Skip to main content
. 2022 Dec 7;133:109906. doi: 10.1016/j.asoc.2022.109906

Table 7.

Performance of Architectures for Covid-19 detection by different metrics on all datasets containing X-ray and CT images.

Model Accuracy Precision Recall F1-Score Specificity AUC (%)
DenseNet 93.05 0.94 0.93 0.94 90.41 95.11
AlexNet 90.98 0.92 0.91 0.91 86.91 93.66
ResNet 92.02 0.93 0.93 0.93 90.30 94.70
CspNet [98] 90.71 0.92 0.91 0.91 87.14 93.67
VGG16 89.65 0.91 0.90 0.90 84.90 92.88
VGG19 89.24 0.91 0.89 0.90 83.64 92.27
CovXNet [42] 92.45 0.94 0.91 0.93 88.85 93.86
CoroNet [40] 92.23 0.94 0.92 0.93 87.28 94.43
CovidXrayNet [41] 95.30 0.96 0.96 0.96 92.93 96.85
DarkCovidNet [39] 90.59 0.92 0.91 0.91 88.05 93.06
Proposed (No DDC) 92.19 0.93 0.92 0.93 87.69 94.40
Proposed+ DataAug. 91.92 0.94 0.91 0.90 89.90 93.10
Proposed (No GB) 93.36 0.94 0.94 0.94 91.73 95.50
Proposed(CovidDWNet+GB) 96.32 0.97 0.97 0.97 95.17 97.67