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The extensive morbidity of colorectal cancer (CRC) and the inferior prognosis of terminal CRC urgently call for reliable
prognostic biomarkers. For this, we identified 704 differentially expressed genes (DEGs) by intersecting three datasets,
GSE41328, GSE37364, and GSE15960 from Gene Expression Omnibus database, to maximize the accuracy of the results.
Preliminary analysis of the DEGs was then performed using online gene analysis datasets, such as DAVID, UCSC Cancer
Genome Browser, CBioPortal, STRING, and UCSC Cancer Genome Browser. Cytoscape was utilized to visualize the protein
perception interaction network of DEGs, and the bubble map of GO and KEGG enrichment function was demonstrated using
the R package. The Molecular Complex Detection (MCODE), Biological Network Gene Oncology (BiNGO) plug-in in
Cytoscape, was applied to further screen the DEGs to obtain 15 seed genes, which were IL1RN, GALNT12, ADH6, SCN7A,
CXCL1, FGF18, SOX9, ACACB, PRRX1, MZB1, SLC22A3, CNNM4, LY6E, IFITM2, and GDPD3. Among them, IL1RN, ADH6,
SCN7A, ACACB, MZB1, and GDPD3 exhibited statistically significant survival differences, whereas limited studies were
conducted in CRC. Based on the enrichment results of the “Gene Ontology“(GO) and “Kyoto Encyclopedia of Genes and
genomes “(KEGG) as well as documented findings of key genes, we further emphasized the potential of IL1RN and PRRX1 as
markers of immune infiltrates in CRC and confirmed our hypothesis by compiling data from the UALCAN, Tumor Immune
Estimation Resource, and TISIDB databases for these two genes. The above-mentioned genes might offer a valuable insight
into the diagnosis, immunotherapeutic targets, and prognosis of CRC.

1. Introduction

Colorectal cancer (CRC) remains the third most prevalent
cancer globally, with the most recent data estimating its inci-
dence to be the second highest mortality rate [1]. Smoking,
processed meat, alcohol intake, red meat, low intake of veg-
etables and fruits, body fat, and obesity were all identified as
risk factors for the pathogenesis of CRC [2, 3]. Despite
advances in combination treatment regimens and individu-
alized therapeutic planning over the past decade, the average

survival time for advanced CRC has improved significantly
[4]. However, compared to a 5-year survival rate of approx-
imately 90% for patients with early-stage CRC, the 5-year
survival rate of those with advanced distant metastases has
fallen to less than 10%, suggesting that earlier diagnosis
and treatment are key to effectively optimizing the prognosis
of patients with CRC as well as reducing the burden of dis-
ease in the population [5]. Invasive and semi-invasive
screening modalities are effective in detecting early CRC,
yet studies point out that the overall screening rate for
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Figure 1: Venn diagram, PPI network, and module of IL1RN. (a) DEGs were selected with a fold change >1 and P < 0:01 among the mRNA
expression profiling sets GSE41328, GSE37364, and GSE15960. (b) The PPI network of DEGs was constructed using Cytoscape. (c) The
most module of IL1RN was obtained from PPI network with 33 edges.
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CRC does not reach the expected results, and few interven-
tions are proven to increase the acceptance of such screening
[6]. Both precise treatment and early screening for CRC call
for more non-invasive early screening biomarkers as well as
staging prognostic markers based on a deeper understanding
of the pathogenesis of CRC [7]. Therefore, great interest still
exists to further innovate the methodology in early diagnosis
of CRC.

Biomarkers are signposts for early cancer detection and
individualized CRC treatment [8]. Most notably, not only
do KRAS mutations accompanied with high risk of recur-
rence and metastasis after radical resection of CRC, but
also suggest a poorer overall prognosis after resection of
liver metastases from metastatic CRC [9, 10]. Carcinoem-
bryonic antigen (CEA) may be the most widely used clini-
cal biomarker to predict early recurrence in postoperative
patients [11]. Nevertheless, for CRC, its sensitivity and
specificity of the test are low. Exploration of biomarkers
that enable reliable estimation of CRC prognosis might
provide far-reaching implications in supporting therapy of
CRC [12]. Current bioinformatic techniques to identify
molecular targets that serve as biomarkers for CRC consti-
tute the mainstream research approach [13]. Owing to
genomic profiling methods coupled with updating bioinfor-
matics algorithms, comprehensive data association in com-
bination with bioinformatics analysis has enabled the
identification of plenty of clinical biomarkers available for
non-invasive cancer screening and prognostic assessment
of oncology patients [14]. Meanwhile, sophisticated mecha-

nisms within the tumor microenvironment (TME) appear
to be an emerging factor influencing the prognosis of
patients with malignancies, with the consequent recogni-
tion that tumor-infiltrating immune cells and tumor-
associated stromal cells can greatly impact on tumor pro-
gression and clinical outcome [15]. Identifying markers
indicating the intricacies of the CRC TME has been a hot
trend in bioinformatics, with immune-related prognostic
genes being of considerable significance [16].

Hence, here, we obtained the differentially expressed
genes (DEGs) of CRC by interacting multiple Gene Expres-
sion Omnibus (GEO) gene microarray datasets, further-
more, using diverse bioinformatics tools (DAVID and
Tumor Immune Estimation Resource [TIMER]) to explore
the possible mechanisms linking DEGs to CRC. These
include GO and KEGG pathway enrichment analyses, and
protein perception interactions (PPI) network as well as
immune infiltration were also included. It also reveals the
potential critical role of IL1RN and PRRX1 in CRC. Further-
more, mapping of DEGS function enabled us to identify
more precise key genes accompanying with a deeper percep-
tion of the role of IL1RN and PRRX1 in CRC.

2. Methods

GEO (http://www.ncbi.nlm.nih.gov/geo) database is known
as a freely accessible database containing gene expression
information, such as gene chips, high-throughput gene
expression data, and gene microarrays [17]. GSE41328

Table 1: Functional roles of 15 seed genes.

Gene
symbol

Function

IL1RN
Regulating various immune as well as inflammatory reactions related to interleukin 1, specifically at the early stage of

infectious or inflammatory conditions.

GALNT12
Facilitating the catalyzation of the transition of N- acetylgalactosamine from UDP-GalNAc to the surface acceptor at the first

stage of O-linked protein glycosylation.

ADH6 Codifying for class V alcohol dehydrogenase belonging to the alcohol dehydrogenase family.

SCN7A Encoding one of the many voltage-gated sodium channel proteins.

CXCL1 Acting as a chelating agent for neutrophils in the inflammatory process.

FGF18
Riching in functions regulating cell mitosis and maintaining cell survival activity, engaged in extensive biological processes

including growth and invasion of diverse neoplasms.

SOX9
Intervening in the differentiation procedure of chondrocytes, and in concert with SF1, involved in the regulation of the

transcribing of the AMH gene.

ACACB
Involving a pivotal step in the uptake and oxidation of fatty acids in mitochondria due to a mechanism involving inhibition of

the ability of carnitine-palmitoyl-CoA transferase I to control the oxidation of fatty acids.

PRRX1 Enhancing the binding potential of serum response factors to induce cell growth and differentiation.

MZB1 Involved in positive regulation of cell population proliferation.

SLC22A3
Involved in the removal of numerous internal sources of small organic cations as well as various pharmaceutical substances or

environmental toxins.

LY6E
Encoding a protein broadly engaged in regulating tumorigenesis and modulating immune function, which is located on the

cell surface and supplies the anchor point for GPI.

IFITM2 The protein encoded by this gene restricts cellular entry by diverse viral pathogens.

GDPD3 Enabling phosphoric diester hydrolase activity. Involved in N-acylethanolamine metabolic process.

CNNM4 Encoding a protein that assists in the transport of metal ions.
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[18], GSE37364 [19], and GSE15960 [20] were selected from
the GEO database. GSE41328 [18] contains 10 paired CRC
and normal tissue samples, whereas GSE15960 [20] contains
6 paired CRC and normal tissue samples. The information
regarding the selected CRC tissue samples was not further
explained in GSE41328 and GSE15960. 27 CRC tissue sam-
ples including 14 cases of colorectal adenocarcinoma at
Dukes A/B stage and 13 colorectal adenocarcinoma at Dukes
C/D stage and 38 normal tissue samples were selected from
GSE37364 [19] dataset.

2.1. Method 1. Comparison of target datasets filtered from
GEO database was performed by GEO2R (https://www
.ncbi.nlm.nih.gov/geo/geo2r) [17]. Furthermore, filter terms
were set at P < 0:05, logFC (fold change) >1 or logFC <−1
for DEG screening [21]. During this process, strict normali-
zation was conducted by using the official tools offered by
the GEO database. The intersecting DEGs were obtained
by taking three-way intersections of the screened DEGs
using the online open access Venn diagram tool (http://
bioinformatics.psb.ugent.be/beg/tools/venn-diagrams) [22].

2.2. Method 2. GO [23] and KEGG [24, 25] enrichment anal-
yses were constructed by utilizing the DAVID online gene

analysis database (DAVID; http://david.ncifcrf.gov) [26],
which covers molecular function (MF), cellular composition
(CC), and biological processes (BP) [23, 27]. The results of
the analysis are visualized in bubble charts by R package
(ggplot2), with an adjusted P < 0:05 considered statistically
significant [8, 28].

2.3. Method 3. The DEG interactions were analyzed using
STRING (STRING; http://string-db.org), an online gene
interaction database, and the PPI interactions network was
constructed using a “combined score > 0.4” as a screening
condition [29]. The results of PPI interactions were
imported into the open access bioinformatics software plat-
form Cytoscape (http://www.cytoscape.org; version 3.6.1)
for visualization [30]. The core modules and pivotal prog-
nostic genes among PPI network were screened by MCODE
in Cytoscape software [31]. The screening criteria were set
with MCODE score >5, degree-cuff=2, node score = 0.2,
max depth= 100, and kScore = 2. The major functions of
the seed genes were searched via NCBI (https://www.ncbi
.nlm.nih.gov/gene) and were presented in a table format.

2.4. Method 4. GO enrichment analysis and KEGG pathway
analysis of the hub gene were performed through the
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Figure 2: GO enrichment and KEGG pathway functional enrichment analyses of the DEGs. (a) The biological process (BP) of GO
classification. (b) The cell component (CC) of GO classification. (c) The molecular function (MF) of GO classification. (d) KEGG
pathway functional classification and annotation.
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Figure 3: Continued.
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DAVID Gene Analysis Online database (DAVID; http://
david.ncifcrf.gov) [26]. The analysis and visualization of
the BP of seed genes were conducted by the Cytoscape Bio-
logical Network Gene Oncology plugin (BiNGO) [32]. Con-
struction of hierarchical aggregations of seed genes was
undertaken at the UCSC Cancer Genome Browser (http://
genome-cancer.ucsc.edu) [33]. Overall survival analysis of
hub genes were performed by means of Kaplan-Meier curves
in cBioPortal (https://www.cbioportal.org/) [34].

2.5. Method 5. UALCAN (http://ualcan.path.uab.edu/), an
online data site that integrates RNA-seq and clinical data
from 31 malignancies of TCGA (https://portal.gdc.cancer
.gov/), was used to perform the analysis of IL1RN expression
levels with PRRX1, including differences in tissue type
(healthy/tumor), and GC staging (stages 1, 2, 3, and 4) in
COAD as well as READ [35].

2.6. Method 6. The TIMER2.0 (https://cistrome.shinyapps
.io/timer/) was used to systematically analyze the level of
immune infiltration in various malignancies [36]. The rela-
tionship between IL1RN and PRRX1 expression and
tumor-infiltrating lymphocytes (TILs) expression in COAD
and READ was investigated through the TIMER gene mod-
ule. Furthermore, the interaction between CRC and the
immune system, immune cells, was studied through the
online platform TISIDB (http://cis.hku.hk/TISIDB/index
.php) [37]. This includes the association of IL1RN and
PRRX1 with 28 TILs, 45 immunostimulants, and 24 immu-
nosuppressive agents in CRC.

2.7. Method 7. The HPA database (https://www.proteinatlas
.org/) allows online access to human proteins mapped in
cells, tissues, and organs through the integration of a variety
of histological techniques (including antibody-based imag-
ing and transcriptomics) [38]. IL1RN and PRRX1 expres-
sions in normal colorectal tissues and CRC tissues were
retrieved from the HPA database.

3. Results

3.1. Result 1. After data validation analysis, 1452 (GSE41328),
3424 (GSE37364), and 6037 (GSE15960) DEGSs were
obtained, and a total of 704 DEGs were found to be present
in all three datasets using online Venn diagram analysis
(Figure 1(a)).

3.2. Result 2. STRING and Cytoscape were used to construct
a PPI network and a gene perception network of 704 DEGs
(Figure 1(b)), both of which clearly showed the presence of
dense regions, that is, modules of genes closely related to
CRC (key genes). This network consists of 549 nodes and
1740 edges. Applying MCODE to construct the hub genes
module, for which the most intensively interacting block
seed gene was IL1RN (Figure 1(c)) and separating the 15
clusters (edges >5) of seeds genes further yielded 15 key
genes IL1RN, GALNT12, ADH6, SCN7A, CXCL1, FGF18,
SOX9, ACACB, PRRX1, MZB1, SLC22A3, CNNM4, LY6E,
IFITM2, and GDPD3. Detailed information on these seed
genes is contained in Table 1.

3.3. Result 3. The results of GO enrichment analysis and
KEGG pathway analysis of DEGs by the DAVID online tool
are presented in bubble charts, sorted by the number of
enriched genes, with the top 16 positions. As shown in the
figure, the main MFs involved in DEGs are extracellular
matrix structural constituent, RNA polymerase II transcrip-
tion regulatory region sequence-specific binding. DEGs are
involved in CC mainly in the plasma membrane, integral
component of membrane, negative regulation of cell prolif-
eration, positive regulation of cell migration, and other BP.
KEGG results show that DEGs are strongly associated with
metabolic pathways and cytokine–cytokine receptor interac-
tion (Figures 2(a), 2(b), 2(c), and 2(d)).

3.4. Result 4. The analysis of the biological interacting pro-
cess of the seed genes is presented in (Figure 3(b)). By apply-
ing hierarchical clustering analysis, it allows to judge that the
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samples
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(c)

Figure 3: GO enrichment, interaction network, and biological process analyses of the seed genes. (a) BP, MF, and CC of seed genes. (b) The
BP analysis of hub genes was constructed using BiNGO; P < 0:01 was considered statistically significant. (c) Hierarchical clustering of hub
genes was constructed using UCSC. The samples under the pink bar are non-cancerous samples, and the samples under the blue bar are
HCC samples. Upregulation of genes is marked in red; downregulation of genes is marked in blue.
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Figure 4: Continued.
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Figure 4: Continued.
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Figure 4: Continued.
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Figure 4: (a)–(d) and (g) Overall survival and (e), (f), and (h) disease-free survival analyses of hub genes were performed using cBioPortal
online platform. P < 0:05 was considered statistically significant.
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Expression of PRRX1 in COAD based on Sample types
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Figure 5: Continued.
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seed gene could clearly distinguish between CRC and nor-
mal samples (Figure 3(c)). The function of seed genes was
analyzed using DAVID. The results demonstrated that the
gene functions in this module were mainly enriched in
extracellular region, signal transduction. KEGG results
indicated that seed genes are involved in alcoholic liver dis-
ease pathological process and pyruvate metabolism
(Figure 3(a)). By sorting the results of the CBioPortal data-
base survival data and conducting prognostic survival anal-

ysis, it was found that four of the key genes, including
ACACB, GDPD3, MZB1, and SCN7A, were significantly
associated with overall CRC survival (Figures 4(a), 4(b),
4(c), and 4(d)). The correlation between ACACB, GDPD3D,
and CRC disease-free survival is statistically significant
(Figures 4(e) and 4(f)). IL1RN and PRRX1 showed higher
33 edges and 20 edges in the PPI network, but disease-
free survival of IL1RN along with overall survival and
disease-free survival of PRRX1 did not show a statistical
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Figure 5: Correlation between IL1RN and PRRX1 mRNA expression level and clinicopathological parameters of CRC through the
UALCAN database. (a)–(d) Sample type (normal/primary tumor). (e)–(h) Cancer stage (stages 1, 2, 3, and 4).
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difference, although it could reflect an associated correla-
tion with CRC progression (Figures 4(g) and 4(h)).

3.5. Result 5. The results of UALCAN analysis showed that
the expression levels of both IL1RN and PRRX1 were signifi-
cantly higher in colon and rectal cancer samples than in
healthy samples (Figures 5(a), 5(b), 5(c), 5(d), 5(e), 5(f), 5(g),
and 5(h)). In addition, this disparity became more obvious
with the progression of tumor stage, suggesting a potential
function of IL1RN and PRRX1 in tumor development and
migration.

3.6. Result 6. IL1RN belongs to the interleukin 1 cytokine fam-
ily, with its aberrant expression telling the incidence of carcino-
genesis and immunomodulation. PRRX1 is well established as
closely linked with the EMT inmalignancies. However, the rela-
tionship between IL1RN and PRRX1 in CRC with TILs is
unclear. The correlation between the level of immune infiltra-
tion of these two in CRC was assessed by the TIMER2.0 data-
base, demonstrating that either IL1RN or PRRX1 correlates
markedly with an elevation in TILs (Figure 6). This was reflected

by the fact that CD4+ T cells (Rho=0.339, COAD; Rho=0.267,
READ), neutrophils (Rho=0.607, COAD; Rho=0.474, READ),
macrophages (Rho=0.584, COAD; Rho=0.477, READ), and
myeloid dendritic cells (Rho=0.587, COAD; Rho=0.439,
READ) were all positively correlated with high PRRX1 expres-
sion (Figure 7). Elevated IL1RN expression was significantly
and positively correlated with neutrophils (Rho=0.664, COAD;
Rho=0.534, READ) and myeloid dendritic cells (Rho=0.514,
COAD; Rho=0.427, READ; Figure 7). All P-values were well
below 0.001. These suggested the crucial role of IL1RN and
PRRX1 in the immune infiltration of CRC. Furthermore, analy-
sis of IL1RN andPRRX1 expression inCRC in relation to immu-
nomodulators revealed that both are intimately involved in
the regulation of immune regulatory processes and that
IL1RN may be associated with immune escape. Expression
of IL1RN was significantly associated with immunosuppres-
sive agents, such as CD274 (Rho=0.537, COAD), HAVCR2
(RHO=0.515, COAD), PDCD1LG2 (RHO=0.489, COAD),
IL-10 (RHO=0.489, READ), HAVCR2 (RHO=0.508 READ),
and PDCD1LG2 (RHO=0.542, READ). IL1RN is also closely
linked to immunostimulatory factors, as shown by CD86
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Figure 6: Correlation of IL1RN and PRRX1 expression with immune infiltration in CRC. (a) and (b) Correlation between the expression of
IL1RN and PRRX1 and the abundance of TILs in CRC available at TISIDB database.
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(RHO=0.53, COAD), TNFRSF9 (RHO=0.495, COAD),
CXCR4 (RHO=0.487, COAD), CD86 (RHO=0.502, READ),
and CD80 (RHO=0.512, READ; Figure 8). PRRX1 showed
stronger correlations, for example, with immunostimulatory
factors, CD86 (RHO=0.683, COAD; RHO=0.674, READ),
ENTPD1 (RHO=0.661, COAD; RHO=0.652, READ),
TNFSF4 (RHO=0.779, COAD; RHO=0.782, READ), CXCR4
(RHO=0.513, COAD), and TNFSF13B (RHO=0.613, COAD;
RHO=0.625, READ) were significantly associated with PRRX1
expression, as well as with immunosuppressive factors,
TGFB1 (RHO= 0.573, COAD; RHO = 0.502, READ),
KDR (RHO = 0.566, COAD), HAVCR2 (RHO= 0.685,
COAD; RHO= 0.654, READ), TGFBR1 (RHO= 0.529,
COAD; RHO= 0.520, READ), and PDCD1LG2
(RHO= 0.685, COAD; RHO= 0.646, READ) were simi-
larly the same (Figure 9). All of the above results were
statistically significant.

3.7. Result 7. Elevated levels of IL1RN expression were corre-
lated with antibody HPA001482, along with increased
expression of PRRX1 correlating with antibody
HPA051084. Upon further analysis of the differences
between IL1RN and PRRX1 in normal colorectal tissues

and CRC tissues, we found that IL1RN could not be detected
in normal tissues, whereas in CRC tissues, IL1RN displayed
weak staining (Figures 10(a) and 10(b)). PRRX1 was also
undetectable in normal colorectal tissues but presented high
or medium staining in CRC tissues. However, the data in the
HPA database failed to point out location of PRRX1 concen-
tration (Figures 10(c) and 10(d)).

4. Discussion

Mutations in multiple genes or somatic cells make a large
part of causes that are associated with CRC heterogeneity.
Prompt application of diagnostic markers for risk stratifica-
tion and early detection would dramatically extend overall
survival time [39]. There exists a phenomenon that contem-
porary diagnostic marker assays for CRC are undoubtedly
shocking in number while disappointing in outcome [40].
Primarily, as the ideal screening or diagnostic biomarker is
expected to be highly sensitive and specific, few similar
markers fit this have been identified. Increasing attention is
being paid to the role of immunotherapy on the curative side
of CRC [41]. Meanwhile, studies noted that TILs were
proved to be implicated in tumor immune responses, which
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might be a predictor of outcome in response to immuno-
therapy and prognosis [42, 43]. Identification of specific
immune markers relevant to CRC and acquisition of new
immunotherapeutic targets turns to be an imperative task.

Currently, by further analysis of 15 seed genes filtered
out (IL1RN, GALNT12, ADH6, SCN7A, CXCL1, FGF18,
SOX9, ACACB, PRRX1, MZB1, SLC22A3, CNNM4, LY6E,
IFITM2, GDPD3), we discovered that IL1RN, ADH6,
SCN7A, ACACB, MZB1, and GDPD3 were very limitedly
studied in the context of CRC. Among them, SCN7A,
ACACB, and MZB1 showed statistically significant overall
patient survival or disease-free survival. However, there
exists an absence of literature related to these hub genes,
and more studies on the mechanisms of CRC disease pro-
gression deserve to be given to these genes. Using GO and
KEGG functional enrichment analyses, we found that hub
genes are involved in tumor immunity in their functions,
so we performed an immunobioinformatics database search
of 15 key genes to identify potential immune infiltration
marker roles of IL1RN and PRRX1.

IL1RN was the hub gene with the most edges found in
this study, despite the fact that its overall survival or
disease-free survival showed differences between the
cancer-bearing and normal populations, but online data-
bases suggested that the results were not statistically signifi-
cant. Ma et al. had explored the ability of antagonizing IL-1
to inhibit CRC liver metastasis, but did not dive into the
prospects of IL1RN in the context of CRC [44]. Wang
et al. demonstrated that targeting the metabolism of amino

acids like depriving methionine or targeting IL1RN might
provide novel orientations in curing glioma [45]. IL1RN
polymorphisms have similarly been proven to reduce the
population risk of thyroid cancer risk [46]. Existing litera-
ture suggests that IL1RN is closely related to tumor immu-
nity and tumor metabolism, of which further studies are
needed to investigate its value in the prognosis of immune
infiltration. According to our study, a strong correlation
was shown between IL1RN and CD274, which is well-
known as PD-L1 [47]. A brunch of evidences could confirm
the role of PD1/PDL1, an essential component of immune
checkpoints, in regulating TIL function [47]. CD274 partic-
ipates widely in the resistance of various cancers to treat-
ment, such as chemotherapy and targeted therapies as an
important immunosuppressive factor [48]. Targeting
immune checkpoint blockade of PD-1/PD-L1 is well estab-
lished in diverse tumors, with targeted PD-L1 emerging as
a routine treatment for common malignancies, including
CRC [49]. The correlation between IL1RN and CD274
implies that IL1RN is likely to be involved in PD-L1 targeted
therapy in the future. In addition, we noted PRRX1 pos-
sessed the astonishing potential to be a prognostic bio-
marker correlated with immune infiltrates in CRC.
Currently, a few publications have described the capacity
of PRRX1 to induce the EMT process in CRC cells, which
in turn facilitates distant CRC metastasis [50]. Moreover,
studies of PRRX1 in alternative tumor contexts also focus
mostly on its induction of the EMT process in tumor cells,
which leads to implications of proliferation, migration, and
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Figure 8: The expression of IL1RN is associated with immunomodulators in CRC. (a) Correlation between IL1RN expression and
immunoinhibitors in CRC available at TISIDB database. (b) Correlation between IL1RN expression and immunostimulators in CRC
available at TISIDB database.
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Figure 9: The expression of PRRX1 is associated with immunomodulators in CRC. (a) Correlation between PRRX1 expression and
immunoinhibitors in CRC available at TISIDB database. (b) Correlation between PRRX1 expression and immunostimulators in CRC
available at TISIDB database.
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invasion of tumor cells [51, 52]. However, there exists little
report on the potential of PRRX1 to interact with tumor
immune infiltration and thus affect patient prognosis. By
compiling data from online database, we found a remarkable
correlation between PRRX1 and TILs. PRRX1 showed signif-
icant correlations with both immunostimulators and immu-
noinhibitors. For instance, the correlation coefficient
between PRRX1 and CD86, a co-stimulatory molecule on
antigen-presenting cells that had been demonstrated to act
as a pivotal role in tumor immunity in pancreatic and blad-
der cancers, reached 0.683 [53, 54]. In addition, as the tumor
pathology progressed, the expression of PRRX1 in CRC tis-
sues gradually increased. All these evidences pointed to the
promising potential of PRRX1 as a marker of tumor immune
infiltration. Although current study initially reveals the util-
ity of IL1RN and PRRX1 as markers of immune infiltration,
what is lacking is that this conclusion relies only on data
from online databases and lacks specific experiments to val-
idate this unique potential.

Furthermore, although our study identified hub genes as
affecting CRC and revealed promising potential for being
biomarkers, subgroup information, such as tumor location
as well as staging, was not precisely pinpointed. Along with
the disclosure of increased sequencing data, precisely target-
ing biomarker function to location-specific, stage-specific
features would be much more likely.

Similarly, whereas the aforementioned SCN7A, ACACB,
and MZB1 showed statistically significant prognostic results,
further biological experiments are required to investigate
their roles in the context of CRC.

5. Conclusion

In conclusion, 704 DEGs with specific expression in CRC
were identified by bioinformatics means, basing on which
15 selected genes with enhanced differential properties were
further identified, all of which may operate as diagnostic
markers for CRC. Furthermore, 15 seed genes were further
characterized to identify initially the potential of IL1RN
and PRRX1 as markers of tumor immune infiltration in
CRC tissues.
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