Table 7.
Performance of Architectures for Covid-19 detection by different metrics on all datasets containing X-ray and CT images.
| Model | Accuracy | Precision | Recall | F1-Score | Specificity | AUC (%) |
|---|---|---|---|---|---|---|
| DenseNet | 93.05 | 0.94 | 0.93 | 0.94 | 90.41 | 95.11 |
| AlexNet | 90.98 | 0.92 | 0.91 | 0.91 | 86.91 | 93.66 |
| ResNet | 92.02 | 0.93 | 0.93 | 0.93 | 90.30 | 94.70 |
| CspNet [98] | 90.71 | 0.92 | 0.91 | 0.91 | 87.14 | 93.67 |
| VGG16 | 89.65 | 0.91 | 0.90 | 0.90 | 84.90 | 92.88 |
| VGG19 | 89.24 | 0.91 | 0.89 | 0.90 | 83.64 | 92.27 |
| CovXNet [42] | 92.45 | 0.94 | 0.91 | 0.93 | 88.85 | 93.86 |
| CoroNet [40] | 92.23 | 0.94 | 0.92 | 0.93 | 87.28 | 94.43 |
| CovidXrayNet [41] | 95.30 | 0.96 | 0.96 | 0.96 | 92.93 | 96.85 |
| DarkCovidNet [39] | 90.59 | 0.92 | 0.91 | 0.91 | 88.05 | 93.06 |
| Proposed (No DDC) | 92.19 | 0.93 | 0.92 | 0.93 | 87.69 | 94.40 |
| Proposed+ DataAug. | 91.92 | 0.94 | 0.91 | 0.90 | 89.90 | 93.10 |
| Proposed (No GB) | 93.36 | 0.94 | 0.94 | 0.94 | 91.73 | 95.50 |
| Proposed(CovidDWNet+GB) | 96.32 | 0.97 | 0.97 | 0.97 | 95.17 | 97.67 |