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A B S T R A C T   

Background: The growth in multi-center neuroimaging studies generated a need for methods that mitigate the 
differences in hardware and acquisition protocols across sites i.e., scanner effects. ComBat harmonization 
methods have shown promise but have not yet been tested on all the data types commonly studied with magnetic 
resonance imaging (MRI). This study aimed to validate neuroCombat, longCombat and gamCombat on both 
structural and diffusion metrics in both cross-sectional and longitudinal data. 
Methods: We used a travelling subject design whereby 73 healthy volunteers contributed 161 scans across two 
sites and four machines using one T1 and five diffusion MRI protocols. Scanner was defined as a composite of 
site, machine and protocol. A common pipeline extracted two structural metrics (volumes and cortical thickness) 
and two diffusion tensor imaging metrics (mean diffusivity and fractional anisotropy) for seven regions of in-
terest including gray and (except for cortical thickness) white matter regions. 
Results: Structural data exhibited no significant scanner effect and therefore did not benefit from harmonization 
in our particular cohort. Indeed, attempting harmonization obscured the true biological effect for some regions of 
interest. Diffusion data contained marked scanner effects and was successfully harmonized by all methods, 
resulting in smaller scanner effects and better detection of true biological effects. LongCombat less effectively 
reduced the scanner effect for cross-sectional white matter data but had a slightly lower probability of incorrectly 
finding group differences in simulations, compared to neuroCombat and gamCombat. False positive rates for all 
methods and all metrics did not significantly exceed 5%. 
Conclusions: Statistical harmonization of structural data is not always necessary and harmonization in the 
absence of a scanner effect may be harmful. Harmonization of diffusion MRI data is highly recommended with 
neuroCombat, longCombat and gamCombat performing well in cross-sectional and longitudinal settings.   

1. Introduction 

Recent years have seen a growth in collaborative neuro-imaging 
studies. Whilst these allow for recruitment of larger and more repre-
sentative populations, they also introduce the challenge of accounting 
for different scanner hardware and acquisition settings used at each 
study site. This difference between scanners, or “scanner effect”, can be 

of similar magnitude as the difference between patients and controls 
(Pinto et al., 2020). Thus without correction for scanner effects (i.e., 
harmonization), the gain in statistical power from larger patient 
numbers would be cancelled out by the increase in noise. 

Prospective studies (e.g., CENTER-TBI (Maas et al., 2015), 
TRACK-TBI (Yue et al., 2013), IMAGEN (Schumann et al., 2010)) have 
the opportunity to reduce scanner-effects by agreeing a priori on 
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uniform acquisition protocols across sites, although hardware differ-
ences between sites persist. Retrospective or evolving collaborations 
however, such as the Enhancing NeuroImaging Genetics through 
Meta-Analysis (ENIGMA) consortium and the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database, have to also consolidate 
acquisition protocols that vary across sites or needed to be updated over 
time. 

To capitalize on the wealth of existing imaging data and continue 
fruitful collaborations, the imaging community needs robust harmoni-
zation methods that have been validated on all the data types and im-
aging metrics that they are intended to be used on. 

A variety of harmonization methods have been developed to mini-
mize the unwanted scanner effect but preserve the biological variability 
(Pinto et al., 2020). These include methods to harmonize the images 
themselves and those applied to the extracted features (e.g., regional 
cortical thickness). The drawbacks of harmonizing images themselves 
include the need to share actual images across sites (data sharing, 
anonymization and data volume challenges), the greater demand on 
computational resources and often a priori requirements for study 
design (e.g., participants to be matched in age and gender across sites, or 
protocols to be consistent across sites). For these reasons, harmonizing 
already extracted imaging features is often more practicable. 

A popular method for the harmonization of extracted features is 
ComBat (“combating batch effects when combining batches”), which 
was originally developed for genomic data (Johnson et al., 2007) and 
has then been adapted to neuroimages (R package “neuroCombat”) 
(Fortin et al., 2017, 2018). NeuroCombat adjusts the values of the 
extracted imaging features, so that the whole cohort can be treated as if 
all images had been obtained from the same scanner. Expected values 
are estimated using a linear model with biological variables (such as age 
and sex) as well as additive and multiplicative scanner effects as pre-
dictors (Fortin et al., 2018). Empirical Bayes is used to better estimate 
the model parameters for small sample sizes (Fortin et al., 2018). 

NeuroCombat has been shown to increase statistical power superior 
to other feature-harmonization methods in cross-sectional population 
data: when associating age with cortical thickness (Fortin et al., 2018) or 
with diffusion metrics (fractional anisotropy (FA) and mean diffusivity 
(MD)) (Fortin et al., 2017), and when comparing patients with controls 
with regards to cortical thickness, cortical surface area and volumes of 
sub-cortical nuclei (Radua et al., 2020). Other examples of applications 
to cross-sectional data include the use for positron emission tomography 
(Orlhac et al., 2018) and functional MRI (Yu et al., 2018). More recently, 
Pomponio et al. modified neuroCombat to allow for non-linear covariate 
effects by using generalized additive models (from now on referred to as 
gamCombat) and applied their method to study volumetric changes 
across the human lifespan (Pomponio et al., 2020). Beer et al. adapted 
ComBat specifically to longitudinal data (R package longCombat) and 
showed that longCombat was more powerful for detecting a change in 
cortical thickness over time, compared to neuroCombat (Beer et al., 
2020). 

The aforementioned studies are limited by the absence of a “ground 
truth”. How much of the scanner effect a harmonization method has 
removed and how much of the true biological effect it has preserved can 
only be known when using a “travelling subject “cohort. A “travelling 
subject” is a participant that is scanned on multiple scanners within a 
short timeframe, to allow for these scanners to be compared. One such 
cohort, where the same 20 subjects were scanned on three different 
scanners, has been used to assess the performance of neuroCombat on 
cortical thickness, cortical and total sub-cortical volume (Maikusa et al., 
2021). The authors found that neuroCombat did remove some but not all 
of the scanner effect (Maikusa et al., 2021). This study was limited 
though by the fact that scans of the same subject were up to 14 months 
apart so that true cortical loss during the study period cannot be 
excluded. In addition, the performance on longitudinal and/or diffusion 
data was not assessed. 

In summary, ComBat harmonization is a promising technique but not 

all variants have been validated in cross-sectional cohorts for individual 
tissue volumetric data and none have been validated in longitudinal 
cohorts for volumetric or diffusion data. 

The present study therefore aims to answer the following question, 
using a travelling subject cohort: Given that MRI data can be cross- 
sectional or longitudinal, and can include structural or diffusion met-
rics - do all of these data types benefit from harmonization and, if yes, 
which ComBat harmonization method (neuroCombat, longCombat or 
gamCombat) is best for each data type? 

2. Methods 

2.1. Participants 

Participants were healthy controls imaged between August 22, 2006 
and December 17, 2019 at either the Wolfson Brain Imaging Center, 
Cambridge (UK) or the Turku University Hospital (Finland). Ethical 
approval was obtained from the Cambridgeshire Local Research Ethics 
Committee (LREC 97/290), the Norfolk Research Committee (REC EE/ 
0395), the NHS Health Research Authority (14/SC/1370) and the 
Ethical Committee of the Hospital District of South-West Finland (de-
cision 68/180/2011). Written consent was obtained for all participants. 

This study assessed the performance of ComBat harmonization 
methods on both cross-sectional and longitudinal data, necessitating 
three participant cohorts with different eligibility criteria. The cross- 
sectional data approach compares the scan-rescan variability in sub-
jects who had two scans less than 180 days apart on the same scanner 
(within-scanner cohort) with the scan-rescan variability in subjects who 
had two scans less than 180 days apart on different scanners (across- 
scanner cohort). We refer to this cohort as cross-sectional to differentiate 
it from the longitudinal cohort although even in this cohort each subject 
had more than one scan (a pre-requisite for calculating a ground truth 
and for implementing the some of the harmonization algorithms tested 
here). The longitudinal data approach uses subjects who had a reference 
scan followed by two follow-up scans more than 365 days later, one on 
the same and one on a different scanner to the reference scan (longitu-
dinal cohort). Scanner was defined as a composite of site, manufacturer 
model and acquisition settings. 

2.2. Image acquisition 

Images were acquired at both study sites on 3T MRI scanners (Trio, 
Verio and Prisma models of Siemens Medical Solutions, Erlangen, Ger-
many) and included structural and/or diffusion MRI. 

Structural images were acquired as T1-weighted images using 
magnetization-prepared rapid acquisition with gradient echo 
(MPRAGE). Both sites used TE = 2.98 ms, TR = 2300 ms, TI = 900 ms, 
flip angle = 9 deg, matrix size = 256 × 240 x 176 1 mm isotropic voxels 
with sagittal slices. 

Diffusion MRI protocols are summarized in Table 1. Note that for the 
multi-shell scans both the posterior to anterior and the anterior to pos-
terior phase encoding directions were collected, to correct for phase- 
encoding direction induced distortions. 

2.3. Image processing 

All images were processed on a common pipeline (Winzeck, 2021) to 
extract two structural metrics (volume and mean cortical thickness) and 
two diffusion metrics (means of fractional anisotropy (FA) and mean 
diffusivity (MD)) in seven regions of interest (ROIs): ventricles, cortical 
gray matter, supra-tentorial white matter, supra-tentorial deep gray 
matter, cerebellar gray matter, cerebellar white matter, brainstem; or for 
cortical thickness: frontal, insular, parietal, occipital, temporal, hippo-
campal and whole cortex. In brief, images were neck cropped and cor-
rected for scanner field inhomogeneities. Diffusion tensor images were 
corrected for noise, Gibbs ringing, eddy current and motion artefacts 
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and field inhomogeneities (Manjón et al., 2013; Veraart et al., 2016a, 
2016b; Jeurissen et al., 2014; Andersson and Sotiropoulos, 2016). FSL 
(Jenkinson et al., 2012) was used for weighted-least squares estimation 
of diffusion tensors to calculated FA and MD maps. T1w images were 
parcellated into ROIs using MALP-EM (Ledig et al., 2015) and rigidly 
co-registered to diffusion tensor imaging (DTI) space to extract mean FA 
and MD values for each ROI. Cortical thickness was computed using 
diffeomorphic registration-based cortical thickness (DiReCT) estimation 
via nipype’s built-in interface for the ANTS KellyKapowskialgorithm 
(Das et al., 2009). All processed images were visually inspected for 
quality assurance. 

2.4. Statistical analysis 

All statistical analysis was performed in R (version 4.1.1) (R Core 
Team. R, 2021). P-values were adjusted for multiple comparison’s 
within each column of each table using Holm’s method. 

2. .4.1 Harmonizing data 
Harmonization was performed using the R packages neuro-

Combat_1.0.13 (“https://github.com/Jfortin1/neuroCombat_Rpackag 
e”) (Fortin et al., 2017, 2018), longCombat_0.0.0.90000 (“https://gith 
ub.com/jcbeer/longCombat”) (Beer et al., 2020) and neuroHarmonize, 
which we refer to as gamCombat, (“https://github.com/rpomponio 
/neuroHarmonize”). (Pomponio et al., 2020) Harmonization was per-
formed separately for each of the metrics (volume, cortical thickness, 
MD and FA) and for each of the two analysis approaches. Covariates 
used in the harmonization included “age”, “sex”, “intracranial volume” 
and “time since the first scan”. For the estimation of the false positive 
rate (FPR) “group” was also included (a randomly assigned label of 
either A or B, see section 2.4.4). For neuroCombat we used default set-
tings i.e., a parametric prior for the main analysis. We also conducted 
sensitivity analyses using a non-parametric prior (argument parametric 
= FALSE) as well as fitting a non-bayesian location-shift model (argu-
ment eb = FALSE). For longCombat default settings were used with the 
formula and ranef arguments corresponding to the respective mixed 
model used in subsequent analysis. For cross-sectional data we esti-
mated a subject-specific intercept (ranef = (1|subject)); for longitudinal 
data we estimated either a subject-specific intercept only (ranef = (1 | 
subject)) or a subject-specific intercept and slope over time (ranef = (1 
+ time | subject)) formethods “longCombat_i” and “longCombat_i + s” 
respectively. For gamCombat we used default settings and specified a 
non-linear effect for the covariate age (smooth_terms = age). 

2.4.2. Comparing performance of different harmonization methods 
For the cross-sectional data, the scan-rescan variability was 

measured using the coefficient of variation expressed as a percentage 
(CoV = standard deviation/mean*100) for each scan pair in each per-
son. The mean CoV in the within-scanner cohort provides a measure of 
random noise not amenable to harmonization. This random noise is 
caused by a combination of physiological noise (e.g., hydration status of 

the subject), thermal noise (e.g., acquisition related) and statistical noise 
(e.g., stochastic steps in the image processing pipeline) (Fig. 1). Here, a 
CoV of 2% can be interpreted, for example, as follows: when measuring 
the ventricular volume of the same subject repeatedly on the same 
scanner, the standard deviation across repeat scans will be 2% percent of 
the mean ventricular volume. The mean CoV in the across-scanner 
cohort provides a measure of random noise plus scanner effect 
(Fig. 1). Therefore, if the mean CoV in the across-scanner cohort is 
significantly larger than the mean CoV in the within-scanner cohort, 
then there is a significant scanner effect. For example, if the CoV in the 
within-scanner cohort is estimated at 2% and the CoV in the across- 
scanner cohort at 3%, then the extra 1% of noise can be ascribed to 
the scanner effect. The CoV of each of the across-scanner cohorts 
(unharmonized, neuroCombat-harmonized,longCombat-harmonized 
and gamCombat-harmonized) was compared with the within-scanner 
cohort using a t-test. P-values were adjusted for multiple comparisons 
using Holm’s method and considered significant if < 0.05. For signifi-
cant scanner effects the magnitude of this effect was estimated using 
Cohen’s d (Cohen, 1992). 

In the longitudinal cohort each subject had one initial reference scan 
and two follow-up scans, one on the same scanner as the reference scan 
(within-scanner follow-up) and one on a different scanner (across- 
scanner follow up) at least 365 days after the reference scan. The two 
follow up scans were done within approximately 6 months of each other: 
median (range) for structural and diffusion cohorts were 6.6 (0.0–53.3) 
and 6.3 (0.0–53.3) months. To correct for any differences in the follow- 
up interval, the annual rate of change (e.g., volume loss per year) was 
calculated between the reference scan and each of the follow-up scans. 
This allowed for the calculation of what the imaging metric for the 
across-scanner follow-up would have been, had that scan been done on 
the same day as the within-scanner follow-up. A sample calculation for 
volume would be: 

Volumeadjusted =Volumereference + (Timewithin ∗ Rateacross)

where Volumereference is the volume on the initial reference scan, Vol-
umeadjusted is the volume from the follow-up scan on a different scanner, 
Timewithin is the time between the reference scan and the within-scanner 
follow-up and Rateacross is the rate of volume change per unit time 
measured between the reference scan and the across-scanner follow-up. 
The discrepancy between the within-scanner and adjusted across- 
scanner follow-ups was considered to be caused by differences in 
hardware and acquisition settings, i.e., the scanner effect. We quantified 
the scanner effect for each subject using the percentage CoV. One would 
expect the CoV to be large in unharmonized data and reduced in 
harmonized data. To compare the CoV between harmonization methods 
taking account of repeated measures within subjects, we fitted a linear 
mixed model with CoV as the independent variable, method as a fixed 
effect and subject as a random effect. A harmonization method was 
considered to have had a statistically significant effect, if the 95% con-
fidence interval for its coefficient did not cross 0. 

Table 1 
Summary of acquisition protocols used for diffusion tensor imaging.  

Protocol A B C D E 

Site Turku Cambridge Cambridge Cambridge Cambridge 
Shells Single Single Single Multi Multi 
Bands Single Single Single Single Multi 
Directions 64 32 63 12 98 
b-values (s/mm2) 1000 1000 1000 350, 650, 1000, 1300, 1600 300, 1000, 2000 
B ¼ 0 1 1 1 1 5 
Voxel size (mm2) 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 1.75 × 1.75 × 1.75 
TE (ms) 106 91 106 119 75 
TR (s) 11.7 9.8 11.7 12.3 2.433 
Field of view (mm) 192 256 192 192 192 
Matrix size 96 × 96 128 × 128 96 × 96 96 × 96 110 × 110 
Slices 77 75 63 63 76  
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2.4.3. Assessing whether harmonization obscures true biological effects 
The correlation between the biological effect observed after 

harmonization and the true biological effect (ground truth) was assessed 
with the intra-class correlation coefficient. A value of 1 would indicate 
that the entire biological effect was detectable after harmonization, a 
value of zero would indicate that the entire biological effect was 
obscured after harmonization. The biological effect in question was the 
annual rate of change in the imaging parameter between the initial 
reference scan and the follow-up scan (approximately 3–5 years later), e. 
g., volume loss in supratentorial white matter. The ground truth was the 
annualized rate of changed measured when rescanning the subject on 
the same scanner as the original reference scan. 

2.4.4. Comparing the false positive rate of different harmonization methods 
Each subject was randomly assigned to either group A or group B. 

Mixed models were fitted to test for a difference between group A and B 
with respect to the intercept (e.g., Does group A have higher volumes 
than group B?) and the slope (e.g., Does group A experience greater loss 
of white matter per unit time than group B?). Models also controlled for 
age and sex (as fixed effects) and repeated within-subject measurements 
(random effect). Any significant difference (p < 0.05) between the 
groups was considered a false positive. The FPR was calculated by 
repeating the random group assignment 1000 times and counting the 
number of unadjusted p-values <0.05. This simulation was performed 
for each of the seven ROIs for the original and all harmonized datasets 
(neuroCombat, longCombat and gamCombat). The Friedman test, a non- 
parametric equivalent to the repeated measures ANOVA, was used to 
compare the FPRs of the different harmonization methods with each 
other. To decide whether each individual FPR for each method, metric 
and data type was acceptable, we tested whether the FPR was signifi-
cantly greater than the widely accepted 5% threshold using a one- 
sample one-sided Wilcoxon test. 

2.5. Data and code availability 

The R code for the statistical analysis is publicly available at htt 
ps://github.com/DrSophieRichter/Validate_ComBat. Upon request de- 
identified imaging data can be made available to individual research 
groups, by submitting a formal project outline and signing data sharing 
agreements with each site. The authors are also open to applying future 
harmonization algorithms on this dataset to support development and 
assessment of novel methods (please contact the corresponding author if 
interested). 

3. Results 

This study included 161 scans from 73 participants. Cohort charac-
teristics are summarized in Table 2. The median scan-rescan interval 
was three weeks or less, and more than three years in the cross-sectional 
and longitudinal cohorts respectively. All cohorts contained 

Fig. 1. Components of scan-rescan variability 
within the same subject. Random noise is 
comprised of physiological (e.g., subject related), 
thermal noise (e.g., acquisition related) and statistical 
noise (e.g., image processing related). Scanner effect 
is the part of the scan-rescan difference amenable to 
harmonization and is caused by differences in the 
hardware and/or acquisition settings between the 
first and the second scan. True biological change is 
the measurement of interest in longitudinal studies e. 
g., the reduction in cortical volume or fractional 
anisotropy over time.   

Table 2 
Characteristics of cohorts included in the analysis. The numbers between 
structural and diffusion tensor images differ because the definition of “scanner” 
included acquisition characteristics. E.g., a subject may have been scanned twice 
on the same machine using identical settings for structural image acquisition but 
different settings for diffusion image acquisition on the two occasions.  

Cohort Cross-sectional 
within scanner 

Cross-sectional 
across scanner 

Longitudinal cohort 

Inclusion 
criteria 

Each subject had 2 
scans on the same 
scanner less than 
180 days apart 

Each subject had 2 
scans on two 
different scanners 
less than 180 days 
apart 

Each subject had one 
reference scan and 2 
follow-up scans more 
than 365 days later. 
One follow-up scan 
was on the same, the 
other on a different 
scanner to the 
reference scan. 

Used in Cross-sectional 
approach 

Cross-sectional 
approach 

Longitudinal 
approach 

Structural images 
Subjects 62 23 17 
Scans 124 46 51 
Scanners 4 5 3 
Time 

between 
scans, 
median 
(range) 

21.5 (2.0–180.0) 
days 

7.0 (0.0–160.0) 
days 

Within: 5.0 (1.6–9.4) 
years 
Across: 5.2 (1.8–9.5) 
years 

Age, median 
(range) 

33 (19–84) 38 (26–59) 39 (24–62) 

Male sex, 
count (%) 

32 (52%) 11 (48%) 10 (59%) 

Diffusion tensor images 
Subjects 39 32 14 
Scans 78 64 42 
Scanners 5 9 6 
Time 

between 
scans, 
median 
(range) 

20.0 (2.0–180.0) 
days 

13.5 (0.0–160.0) 
days 

Within: 3.2 (1.4–9.2) 
years 
Across: 3.3 (1.8–12.8) 
years 

Age, median 
(range) 

33 (20–84) 34 (19–59) 38 (25–64) 

Male sex, 
count (%) 

19 (49%) 17 (53%) 8 (57%)  
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approximately equal numbers of men and women, with an age range 
representing most of the adult lifespan. 

3.1. Performance of different harmonization methods applied to cross- 
sectional data 

The performance of the three harmonization methods (neuro-
Combat, longCombat and gamCombat) applied to cross-sectional data is 
summarized in Table 3. The CoV in the within-scanner cohort, i.e., 
random noise, ranged between 0.8 and 5.5% depending on the metric 
and ROI investigated. 

For structural data the CoV in the across-scanner cohort did not differ 
significantly from that in the within-scanner cohort, suggesting that the 
use of different scanners did not introduce any additional noise which 
could have been targeted by harmonization. Attempting nonetheless to 
harmonize structural data had no significant effect. 

For DTI metrics the CoV in the across-scanner cohort differed 
significantly from that in the within-scanner cohort for most ROIs, 
indicating small-large scanner effects. NeuroCombat, longCombat and 
gamCombat, successfully removed all significant scanner effect, with 
one exception: The scanner effect apparent in the supratentorial white 
matter could only be reduced but not completely removed (Cohen’s 
d 0.36, 0.55 and 0.34 after neuroCombat, longCombat and gamCombat 
harmonization respectively).Sensitivity analyses showed that the 

version of neuroCombat presented in Table 3, which is using a para-
metric prior, performs better than alternative implementations with a 
non-parametric prior or a non-bayesian approach (supplemental 
Table 1). 

3.2. Performance of different harmonization methods applied to 
longitudinal data 

The ability of the three harmonization methods (neuroCombat, 
longCombat, and gamCombat) to reduce the scanner effect in longitu-
dinal data is illustrated in Fig. 2. Points to the left of the vertical gray line 
(denoting zero scanner effect) indicate a reduction in scanner effect, 
points to the right an increase in scanner effect. A harmonization method 
reached statistical significance if its bars (95% confidence intervals) did 
not cross the gray line. 

For structural data none of the harmonization methods significantly 
altered the scanner effect in any ROI, with two exceptions. Neuro-
Combat and gamCombat applied to ventricular volumes inadvertently 
increased the scanner effect by 3 percentage points compared to 
unharmonized data. LongCombat methods applied to hippocampal 
cortical thickness increased the scanner effect by 1 percentage point. 

For diffusion data all harmonization methods significantly reduced 
the scanner effect in all ROIs, with two exceptions. LongCombat 
methods just failed to reach significance for FA in the ventricles (where 

Table 3 
Scanner effect before and after harmonization. Healthy subjects were scanned twice less than 180 days apart on either the same scanner (Within- 
scanner) or on two different scanners (Across-scanner). ICC = intra-class correlation coefficient. CoV = Coefficient of variation. This can be inter-
preted, for example for line 1, as follows: when measuring the ventricular volume of the same subject repeatedly on the same scanner, the standard 
deviation across repeat scans will be 1.6% (±1.4) of the mean ventricular volume. ΔCoV is the across-scanner CoV minus the within-scanner CoV i.e., a 
measure of how much variation is added by using a different scanner for the second scan. The within-scanner CoV and across-scanner CoV were 
compared with a t-test. Raw p-value and adj. p-value show the p-values before and after adjustment for multiple comparisons using Holm’s method. 
We considered the use of different scanners to have a significant effect if adj. p-value < 0.05. Where this was the case, the magnitude of this scanner 
effect is calculated as Cohen’s d with the color coding of purple/pink/rose for large/medium/small effects with the thresholds of 0.8, 0.5 and 0.2 
respectively. Non-significant scanner effects (ns) are coloured green. Supratent. = Supratentorial, WM = white matter, GM = gray matter, DTI =
diffusion tensor imaging. 
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measuring FA is arguably meaningless) as did all methods in the 
brainstem. 

A sensitivity analysis using different settings for neuroCombat and 
longCombat yielded similar results (supplemental figures 1 and 2). 

3.3. Assessment of whether harmonization obscures true biological effects 

The ability of different harmonization methods to detect the true 
biological change over time when the follow up scan is performed on a 
different scanner to the initial reference scan, is summarized in Table 4. 

For structural data, the observed biological effect correlated well 
with the ground truth even in unharmonized data (most intra-class 
correlation coefficients >0.5). This correlation was not enhanced by 
harmonization. Indeed, the biological effect was slightly obscured by 
harmonization. This was especially pronounced when using the non- 
bayesian neuroCombat implementation (most regions of interest), 
when harmonizing whole cortex cortical thickness (all harmonization 
methods) and when harmonizing ventricular volumes (all but long-
Combat methods). 

For DTI metrics the biological effect was largely lost in unharmon-
ized data (most intra-class correlation coefficients <0.5) but restored by 
harmonization, irrespective of the method used. 

3.4. False positive rate using different harmonization methods 

Median false positive rates ranged around the 5% mark expected by 
chance and remained below 10% for all harmonization methods (Fig. 3). 
Indeed, after adjustment for multiple comparisons, none of the false 
positive rates significantly exceeded the widely accepted 5% threshold. 

Testing for a difference in intercept (e.g., “Does group A have larger 
volumes than group B”), the neuroCombat- or gamCombat-harmonized 

data generated more false positives than unharmonized or longCombat 
harmonized data. After adjustment for multiple comparisons this dif-
ference remained significant for all metrics except volume, both when 
using cross-sectional data and when using longitudinal data. 

Testing for a difference in slope (e.g., “Does group A experience 
greater white matter loss per unit time than group B?“), longCombat- 
harmonized data tended to produce fewer false positives than 
unharmonized, neuroCombat- or gamCombat-harmonized data, 
although after correction for multiple comparisons this only remained 
significant for cortical thickness. 

4. Discussion 

This is the first comprehensive validation of cross-sectional and 
longitudinal ComBat harmonization methods for neuroimaging data on 
travelling subjects (i.e., the same subject scanned on multiple scanners). 
We demonstrate overall robust performance of all methods, neuro-
Combat, longCombat and gamCombat, with regards to power and false 
positive rates, for harmonizing cross-sectional and longitudinal, struc-
tural and diffusion data. 

To the authors‘ knowledge this is the largest study of ComBat 
harmonization using travelling subjects to date (and only the second) 
(Maikusa et al., 2021), the first to include diffusion data and the first to 
include longitudinal travelling subject data. 

The scan-rescan variability observed in our study, both within and 
across scanners, compares well with those previously reported for vol-
umes (Wittens et al., 2021; De Guio et al., 2016; Jovicich et al., 2009; 
Kruggel et al., 2010; Yang et al., 2016; Fujita et al., 2019; Vavasour 
et al., 2019; Deprez et al., 2018), cortical thickness (Fujita et al., 2019; 
Kecskemeti et al., 2021; Mcguire et al., 2017) and diffusion metrics 
(Acheson et al., 2017; Grech-Sollars et al., 2015; Kamagata et al., 2015; 
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Liu et al., 2014; Palacios et al., 2017; Prohl et al., 2019; Shahim et al., 
2017; Veenith et al., 2013; Zhou et al., 2018). 

First, we assessed the effect of harmonizing structural data. Inter-
estingly, we did not detect any significant scanner effect in the 
unharmonized data, suggesting that harmonization of structural data in 
our cohort was not necessary. Most imaging studies would not include 
travelling subjects, so would not know whether a scanner effect is pre-
sent and might proceed to harmonization “just in case”. We therefore 
applied the ComBat harmonization methods to our structural data 
nonetheless to see what the effect would be in a dataset without sig-
nificant scanner differences. 

Importantly, we detected increased scanner effects after harmo-
nizing ventricular volumes and hippocampal cortical thickness in lon-
gitudinal data. The effect on hippocampal cortical thickness is very small 
and might be a false positive, considering that 95% confidence intervals 
are not corrected for multiple comparisons. The effect on ventricular 

volume however is larger and apparent in both, the cross-sectional and 
the longitudinal analysis, especially when using neuroCombat or gam-
Combat (although it did not survive testing for multiple comparisons in 
the cross-sectional analysis). It is possible that the scanner characteris-
tics exert different effects on cerebrospinal fluid (CSF) compared to 
tissue and that CSF volumes need to be harmonized separately from 
tissue volumes. This however is not possible unless more than one CSF 
ROI is available as ComBat harmonization techniques require more than 
one ROI. Since the scanner effect was undetectable for unharmonized 
ventricular volumes, we would consider it safest to use unharmonized 
data when studying ventricular volumes. 

For structural metrics (volumes and cortical thickness) in other ROIs 
we found neither an increase nor a decreasein the scanner effect after 
harmonizing the data. Worryingly, we found that harmonization 
methods obscured some of the true biological effect in structural data. 
This contradicts previous findings which suggested a gain in power by 
using neuroCombat (Fortin et al., 2018; Radua et al., 2020; Maikusa 
et al., 2021) or longCombat (Beer et al., 2020). There are two possible 
explanations for this, the first being a difference in sample size. With our 
study being a travelling subject cohort study, it is necessarily smaller 
than previous studies (using hundreds to thousands of subjects)(Fortin 
et al., 2018; Radua et al., 2020; Beer et al., 2020) and may have been 
underpowered to detect a small scanner effect. Secondly, all our struc-
tural images were acquired using the same sequence type (MPRAGE) 
and acquisition parameters, on models of the same vendor (Siemens), 
and were processed on a common pipeline at the same site. Previous 
studies combined different sequences, vendors and pipeline variations. 
This may explain the absence of a significant scanner effect in our 
structural data.and may have shifted the cost-benefit equation of 
harmonization so that the cost of reducing some true biological variance 
outweighed the benefit of reducing the scanner-related variance. 

For diffusion metrics (MD and FA) our results suggest a great 
reduction of scanner effect after harmonization. This agrees with a 
previous study applying neuroCombat to a cross-sectional dataset 
(Fortin et al., 2017). We extend these findings by showing that neuro-
Combat also works on longitudinal diffusion data, and that longCombat 
works on cross-sectional and longitudinal diffusion data. Both methods 
yielded almost identical results on both types of data. They differed in 
their performance on supra-tentorial white matter in cross-sectional 
data, where neuroCombat, which was developed for cross-sectional 
data, was superior. Whilst in longitudinal data the two methods per-
formed differently in the ventricles and the brainstem, we believe that 
these differences could be disregarded: the change in FA and MD in the 
ventricles is not usually considered of biological interest. Furthermore, 
there are lots of possible technical confounders when measuring FA in 
the brainstem such as disproportionate motion introduced by vascular 
pulsations and a slight mismatch in the neck cropping level between the 
diffusion images and the co-registered structural template. 

The false positive rates in our study did not significantly exceed the 
5% threshold and were thus acceptable for all harmonization methods. 
The size of the FPRs observed in our study agree with those reported by 
Beer et al. who applied neuroCombat and longCombat to cortical 
thickness data (Beer et al., 2020). Consistent with their simulation study 
on null features i.e., testing for a difference where there is none, neu-
roCombat had slightly higher FPRs than longCombat (Beer et al., 2020). 

The strengths of our study include the travelling subject cohort 
design which means that there is an absolute ground truth to compare 
the effects of harmonization to. The ground truth here is the data ob-
tained from the same subject being imaged twice on the same scanner; 
the comparator is the harmonized data obtained from the same subject 
being scanned on two different scanners. To our knowledge it is the first 
travelling subject study on the topic with truly longitudinal data. Sec-
ond, the age and sex mix of this study is a good representation of the 
general adult population, an important consideration since scan-rescan 
variability varies with age (Jovicich et al., 2009). Second, we assessed 
performance on a range of metrics and ROIs in both diffusion and 

Fig. 2. Scanner effect relative to unharmonized data. Subjects received an 
initial reference scan and two follow-up scans at least one year later, one on the 
same and one on a different scanner. The difference between the two follow-up 
scans is considered to be due to differences in the hardware and acquisition 
settings, i.e., due to the scanner effect. The scanner effect for each subject was 
expressed as the percentage coefficient of variation (CoV). Here the CoV in 
harmonized data is shown relative to the CoV of unharmonized data, i.e., if the 
CoV of unharmonized data is x%, a value of − 1 on the forest plot means 
harmonization has reduced the CoV to x-1%. Thus, points to the left of the 
vertical gray line (denoting zero scanner effect) indicate a reduction in scanner 
effect, points to the right an increase in scanner effect. A harmonization method 
reached statistical significance if its bars (95% confidence intervals) did not 
cross the gray line. The harmonization methods assessed were: neuroCombat, 
longCombat (witha subject-specific intercept) and gamCombat (with age as the 
non-linear covariate). Abbreviations in the names of regions of interest are: 
Supra = supra-tentorial, WM = white matter, (D)GM = (deep) gray matter. 
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Table 4 
Detection of true biological effect before and after harmonization. The biological effect in question 
was the annual rate of change in the imaging parameter between the initial reference scan and the 
follow-up scan (approximately 3–5 years later), e.g., volume loss in supratentorial white matter. The 
ground truth was the annualized rate of changed measured when rescanning the subject on the same 
scanner as the original reference scan. The ICC (intra-class correlation coefficient) measures the 
agreement between the biological effect observed when rescanning the subject on a different scanner 
and the ground truth. Good agreement (ICC >0.5) is color-coded in green, poor agreement is color- 
coded in purple. Abbreviations: Supra = supra-tentorial, WM = white matter, (D)GM = (deep) gray 
matter, para/non-para = parametric/non-parametric prior, non-bays = non-bayesian implementa-
tion (location-shift model), i only = subject-specific intercept only, i + s = subject-specific intercept 
and slope, age = non-linearity assumed for covariate age. 

Fig. 3. False positive rates (FPR) compared across 
harmonization methods. Subjects were randomly 
assigned to group A or B and this was repeated 1000 
times. The false positive rate equates to the percent-
age of times a significant difference was found be-
tween groups. By chance, a 5% FPR is expected 
(dotted line). The columns indicate the type of data 
used and the research question asked. “Cross- 
sectional data” refers to the dataset where the scan- 
rescan interval of each subject was less than 180 
days. “Longitudinal data” refers to the dataset in 
which the scan-rescan interval of each subject was 
greater than 365 days. The data was used to either 
look at a difference in intercept (e.g., “Does group A 
have larger volumes than group B′′) or a difference in 
slope (e.g., “Does group A experience greater white 
matter volume loss per unit time than group B′′). 
Rows refer to the metrics assessed: volume, cortical 
thickness (Corthick), mean diffusivity (MD) or frac-
tional anisotropy (FA). Each boxplot shows the me-
dian and interquartile range of the seven regions of 
interest (see methods). The number of false positives 
generated by the four methods (no harmonization, 
neuroCombat, longCombat and gamCombat) have 
been compared using the Friedman test with p-values 
stated in the top left corner of each panel. P-values 

have been adjusted for multiple comparisons using Holm’s method and an asterisk indicates a p-value < 0.05 after adjustment. To assess whether any individual box 
represented a false positive rate exceeding the widely acceptable 5% threshold, a one-sample one-sided Wilcoxon test was used. After correction for multiple 
comparisons, none of the false positive rates significantly exceeded the 5% threshold.   
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structural data to provide a comprehensive overview. Third, two com-
plementary analysis approaches, on cross-sectional and longitudinal 
data, provided similar results which lends weight to our conclusions. 

Weaknesses of this analysis include the aforementioned limited 
sample size and inter-scanner difference which may have prohibited the 
detection of small benefits when harmonizing structural data. Whilst 
repeat scans of the same subject were performed within a few weeks, 
ideally this time interval would be even shorter to completely eliminate 
any true biological change between repeat scans. Furthermore, scanner 
drift was not controlled for in the longitudinal data which may have 
affected the within and across-scanner follow-up in different ways. 
However there were no major scanner updates during the study period 
and the effect of scanner-drift has previously been shown to be negli-
gible compared to the scanner effect (Jovicich et al., 2009). Finally, the 
performance of longCombat must be interpreted in context. Most 
cross-sectional studies do not have more than one scan per subject, so 
cannot apply longCombat. Most longitudinal studies have either 
across-scanner or within-scanner data available for each participant, but 
rarely both, so longCombat may perform less well than in our study. The 
other tested ComBat algorithms however are agnostic to repeated 
measures per subject, so their performance estimates should generalize 
well to other study designs. 

5. Conclusion 

We conclude that harmonization is optional for structural data ac-
quired with uniform acquisition settings on machines of the same 
vendor, and in some instances bestavoided. Harmonization however is 
highly recommended for diffusion data. We showed that neuroCombat, 
longCombat and gamCombat are powerful methods for harmonizing 
diffusion data in both the cross-sectional and longitudinal settings, with 
neuroCombat being preferable for cross-sectional data (better perfor-
mance on white matter) and longCombat preferable for longitudinal 
data (due to lower false positive rates). 
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