
CoroNet [40] | 92.25 | 0.92 | 0.92 | 0.92 | 92.26 | 92.26 |
CovidXrayNet [41] | 91.16 | 0.92 | 0.91 | 0.91 | 91.12 | 91.12 |
DarkCovidNet [39] | 88.92 | 0.88 | 0.87 | 0.87 | 88.92 | 88.92 |
Proposed (No DDC) | 91.63 | 0.92 | 0.92 | 0.92 | 91.62 | 91.62 |
Proposed+ DataAug. | 86.36 | 0.86 | 0.86 | 0.86 | 86.33 | 86.33 |
Proposed (No GB) | 93.33 | 0.93 | 0.93 | 0.93 | 93.31 | 93.31 |
Proposed(CovidDWNet+GB) | 99.84 | 1.0 | 1.00 | 1.00 | 99.85 | 99.85 |