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Sunk cost sensitivity during change-of-mind
decisions is informed by both the spent and
remaining costs
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Romain Durand-de Cuttoli 3, Rebecca Kazinka4, Adrina Kocharian5, Angus W. MacDonald III6,

Brandy Schmidt1, Neil Schmitzer-Torbert 7, Mark J. Thomas 1 & Brian M. Sweis8

Sunk cost sensitivity describes escalating decision commitment with increased spent

resources. On neuroeconomic foraging tasks, mice, rats, and humans show similar escala-

tions from sunk costs while quitting an ongoing countdown to reward. In a new analysis taken

across computationally parallel foraging tasks across species and laboratories, we find that

these behaviors primarily occur on choices that are economically inconsistent with the

subject’s other choices, and that they reflect not only the time spent, but also the time

remaining, suggesting that these are change-of-mind re-evaluation processes. Using a

recently proposed change-of-mind drift-diffusion model, we find that the sunk cost sensitivity

in this model arises from decision-processes that directly take into account the time spent

(costs sunk). Applying these new insights to experimental data, we find that sensitivity to

sunk costs during re-evaluation decisions depends on the information provided to the subject

about the time spent and the time remaining.
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A lthough, logically, decisions should be made based on
future expectations, many foraging decisions show an
escalation of continued pursuit of reward as a function of

spent resources (sunk costs)1–6. Although sunk cost sensitivity
has been observed in non-human animals as well as in
humans7–13, the human and non-human experiments were done
on computationally different tasks. Translating decision processes
between species depends on the computational alignment
between how each subject makes decisions on a given task14.

In a suite of previous studies, we developed a family of new
computationally-aligned foraging tasks in which subjects made
accept/skip decisions for consumable rewards. In these tasks, sub-
jects face a decision of whether to wait out a fully-signaled delay
before getting the reward or leaving that offer and trying their luck
at a subsequent offer for a different reward. Subjects have a limited
time to gather these rewards within a session, making time a limited
resource, and this an economic task. Multiple variants of these tasks
exist, including ones in which the consumable reward is food
(Restaurant Row [mice, rats]15–22, Candy Row [humans]23) or
videos (Web-Surf [humans]19,24,25,Movie Row [humans]23). In the
Restaurant Row task, mice or rats physically run around an
environment, encountering four different “restaurants” cyclically,
each providing a different flavor of food reward. In the Web-Surf
and Movie Row tasks, humans encounter four video galleries
cyclically, each providing either still photographs24 or short
videos23–26. The Web-Surf results have been replicated both in-
person23–25 and online23,26, under multiple variations. In the
Candy Row task, humans are given the opportunity to receive
candy/snacks from four dispensers cyclically23. In all of these tasks,
the delay to be waited out for the reward is signaled (by pitch of
tone for mice and rats, by a number or a “download” bar for
humans) and is random (uniformly distributed between 1 s and
30 s) and unknown until entry into the restaurant or gallery.

The computational alignment across species within these tasks
offers a platform for translational research aimed at under-
standing how underlying decision processes change in psychiatric
disorders. Recent studies have found that humans with various
psychiatric disorders behave differently on these tasks18,27–29.
Understanding the decision-making processes that underlie the
observed behavior on these tasks can provide insight as to how
these computational processes change in psychiatric disorders.

Multiple variants of these tasks exist, including versions in
which there are separate offer and wait stages16,18,19,23,26. In these
versions, rodents were given two zones at each restaurant, while
humans were given two stages to each gallery (Fig. 1a, b). For
simplicity, we will refer to these as the “offer zone” and “wait
zone”, with the understanding that for humans the two compo-
nents are separated logically rather than physically. On entering
the offer zone, the subject was informed of the delay, but the
countdown did not decrease while subjects remained in the offer
zone. Subjects could skip as before, leaving the offer zone for the
next restaurant/gallery or they could accept by entering the wait
zone, at which point the delay began to countdown. Importantly,
subjects in this variant could quit the wait zone even though they
had accepted the offer by entering into the wait zone, at which
point the countdown stopped and the offer was rescinded.

Analyzing behavior on this two-zone variant, we found that the
decision to quit depended not only on the time remaining in the
countdown but also on the time that had already been spent in
the wait zone on a given trial—that the longer the subject had
spent within the wait zone, the less willing they were to quit, even
for identical future conditions in which the time remaining to
receive reward was the same19,26. Time already spent waiting is
the definition of sunk costs1,2,4.

Two escalations of commitment are observed on these tasks.
First, there is an escalation of commitment as subjects approach

the reward30 (Fig. 2a). The longer that a subject has waited within
the wait zone, the more likely the subject is to wait out the delay
(Fig. 2b). While this escalation can be partially explained by the
subject getting closer to the reward with passing time, the time
course of this escalation (Fig. 2c) is an interaction between the
time spent and the time remaining. (Linear model fit, df= 431,
F-vs constant model 182, p= 10−76, effect of time remaining,
p= 10−13, effect of time spent, p= 10−17, interaction, p= 0.0016,
adjusted-R2 relative to constant model = 0.55), implying that it is
not simply that the subject is getting closer to the goal. If the
escalation were simply due to getting closer to the goal, it should
depend solely on the nearness of the goal; it should not depend on
the time spent, nor on an interaction between time spent and
time remaining.

Second, we can see a difference in commitment between two
conditions in which the future path to the goal is identical, but the
past is different. Imagine a subject who one time accepts a 15 s
offer, waits 5 s, and thus has 10 s more to wait to get to a given
goal, and another time accepts a 25 s offer, waits 15 s, and thus
has 10 s left to wait for that same goal. Note that the future
conditions at these two analysis points are the same—the subject
has 10 s to wait for a given reward (the same reward in both
conditions). However, when the subject has 10 s to go in the first
condition, it has been waiting 5 s (has 5 s of “sunk costs”), while
when the subject has 10 s to go in the second condition, it has
been waiting 15 s (has 15 s of “sunk costs”). (See Fig. 2d). In the
original study19, this was measured as the change in linearly fit
slopes to the probability of waiting out the delay as the time
already waited increased (Fig. 2e), but it is simpler to directly
measure the effect through the changes in the probability as an
interaction effect between time remaining and time already
waited (Fig. 2f). (Linear model fit, df= 461, F vs constant
model= 3880, p < 10−100, effect of time remaining, p < 10−100,
effect of time spent p= 10−42, interaction, p < 10−100, adjusted-
R2 relative to constant model= 0.962).

This sensitivity to sunk costs is seen in both the Restaurant
Row and Web-Surf tasks and their follow-up variants (such as
variants with and without an offer zone15,19,21, in the Movie Row
task23, in the Candy Row task23, and in the Known-Delay/Ran-
domized-Delay tasks, in which we manipulated the predictability
of the upcoming delay in each restaurant31).

Results
Sunk cost sensitivity appears primarily in situations where
agents are correcting error-made decisions. We do not observe
sunk cost sensitivity in all conditions. Nor do we observe sunk
cost sensitivity at all times within the wait zone. Nor do we
observe sunk cost sensitivity uniformly within the waiting zone.
Instead, we find that the sensitivity to sunk costs in the wait zone
depends on how economically disadvantageous the decision to
accept the offer was in the first place.

The Restaurant Row and Web-Surf tasks (and their variants)
are economic foraging tasks, in which subjects are attempting to
maximize their consumed rewards within a limited time. Thus,
we can identify how worthwhile an offer is to an agent in terms of
the delay to the goal (the cost from the limited time budget
available) and the (subjective) preference for a given reward. In
practice, subjects on these tasks generally reveal a threshold for
each flavor/gallery, such that they accept delays below that
threshold, but reject delays above that threshold. Thresholds can
be measured by fitting a logistic regression to the accept vs skip
choices, providing both the midpoint (where the accept/skip
probability is 0.5) and a slope parameter (measuring the
sharpness of the decision logistic). Agents typically showed an
individual threshold for each flavor, but these were generally
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consistent across sessions for rats and mice that ran multiple
sessions15,16,19,22, and consistent with stated preferences (rank-
ings, ratings) in humans23,24,26. Under the assumption that the
thresholds measure the individual preferences for each subject, we
can thus measure the value of an offer, corrected for that
individual preference, by subtracting off the threshold. We thus
define value as the difference between the threshold that the agent
has shown for that flavor/gallery and a given offer: Value=
threshold− offered delay. Thus, offers with delays longer than
the threshold for that flavor/gallery have low value and offers with
delays shorter than the threshold have high value.

In Fig. 3, we rearranged the sunk cost sensitivity measure (the
increased likelihood of waiting out the delay, the change in
p(Earn), measured as the difference between p(Earn) at a given
delay and p(Earn) with 0 s invested) by the value that was left at
the countdown at the time of quitting. The probability of waiting
out the delay to earn is enhanced through sunk costs primarily in
the bad deals (deals where the delay remaining was above the
typical threshold for that reward site [restaurant or gallery]).
(Fig. 3 statistics, Mann–Whitney test, comparing change in
p(Earn) for values <0 and values >0: 3a (Mice19), p < 10−100; 3b
(Mice20), p= 10−100, 3c (Rats19), p= 10−62; 3d (Humans in
person19), p= 0.27; 3e (Humans online23), p= 10−19; 3f
(Humans online, NCST dataset), p= 10−94).

These data suggest that subjects quit out of the wait-zone due
to a re-evaluation process, whereby the subject recognizes that
they (incorrectly) accepted an offer that was larger than the
threshold for that reward. This suggests that one should be able to
model this decision with a change-of-mind decision-making
model, in which a subject commits to a choice, but then can
change its mind and make a different choice if a re-evaluation
process occurs and completes before a time-limit32,33.

These data suggest that a sensitivity to sunk costs comes
through the conflicting decisions of whether to wait out an
excessive delay that was accepted incorrectly or to quit. Once the
delay during the countdown has crossed the typical threshold, the
deal is now seen as reasonable, even if the already spent time is

lost, and the sensitivity to sunk costs disappears. We argue that
the conflict of whether to rectify the incorrectly accepted deal is
driving the sensitivity to sunk costs because the wasted costs lost
by rectifying the incorrectly accepted deal are the time already
spent (the sunk costs). These hesitation effects are commonly
seen in situations of oncoming scarcity threat34.

Sunk cost sensitivity does not solely arise from attrition biases.
The strongest evidence for a sensitivity to sunk costs on these
tasks is the escalation of commitment seen when comparing the
same future outcome, but different times already waited (sunk
costs) (Fig. 2d). An important concern, however, is that this effect
can only be measured when comparing two different offered
delays. Assuming that a subjects’ motivation for each reward can
vary over the course of a session, on every encounter with a
decision, we can assume that the “willingness to wait” (the
motivation for the goal) is drawn from a distribution with some
noise. Because subjects are assumed to take deals only when their
motivation (their willingness to wait) is above threshold, the
distribution of motivations that will drive a subject to accept the
longer delay will be different than the distribution of motivations
that will drive a subject to accept a shorter delay. Assuming that
the agent has variability in its motivation to accept different
offers, acceptance of a 25 s deal will require a stronger motivation
than acceptance of a 15 s deal.

Ott et al.35 argued that this different set of initial motivations
would make the set of subjects encountering these two similar
analysis points different—the set of subjects encountering the 10 s
to go after waiting 15 s would have had to start with a higher
subset of the distribution of motivations than the set of subjects
encountering the 10 s to go after waiting 5 s. Subjects willing to
wait 15 s, but not 16 s or 20 s or 24 s would still have taken the
15 s deal but not the 25 s deal. They point out that this would
mean that subjects reaching the 10 s analysis point after waiting
15 s were more likely to have more “willingness to wait” (more
motivation) than subjects reaching the 10 s analysis point after
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Fig. 1 The Restaurant Row and Web-Surf tasks. a The Restaurant Row task for mice and rats. As the animal enters the offer zone, the delay is indicated by
a tone, which only starts counting down on entering the wait zone. Animals encounter restaurants serially by proceeding around the cycle
counterclockwise. b The Web-Surf task for humans. An offer is provided to the human as a download bar with a set delay, but the download does not start
to countdown until they select “enter” to enter the wait zone. Humans encounter the video galleries serially by clicking through a sequence of buttons. Note
the topological analogies. Figure reprinted from19 with permission of the publisher.
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only 5 s. Thus, this increase in staying after waiting longer may
actually reflect a difference in the willingness to wait for reward as
a function of the offered delay to the reward rather than an
escalation based on the delay waited. They proposed that the
behavioral sensitivity to sunk costs seen in these tasks could be an
epiphenomenon consequence of these attrition statistics35. They
argue that the escalation of commitment shown in Fig. 2e could

arise from the distribution of motivations (the willingness to take
the deal in the offer zone) in the first place.

Ott et al.35 test this theory with a model in which they assume
(1) that the subject has a willingness to wait W which initially
distributes normally around the threshold (W0=Wthreshold+
N(σW)), (2) that the decision to enter an offer occurs when W0 is
greater than the threshold for that offer TOZ, (3) that W then
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Fig. 2 Escalations of commitment on foraging tasks. Once a subject is waiting out a delay, two escalations of commitment can be measured on these
tasks. At a given point within the countdown in the wait zone, we ask what is the likelihood that the subject will wait out the delay to receive the reward.
This is p(Earn). a As an agent approaches the reward, it becomes less likely to quit (p(Earn) increases). b The probability of waiting out the delay (p(Earn))
increases with the time spent. c This increase is not a simple exponential decrease of quitting, but increases non-linearly with time-spent. d Comparing the
same future (10 s remaining before receiving the same reward) with different times already invested can also reveal a sensitivity to sunk costs. e The
evidence for increased p(Earn) with time spent (time already waited) originally reported in ref. 19. The graph shows the probability of earning, p(Earn), as a
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has waited a certain amount of time in the wait zone already. Notice that the slopes of the lines decrease, indicating that having waited longer, subjects are
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wanders with a given variance (σN), and the subject quits if W
ever crosses a quit-threshold in the wait zone TWZ. Although they
do not discuss the importance of the shape of the quit threshold
TWZ in their model, they assume that the TWZ decreases with
time so that it starts at the entry threshold TWZ(t= 0) = TOZ and
reaches 0 at the time of reward TWZ(t= TOZ)= 0. Without loss
of generality, we can assume a given threshold and examine the
sunk costs seen at a single restaurant/gallery. (Ott et al.35 assume
Wthreshold= 18 s, which provides a threshold of 18 s for that
modeled restaurant).

We concur that their model does show a sensitivity to sunk
costs (see Fig. 4). However, two important questions remain:
First, what are the factors within their model that create this

sensitivity to sunk costs? Second, how well does their model
describe the data we have observed in mice, rats, and humans?

We start by noting that the Ott et al.35 model is a standard
drift-diffusion change-of-mind model with some additional
parameters (Fig. 4a). Change-of-mind models assume that
decision variables continue to drift after a decision is made and
that change-of-mind occurs when the decision variable crosses a
threshold32,33. Their model starts after the decision has been
made, and thus assumes that the motivation must have been
larger than the threshold. It then drifts until it crosses the quit
threshold or the agent receives reward.

Their model has two interesting features: (1) it has an
expanding boundary (threshold), such that the decision variable
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qualitatively comparable to those seen in Fig. 2f. f The model also shows that sunk costs are increased before the value crosses from negative to positive.
g–k This effect is not due to selection bias, but rather to other factors in the model. In a version where the agent accepts all deals (g), the attrition bias is
reduced (h, i), but the sensitivity to sunk costs are still as strong (j), and the model still shows an increased change in p(Earn) for negative over positive
values (k). Results shown are from our simulations.
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has to move farther away from its starting point in order to reach
the boundary the longer the agent has been in the wait zone, and
(2) there is only a lower, but not an upper boundary, allowing the
decision variable to drift farther away from the boundary the
longer the agent has been in the wait zone. Both of these
components make the decision variable explicitly and directly
sensitive to sunk costs.

These two components (the quit threshold TWZ expanding
away from the decision variable and the wanderingW component
of the drift diffusion model) contain information about the time
spent within the wait zone. Because decisions are made based on
these processes, the model is less likely to quit the longer the
agent has waited (Fig. 4e, f). Thus, the model proposed by Ott
et al.35 shows a sensitivity to sunk costs because it makes
decisions based on parameters that accrue with sunk costs.
Interestingly, in the model, these two components do not start to
accrue until the agent enters the wait zone, consistent with the
observations that sunk costs do not start to accrue until the
subject commits to the decision by entering the wait
zone19,20,23,26.

Ott et al.35 claim that the sensitivity to sunk costs arises from the
attrition bias that occurs in their model. As can be seen in Fig. 4b–d,
there is a selection bias inherent in their model—accepting an offer
with a high threshold implies thatW0 was selected from the higher
part of the distribution Wthreshold+N(σW). As noted above, this
implies an attrition in the distribution of W0 with time spent
because the shorter times-spent (which can be accepted with lower
W0) will fall away as the subject crosses that delay. That is, a subject
can only reach a 15 s delay for offers of longer than 15 s—shorter
delay offers would have provided reward already. To determine
whether these effects arose directly from the selection process in
taking deals (that the agent only enters the wait zone if W0 was
greater than the offer), we tested a version of the model in which
the agent takes every choice (Fig. 4g–k). Note that these agents are
still quitting if W < TWZ, but that includes them in the
measurement of sunk costs (in comparison to the agents who do
not enter the wait zone at all, and thus are not included in that
measurement). This change reduces, but does not eliminate the
attrition bias (Fig. 4i); however, this change, if anything, increases
the observed sunk costs (Fig. 4j, k), suggesting that there must be
other factors in their model producing sunk cost sensitivity beyond
the attrition bias.

The Ott et al. model contains two important parameters: σW, the
variability in the initial willingness-to-wait that controls the spread
of theW0Gaussian, and σN, the variability that controls the drift in
W as the agent waits in the wait zone. The simulations reported
in35 used one pair of parameters (σW= 5, σN= 3), which produce
results that are reminiscent of the data shown in Fig. 2e. A
thorough exploration of the parameter space finds that the
sensitivity to sunk costs are dependent on these two parameters
(Fig. 5a), as is the attrition bias (Fig. 5b). However, the attrition bias
and the sunk cost sensitivity in this model are unrelated.

We can measure three key parameters of the decisions made in
one of these simulations: the “sunk cost bubble”, the “baseline
slope”, and the “attrition bias”. We measure the attrition bias as
the linear fit of the available initial willingness to wait W0 as a
function of time waited (Fig. 5c). We measure the baseline slope
as the linear slope of the 0 s condition (Fig. 5d). And we measure
the sunk cost bubble as the summed area comparing the
increased likelihood of waiting out the delay relative to the 0s-
waited condition (Fig. 5e).

As shown in Fig. 5, attrition bias is most strongly related to σW
(Fig. 5f, linear model: df= 33, related to σW: F= 92, p= 10−11,
related to σN: F= 0.2, p= 0.65), while the baseline slope depends
on both σN and σW (Fig. 5g, linear mode, df= 33: related to σW:
F= 34, p= 10−6, related to σN: F= 65, p= 10−9). Sunk cost

sensitivity, however, is more related to σN and the relationship to
σW is non-linear, because it is largest at large σN and mid-ranges
of σW and smaller at high and low σW (Fig. 5h, linear model,
df= 33: related to σW: F= 0.01, p= 0.9, related to σN: F= 56,
p= 10−8). Thus the highest sunk cost sensitivity appears at
<σW= 3, σN= 5> Most importantly, however, the sunk cost
sensitivity is not linearly related to the attrition bias (linear model:
df= 34, F vs constant model= 1.01, p= 0.32, adjusted-R2 relative
to constant model= 0.0004). Thus, attrition bias is neither
necessary nor sufficient to create a sensitivity to sunk costs within
their model.

So if the attrition bias of the willingness to wait parameter is
not causing the sensitivity to sunk costs in this model, what is? As
noted above, in the model, the quit threshold TWZ decreases
from being equal to the offer on entry into the wait zone to 0 at
the time of reward, providing an expanding boundary to the drift-
diffusion change-of-mind model. The quit threshold decreases at
a constant rate of 1/s. Note that agents enter the wait zone with a
willingness to wait, W0, that is going to be above the offer
(because of the process by which the model accepts an offer). As
the agent spends time in the wait zone, TWZ decreases so that it
will be 0 when the countdown stops. This means that TWZ moves
away from W0 at a rate of 1/s as the agent waits in the wait zone,
making the agent less likely to quit the longer it spends in the wait
zone. (This is the literal definition of a “sensitivity to sunk costs”).

Importantly, this means that the changing threshold contains
information about both the time remaining and the time spent
(Fig. 6a–c). When we remove this rate of change (removing the
information about time spent as we remove the information about
time remaining), we find that this decreases the sensitivity to sunk
costs. If we set the quit threshold to the offer, we decrease the
sensitivity to sunk costs (Fig. 6d–f). If we set the quit threshold to 0,
the agent never quits (Fig. 6g–i). A large part of the reason that
their model is sensitive to sunk costs is that such a sensitivity is
directly built into the model with the changing quit threshold. In
order to produce an agent that quits but does not show sunk costs,
we need to include an anti-sunk cost formulation, wherein the quit
threshold increases with time spent rather than decreases, making
it easier to quit the longer the agent is in the wait zone (Fig. 6j–l),
suggesting that there is an additional factor critical to the presence
of sunk costs in the model.

The other factor that is critical to the presence of sensitivity to
sunk costs in this model is that the model has only a lower
boundary but no corresponding upper boundary. This means that
as time passes, the drifting willingness to wait is more likely to
drift away from the threshold (Fig. 7). Thus, the variance of the
term W contains information about the time spent. Because the
decision process in their model is made sensitive to that
information through the use of a lower but not an upper bound,
their agent is less likely to quit the longer it spends in the wait
zone. (Again, this is the literal definition of a “sensitivity to sunk
costs”). To test the extent to which this variability drives the
sensitivity to sunk costs in this model, we examined limiting the
maximum drift of the willingness to waitW over the time waiting,
that is, removing that sunk cost information from the decision
process. Figure 7 shows that the sensitivity to sunk costs arises
from the distribution of the decision variable W over time, which
has been made directly sensitive to sunk costs in the model due to
the expanding lower bound (the decreasing slope of TWZ) and the
increasing variance of W with time due to the lack of an upper
bound. (Original model, Fig. 7a–c, limiting only the quit
threshold, Fig. 7d–f, limiting the upper bound, Fig. 7g–i, limiting
both, Fig. 7j–l).

Figures 6 and 7 show that the sensitivity to sunk costs in the
model is due to the decision processes that were made sensitive to
the time spent waiting (the sunk costs). The decision process is
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Fig. 5 A parameter exploration of the Ott et al.35 model. The two key parameters of the model are σW, the variability in the initial motivationW0, and σN,
the variability in how that motivation changes with time waited in the wait zone. We tested these parameters over a large parameter range (σW ∊ {0, 0.25,
0.5, 1, 3, 5, 8, 10, 20} x σN ∊ {0, 2, 3, 5}). a The sunk cost “bubbles” for each parameter pair. Note that some parameter pairs show more sunk cost
sensitivity than others. Colors as per Fig. 2f. b The attrition bias histograms for each parameter pair. Note that some parameter pairs show more attrition
bias than others. c–e Measurements used to quantify these simulations. The orange box in a and b indicate <σW= 5, σN= 3>, which are the parameters
used in35 and shown in Fig. 4. c The attrition bias measured as a linear function of all of the samples providing data to the histogram. Attrition bias slope
was measured from the actual points included in the histogram rather than the post-calculated histogram. d The “baseline slope” measures how much
more likely the agent will wait out the delay as a function of time remaining with 0 s invested. e The sunk cost “bubble”, measures sunk cost sensitivity as
the summed increased likelihood of waiting as a function of time waited. f–h How these measures change across the σW x σN parameter space. f Attrition
bias is primarily related to σW. g The baseline slope is related to both σW and σN. h The sunk cost bubble is largest at high σN and a mid-range of σW.
Results shown are from our simulations.
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sensitive to the expanding bounds, which make it harder to quit
the longer the agent is in the wait zone—a lower bound that
expands away from the offer with a rate of −1/s controlled by
TWZ, and an upper bound that is driven by the ability of the W to
walk away from the initial willingness-to-wait W0 that is
controlled by σN.

Comparing the model to data. The preceding sections illustrate
that sunk cost sensitivity within the model proposed by Ott et al.
is not related to attrition bias but instead depends on decision
variables/parameters that represent the time waited (the costs that
have been sunk). Nevertheless, their model can serve as a starting
approach to examine decision processes underlying sunk cost in
mice, rats, and humans. To address this possibility, we assessed

how well the parameterizations in their model can fit the data
from individual subjects.

Individual variability in the sensitivity to sunk costs. Impor-
tantly, we also find that there is a lot of individual variability in
each subject’s sensitivity to sunk costs, with some mice, rats, and
humans being particularly sensitive, and others not16,19,20. These
differences likely arise from variations in cognitive and behavioral
factors, such as attention, predictability, baseline motivation (such
as hunger), and other factors. Kazinka et al.26 tested humans
online under two conditions, one in which they were asked to
attend to a button that could change color subtly, and another
without such an attention-check. When humans were distracted
from the delay countdown, we found that the sensitivity to sunk
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Fig. 6 Effect of changing the slope of the quit threshold TWZ in the Ott et al. model. a The original formulation. b The sunk cost sensitivity seen in the
original formulation. c The attrition bias seen in the original formulation. d–f Effect of removing the slope of TWZ, while starting TWZ at the offer, thus
making the quit threshold equal the offer for the entire time in the wait zone. g–i Effect of removing the slope of TWZ, while starting TWZ at 0, thus setting
the quit threshold to 0 for the entire time in the wait zone. Note that becauseW can wander to a number less than 0, it is still possible for the agent to quit.
j–l An anti-sunk-cost formulation in which the TWZ bound increases at a rate of 1/s, providing a collapsing bound to the drift-diffusion model. The sunk cost
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invested colors in b, e, h, k as in Fig. 2f. Results shown are from our simulations.
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costs disappeared, but that it remained intact in the version
without the attention-check26. In rodents, we found differences in
the sensitivity to sunk costs as a function of environmental
richness (where the distribution of delays was shifted lower so
more food could be gathered more quickly or shifted higher
requiring more time to gather food)16,36. Rodents also exhibit
differences in sunk cost sensitivity as a function of the predict-
ability of the upcoming delay—delays that could be predicted

produced less sensitivity to sunk costs than delays that were only
revealed on entry into the restaurant31.

As noted above, the Ott et al.35 model provides two key
parameters (σN and σW) that produce different sunk cost
sensitivities (Fig. 5). While it is clear that the parameters chosen
by Ott et al.35 [σN= 3 and σW= 5] would not produce this
variation, it is possible that different parameter configurations could
capture the variability in sunk cost sensitivity seen across subjects.
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Fig. 7 Limiting the drift of the willingness to wait. a The original formulation limits the drift of the willingness to wait at the lower bound by TWZ,
decreasing by 1/s. b This produces sunk cost sensitivity. c The distribution of W over time as a function of offer. Note the increasing variance with time,
containing information about the time spent. d–f The formulation used in Fig. 6d. The distribution of W over time as a function of offer continues to show
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with time (i.e., making the decision sensitive to sunk costs). g–i A formulation with the original lower bound, but a new upper bound, restricting the change
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colors in b, e, h, k as in Fig. 2f. Results shown are from our simulations.
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Although we know of no behavioral way to directly measure the
σN parameter, the σW parameter is related to the willingness to take
economically inconsistent offers above and below the observed
threshold, which appears as the slope of the psychophysics decision
curve of accept vs skip decisions made in the offer zone. That is, we
can consider a subject’s decisions to accept or reject an offer as a
standard decision process which shows a typical psychophysics
curve with a slope β. The flatter the slope, the more likely the
subject will pick a choice inconsistent with its personal threshold.
Because the decision in the Ott et al. model is based on whether
W0 > threshold or not and W0 is drawn from a distribution with
variance σW, the slope will be directly related to that variance σW.
To confirm this, we ran the simulation with 10 samples each of
varying σW parameters and measured the tangent at the 50%
threshold of a fit probit model. We found a remarkably good
relationship (Fig. 8b), such that σW ≈−0.13+ 0.40/x, where x is
the tangent of the probit model at the threshold (i.e., the point
where the probability of skipping versus accepting an offer as a
function of the delay offered is 50%). Importantly, this tangent can
be directly measured from data to derive an estimate of σW for each
subject.

Humans only experience one session each, and thus we do not
have enough data to fit sunk cost sensitivity for each individual
subject. (The human data sets measure sunk cost sensitivity over
the whole population19,23,26. However, the rats and mice each run
the Restaurant Row task for many days16–18,20,21,30, and thus, we
can measure the three key parameters for each individual subject.
We can measure (1) the sunk cost bubble and (2) the baseline

slope (Fig. 8a) from the choices made by the subject. (3) We can
estimate σW from the tangent at the probit fit of the subject’s
threshold (Fig. 8b). Thus, each subject can be placed on a three-
dimensional plot of baseline slope, the sensitivity to sunk costs,
and the fit σW.

To compare the model’s ability to capture the individual
variability, we first ran 20 simulations of each parameter instantia-
tion of the model (σW ranging over {0, 0.25, 0.5, 1, 3, 5, 8, 10, 20}, and
σN ranging over {0, 2, 3, 5}, as shown in Fig. 5). We then measured
the average baseline slope and sunk cost sensitivity for each
simulation. We constructed a mesh grid of the mean at each
<σW,σN > pair, color coded by σW (Fig. 8c). Repeating this grid for
the mice (Fig. 8d) and the rats (Fig. 8e) shows that the actual
observed data does not track the grid very well.

To compare these statistically, we found the closest mean point
on the simulation matrix mesh for the <σW,σN > with the fit σW for
the individual, and then measured the distance between that point
and the individual’s baseline slope and the distance between that
point and the individual’s sunk cost sensitivity. If these differences
are due to noise, they should center at 0. We thus measured
whether those differences were centered at 0 with a Mann-Whitney
sign rank test. Every dataset was significantly different in either the
baseline slope or the sunk cost sensitivity or both. (Fig. 8d: n= 208
mice early in training19 p(sunk cost sensitivity)= 0.12, p(baseline
slope)= 10−35; n= 208 mice late in training19 p(sunk cost
sensitivity)= 0.17, p(baseline slope)= 10−35; Fig. 8e: n= 21 rats
without an offer zone19 p(sunk cost sensitivity)= 0.5, p(baseline
slope)= 10−5; n= 10 rats with both zones19 p(sunk cost

Fig. 8 Individual variability. The basic model proposed in35 has two parameters σW (which controls the offer zone accept/skip decision) and σN (which
controls the drift rate within the wait zone). a As shown in Fig. 5, each of these parameters produces a sunk cost sensitivity, measurable as the area of the
increased likelihood of earning as a function of the time invested (the “sunk cost bubble”), and a specific slope of the likelihood of quitting at 0 (“baseline
slope”). b Although we know of no way to measure σN from the behavioral data directly, σW is directly related to the slope of the psychophysics curve of
accepting an offer. Inset panel shows the original model (<σW= 5, σN= 3 > ), the histogram of offers for which the agent stayed, offers for which it
skipped, the fit probit model (in black), and the slope at threshold (in red). c Thus, for each simulation we can measure the “sunk cost bubble”, the
“baseline slope”, and σW. We ran 20 simulations at each part of the parameter space from Fig. 5. Symbols for each simulation are shown. The mesh grid
indicates the average for each parameter pair. Color on the mesh is interpolated from σW. d Mice from ref. 19,20. Each mouse provides one symbol from
early in training and one symbol from late in training, placed at the measured baseline slope and sunk cost sensitivity. Color is the fit σW, given the slope at
threshold. n(mice)= 208. e Rats from19,21 (n= 21 rats with wait zone only, 10 rats with both wait and offer zones) and new data from the Redish lab
(n= 15 rats).
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sensitivity)= 0.04, p(baseline slope)= 0.002; n= 15 rats with both
zones (new RedishLab rat data) p(sunk cost sensitivity)= 0.0001,
p(baseline slope)= 0.00001). As can be seen in these statistics, the
model can only match the sunk cost sensitivity by showing
completely incompatible baseline slopes.

Sunk cost sensitivity and the offer zone. The most important
result that came from the introduction of the offer zone variant19

is that we did not see a sensitivity to sunk costs in the offer zone.
Subjects spent time deciding in the offer zone even though time
spent in the offer zone counted against the total economic time
budget that the subjects could use to forage for food. However,
time spent in the offer zone did not show a sensitivity to sunk
costs; the calculation of time spent (the cost that had been sunk)
did not start to accrue until the agent entered the wait zone. This
result has been replicated in online samples23,26 and subsequent
experiments20. In general, time spent in other portions of the task
did not influence the probability of quitting after accepting an
offer, implying that time spent in the wait zone carries a unique
sensitivity to sunk costs30.

As we have argued elsewhere16,19,26, the most parsimonious
explanation is that behavior in the offer and wait zones arise from
different decision processes, consistent with both multiple-
decision theories37,38 and commitment hypotheses39,40. Impor-
tantly, it is not rational to spend any time in the offer zone, as any
time spent making decisions in the offer zone could be more
productively spent being made in the wait zone, while the delay is
counting down. However, all three species spend more time than
necessary in the offer zone, and mice and rats, at least, increase
their time spent in the offer zone with experience16,19. One
possible explanation for this is that it is difficult to quit out of the
wait zone due to the accumulation of sunk costs16,17,19,36.

As shown in Figs. 4–7, the reason that the model laid out in
ref. 35 shows an escalation of commitment with time spent is not
due to the theoretical arguments made by Ott et al. therein (that
sunk cost sensitivity seen on the Restaurant Row and WebSurf
tasks is due to a statistical attrition of initial motivation) but
rather to decision processes built into the model that are explicitly
dependent on time spent in the wait zone (i.e., sunk cost).
Nevertheless, even though the model proposed in35 is incompa-
tible with the theory proposed in35, the model itself can provide
an interesting explanation for the difference between the offer and
wait zones because it includes change-of-mind decision
processes32,33 that are explicitly sensitive to time spent in the
wait zone, but not the offer zone. In that model, the offer zone
decision is made based on the initial willingness-to-wait W0,
which starts to drift once the agent enters the wait zone. Similarly,
the quit threshold TWZ only starts decreasing in the wait zone.
Thus, the decision process is sensitive to the time spent in the
wait zone, but not the offer zone.

Sensitivity to sunk costs is delayed in variants without an offer
zone. In a recent variant without an offer zone, we directly
manipulated the upcoming uncertainty of the future outcomes31.
In two parallel tasks, rats approached a series of reward sites
which either had a known delay (different across the four reward
sites, but constant within each reward site for a given day,
changing from day to day, thus predictable after experiencing one
lap around the maze) or had a random delay to reward (1s–30s
random on each entry, thus unpredictable). In the first task
(Known-Delay [KD]), rats knew what the upcoming delay would
be and showed behaviors indicating that they had already made
their decision before entering the reward zone—they maintained
a fast speed on approach to offers they skipped. In the second task
(Random-Delay [RD]), rats slowed down on every entry into an

offer and then only sped up to leave after a few seconds of
consideration. Furthermore, decisions in the KD task were more
self-consistent, that is, rats were more likely to either choose to
stay or skip for a given delay on the KD task. We found that sunk
cost sensitivity was decreased in the KD task, but were still pre-
sent. Importantly, however, we also found that sunk costs did not
start accruing in the RD task until after the decision-time (~5 s),
while sunk costs started accruing in the KD task immediately.

That subjects make a separate decision before committing to a
choice and then show a sensitivity to sunk costs only after
commitment16,19,26,39,40 suggests that one should see this differ-
ence, even without an explicit offer zone. And, in fact, that is what
has been found. The early versions of the Restaurant Row and
Web-Surf tasks did not have a separate offer zone, and only
included a wait zone15,21,24. A reanalysis of these data found that
sunk costs did not start accruing for several seconds19. We
hypothesized that animals were spending the first few seconds
making an accept/skip decision as if they were in an offer zone
rather than a quit/remain decision. We hypothesized that they then
covertly transitioned to a quit/remain decision and began building
sunk costs. We found robust sunk cost sensitivity in these animals,
but only after a delay, consistent with typical decision times made
in variants with an explicit [separate] offer zone.

Delayed accrual provides an opportunity to test the reset
hypothesis. This delayed latency provides an opportunity to
address a question raised by Ott et al. in their paper — when the
subject finally makes the decision to stay in these single-zone
variants, they have already been in the zone for several seconds.
So we can ask whether the subsequent quit or remain decisions
take into account the initial decision time. (Remember that we do
not see sunk cost accrual during similar decisions made in the
separate offer zone). We can test this by comparing two variants
of the Ott et al. model: one in which TWZ starts descending only
after completion of the self-imposed (hidden) decision-time
(Fig. 9a) and one in which TWZ has already been descending for
those several seconds (Fig. 9e). In other words, does the increased
difficulty to quit with time (the escalation of commitment) include
that decision time or not?

We modeled the single-zone construction by having the agent
accept all offers (thus ignoring the offer zone, effectively modeling
a task variant without an offer zone) and the decision time by
simply preventing the agent from quitting for the first few
seconds of waiting in the wait zone. Fascinatingly, the two
simulations produced fundamentally distinct shapes of sunk cost
outcomes, more specifically, the relationship between differences
in the latency to accrue sunk costs and maximal sensitivity to
sunk costs (Fig. 9d, h). These two models produced a subtle
difference in the maximum sunk cost sensitivity levels seen as a
function of the time spent deciding. The first model (TWZ is at
offer at the end of the decision time and starts decreasing
only after the first-stage decision (to stay) has completed) showed
a convex curve as a function of the time spent in the pre-wait-
zone/hidden decision time, where particularly short and long
decision times were less sensitive to sunk costs than mid-range
decision times. (Fig. 9b–d, linear fit adjusted-R2= 0.98, quadratic
fit adjusted-R2= 0.99). In contrast, the second model (TWZ starts
decreasing immediately) showed a concave curve, in which mid-
range decision times were less sensitive to sunk costs. (Fig. 9f–h,
linear fit adjusted-R2= 0.98, quadratic fit adjusted-R2= 1.00).

Comparing these simulations to new analyses of data from rats
on versions of the task without an offer zone19,21,22, and the
subsets of mice who took all offers and effectively ignored the
offer zone choice stage16, we found a fascinating difference
between the rats and mice.
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The rats showed evidence that they did not start to accrue sunk
costs until the decision had been made (Fig. 10a–c). Figure 10b
shows that rats without an offer zone (i.e., with only a wait zone)
delayed their sunk cost accrual by a few seconds15,19,31. We thus

measured whether the sunk cost sensitivity was better explained
by model 1 (no decay in the quit threshold through the decision
time, Fig. 9a) or model 2 (quit threshold decays through decision
time, Fig. 9e). There was one data point well apart from the other
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Fig. 9 A delay to accrual allows us to test the reset hypothesis. In variants without an offer zone, and in some subjects with limited experience with a
separate offer zone, subjects do not quit for a short period of time in the wait zone (a few seconds). This short non-quit time in these subjects can be
theorized to be a separate decision process15,16,19,36. Modeling this as an inability to quit for a few seconds opens up two models: Does the escalation of
commitment take that decision time into account or not? aModel in which sunk cost accrual starts only when the decision time (DT) is over. b The “sunk cost
bubble” changes as a function of the delay before the agent can start quitting. Each panel shows a decision time of x seconds. c Comparing the total change
in p(Earn) [the size of the sensitivity to sunk costs] as a function of time spent and a given decision time shows that these sensitivities are dependent on
both time spent (time invested, costs sunk) and the decision time. d For each given decision time, we summed the total sunk cost sensitivity. This shows a
significantly convex curved fit (linear fit adjusted-R2= 0.98, quadratic fit adjusted-R2= 0.99). e Model in which sunk cost accrual includes the decision
time. f–h This produces a significantly concave curved fit (linear fit adjusted-R2= 0.98, quadratic fit adjusted-R2= 1.00).

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-04235-6 ARTICLE

COMMUNICATIONS BIOLOGY |          (2022) 5:1337 | https://doi.org/10.1038/s42003-022-04235-6 | www.nature.com/commsbio 13

www.nature.com/commsbio
www.nature.com/commsbio


samples (Latency to Accrual= 29 s, all other data in the range of
4 s to 8 s). With this outlier included, the quadratic fit was not
better than the linear fit (linear fit adjusted-R2= 0.14, quadratic
fit adjusted-R2= 0.11); however, with this outlier excluded, the
quadratic fit was better and was convex (linear fit adjusted-
R2= 0.04, quadratic fit adjusted-R2= 0.13). Given the single
point that was far away from the main distribution, we treat it as
an outlier. The rest of the data suggest that rats were treating this
“wait-zone-only” version of the task as having a conceptual “offer
zone”, and thus that the decision time is not incorporated into the
perception of sunk-costs. In other words, the rats did not start to
accrue sunk costs until after the decision was made and they had
left their self-imposed “offer zone” (consistent with model 1,
Fig. 9a). This observation is consistent with previous experiments
on rats without an offer zone15,19,21,31.

In contrast, the mice showed evidence that sunk costs accrued
through the whole time in the wait zone (consistent with the second
model that TWZ starts decreasing immediately) Fig. 10d–f.
Figure 10e shows that early in their experience, the mice did not
start accruing sunk costs for a few seconds, while late in their
training, sunk costs started accruing on entry into the wait zone.
This is likely due to the mice learning to use the offer zone to avoid
sunk costs in the wait zone16. The data shown has outliers removed
as per the rat data, below, however, for the mice, both analyses with
and without outliers removed showed concave quadratic fits that
were better than the linear fits. (Data shown, linear adjusted-
R2= 0.29, quadratic adjusted-R2= 0.31). These results suggest that
the mice started accruing their sunk costs immediately and that the
escalation of commitment (i.e., increased difficulty to quit) includes

the complete time spent in the wait zone (consistent with model 2,
Fig. 9e). This has important implications for how the internal value
state of the agent has changed during the passage of time while
waiting and how this state compares to the perceived value of time
left in the countdown registered at the transition point when sunk
costs begin to accrue. In other words, when a mouse looked up
from the decision time and found itself already in the wait zone for
several seconds, it took that total time already waited in its sunk cost
calculation, in effect resetting its sunk costs based on the actual
time spent.

Importantly, the subset of rats analyzed in Fig. 10 came from
an experiment in which they never had an offer zone;21 they only
had a wait zone. This makes their experience very different from
the other subjects analyzed in this paper, including the mice
shown in Fig. 10, who had an offer zone available, but had not
learned to use it yet, although they did eventually learn to make
their decisions in the offer zone16.

Discussion
A sensitivity to sunk costs can be operationally defined as an
escalation of commitment with continued time spent in an
operation1,2,4. An escalation of commitment with time spent
waiting for reward (a sensitivity to sunk cost) has been observed in
some variants of the Restaurant Row and Web-Surf tasks, parti-
cularly in the wait zone but not the offer zone of these tasks19,23,26.

Ott et al.35 proposed that this observed escalation of commit-
ment may be due to a statistical attrition bias in the initial
motivation, such that longer times-spent waiting were correlated
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Fig. 10 Fitting sunk cost sensitivity by decision time for rats and mice. a The sunk cost bubble for one example session from rats without an offer zone.
Note that the first few seconds invested are unchanged relative to the 0 s invested condition. Compare Fig. 2f. b The sunk cost sensitivity as a function of
time spent (time already waited). Note that the rats with the offer zone start accruing sunk costs immediately, but rats without an offer zone do not start
accruing sunk costs for a few seconds. Compare Fig. 9c. c Fitting this curve by decision time finds a significantly convex curve (n= 21 rats without an offer
zone and 10 rats with, quadratic adjusted-R2= 0.13 > linear adjusted-R2= 0.04), suggesting Model 1 (Fig. 9a) that rats without an offer zone are not
including the decision time in the expanding TWZ boundary. d One example mouse session showing that the probability of waiting out the delay given that
the mouse has already invested a few seconds is not different from the 0 s invested data. e Early in training mice do not accrue sunk costs immediately, but
take a few seconds before accruing them. Late in training, mice start accruing more immediately. f Fitting this curve by decision time finds a significantly
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with increased initial motivations, thereby resulting in a higher
probability of earning reward with more time spent. Our thor-
ough simulations of their model find that while this attrition bias
does exist, it is unrelated to the presence or absence of a sensi-
tivity to sunk costs. Although theory in ref. 35 proposed that the
escalation of commitment seen in these tasks is due to statistical
attrition, we show that this is not a viable explanation for the
observed phenomenon. Ott et al. also proposed a specific simu-
lation model that shows a sensitivity to sunk costs. Our rigorous
analysis of their model finds that sunk cost sensitivity appears in
their model due to two phenomena in which decision processes
were explicitly made sensitive to time spent (sunk costs): the
escalation of commitment arises from the expanding lower
boundary provided by the decreasing quit threshold TWZ and
from the increasing range available to the drifting motivation
(willingness to wait, W) over time.

This is not the first model to show how a simple decision
process can produce an escalation of commitment and a sensi-
tivity to sunk costs. In fact, several previous animal learning
theory models have been put forward that produce similar sunk
cost sensitivity effects, including the state-dependent-valuation
learning [SDVL]7,9,41 and within-trial-contrast [WTC]42 models.
The SDVL model notes that ongoing energy expenditures imply
that food rewards will become more valuable to an agent as time
progresses. Thus, reward valuation should depend on the time
since the last reward was received. Of course, the SDVL model
cannot explain why humans foraging for videos show similar
effects, but we can hypothesize a more general “value process”
that depends on recency of experience. The WTC model notes
that distant rewards are discounted so that approaching rewards
are seen as increasing in value, which can provide an increasing
contrast between the current state of the animal (changing
through SDVL) and the approaching reward42.

As noted in ref. 19, neither the SDVL nor the WTC models can
explain why sunk costs only seem to begin accruing after an
initial commitment decision has been made (entering the wait
zone of the tasks) and why a parallel sensitivity to time spent is
not also present in the offer zone. Moreover, neither model can
explain why a lack of attention to the decreasing delay reduces
sensitivity to sunk costs26, why predictability of upcoming costs
reduces the sensitivity to sunk costs31, or why the richness of the
environment affects the sensitivity to sunk costs16,20,36.

The new model proposed in ref. 35 may provide an interesting
hypothesis. Although it is unclear why the quit threshold expands
away from the offer at a rate of 1/s, if the offer zone and wait zone
are decided upon by different decision processes16,18,19,23,26,29,31,43,
this quit threshold that only starts decreasing on entry into the wait
zone might provide an explanation for the accrual of sunk costs
after commitment. In the versions of the task with separate offer
and wait zones, the delay does not begin counting down until entry
into the wait zone16,19,23,26. Similarly, if a new drift diffusion
process begins only with commitment, change of mind
behaviors32,33 might be sensitive to sunk costs only after that
commitment39,40, which would be well modeled by the increasing
variance of the drift-diffusion process providing more opportu-
nities to have increased motivation with time spent (an escalation
of commitment). Applying their model to versions with a single
zone (wait zone only, no offer zone) suggests that rats who never
experienced an offer zone did not start to accrue sunk costs until
making the commitment to stay in the wait zone, effectively
treating the initial decision time as a separate offer zone. However,
mice that had not yet learned to use the available offer zone showed
an accrual of sunk costs that took into account all of the time within
that wait zone. Whether this is a species difference (rats vs mice), a
difference in the tasks (no offer zone available vs have not yet
learned to use the offer zone), or both, remains unknown.

Also present within the data are observations that are incom-
patible with these simple drift-diffusion models, including the
observation that sunk cost sensitivity is stronger when subjects
have taken a bad deal20 and that some subjects show this esca-
lation of commitment, while others do not18,26. We suspect that
one potential explanation of the data is the increased motivation
provided by Pavlovian associations between the countdown in the
wait zone and the value of the outcome. This would predict a
decreased sensitivity to sunk costs with reduced attention (con-
sistent with the online human data26), as well as a heightened
sensitivity to factors that increase that relationship to the reward
zone (such as conditioned place preference)44–47. This is a form
of the endowment effect48–50 and is similar to the deliberative vs
implementational mindset constructs in the human
literature39,40. Essentially, this hypothesis suggests that quitting
out of the wait zone is a recognition of a mistake and staying is
due to an unwillingness to leave that mistake. Because the extent
of the mistake depends on the effort spent (more effort spent was
a larger mistake), the decision becomes related to the effort
already spent and shows a sensitivity to the sunk costs.

It is worth noting that there are situations where an increased
motivation from effort already spent can actually be economically
useful (see ref. 4,5,51,52 for discussion), which could further pro-
vide evolutionary drive to make decisions based on past costs.
There are many cases where sunk costs can provide the additional
incentive to push through difficult choices. For example, when
pushing through the last part of a marathon run, a common
coaching line is “you’ve come so far already, you can finish!”
Similar incentives can be seen in the last segment of any long task
that requires pushing through burnout and exhaustion, such as a
PhD thesis. In truth, the correct comparison is between quitting
(with no reward but no additional costs) and continuing (with the
reward of finishing but with the additional costs of pushing
through the burnout). It is possible that the costs of pushing
through may appear over-burdensome because of economic
myopia. The additional motivation provided by the refusal to quit
(due to sunk costs) can allow one to achieve goals that may be
difficult to achieve otherwise and may be linked to resilience. This
motivational effect can be interpreted as the following logic: in a
long marathon, there is uncertainty in that future valued goal.
Thus it becomes easy to conclude that the goal is not worth the
additional effort, particularly as that additional effort increases
with exhaustion. But because the sunk costs provide additional
evidence that the goal will be worth it, the past effort spent
provides increased motivation.

Methods
Measures used. Threshold was found by a simple maximum-likelihood estima-
tion over all possible thresholds from 0 s to 30 s. Value is defined as the difference
between that threshold and the offered delay. (Thus an offer of 10 s with a
threshold of 18 s provides a value of +8 s, while an offer of 20 s with a threshold of
18 s provides a value of −2s).

p(Earn) was measured as the probability that an agent (mouse, rat, human,
simulation) in a given (time-remaining, time-spent) pair remained to eventually
earn the reward. Thus, if an agent has taken a 5 s offer, waited 2 s, it is in a [time-
remaining= 3 s, time-spent= 2 s] pair. If the agent waited out the remaining 3 s to
earn the reward on that offer, we counted that as an “earn”, while if the agent quit
on the next second (after 3 s, with 1 s remaining), we counted that as a “not-earn”.

The “sunk cost bubble”. From the pEarn matrix, for each time-invested (time-
spent), we summed the difference in probability of waiting out the delay (earning)
between each time-remaining point and the probability of earning at that time-
remaining point with 0 s invested. The measure was then the sum (over time-spent
conditions) of those summed measures.

Baseline slope. We measured a linear fit to the probability of earning with 0 s
invested. The measure was the slope of this fit line.

Attrition bias. The simulations provide W0 values for each second that the
agent is “in the wait zone” (i.e., took the deal, has not earned, and has not yet quit).
We measured a linear fit to this scatter plot of these W0 samples as a function of
the time spent. The measure was the slope of this line.
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Simulations. Simulations were based on those of ref. 35. A simulated agent was
designed that made two decisions: first an enter/skip decision (modeling the offer
zone in Restaurant Row and WebSurf) and then a repeated quit/remain decision
(modeling the wait zone) made once per second.

Offer zone decision process: In a given trial, the agent started with a draw of a willingness
to wait, W0=WT+N(σW), drawn from a normal distribution around the threshold
(WT=TOZ defined as 18 s) with standard deviation σW. If W0 was greater than the
threshold (W0≥TOZ), the agent accepted the offer and “entered the wait zone”.

Wait zone decision process: The willingness to wait W(t) drifted each second
by adding in normally distributed random noise with standard deviation σN.
W(t+ 1) = W(t) + N(σN) once per second. If W(t) decreased below the quit-
threshold (W(t) < TWZ), the agent quit at time t. If the agent did not quit through
the full delay, the agent “earned reward”.

The quit-threshold was defined as the linear function such that TWZ=W0 at
the start of the waiting time and decreasing by 1 s each second until it reached
TWZ= 0 at the end of the waiting countdown. That is, ΔTWZ= –1/s. If the
cumulative willingness to wait (integrating the drift over time) ever fell below the
quit-threshold TWZ, the agent “quit” out of the wait zone.

The attrition bias was measured as the distribution of initial W0 willingness-
to-wait that remained after a given time spent.

Trials were independent. The simulation did not do any learning and was
assumed to follow the above decision process. Offers were uniformly distributed
over 1s-30s inclusive. 1 million trials were run for each experiment.

Figure 4b–f: The initial parameter set used by Ott et al.35 was tested:
WT= TOZ= 18 s. σW= 5 s. σN.= 3 s.

Figure 4g–k: The offer zone decision process was changed to always accept
the offer.

Figure 5: We did a parameter sweep running a full experiment (1 M samples
evenly divided over 1s-30s offers inclusive) for each combination of (σW ∊ {0, 0.25,
0.5, 1, 3, 5, 8, 10, 20} x σN ∊ {0, 2, 3, 5}).

Figure 6a–c: The initial parameter set and the initial model as described above.
Figure 6d–f: TWZ= offer and ΔTWZ= 0/s.
Figure 6g–i: TWZ= 0 and ΔTWZ= 0/s.
Figure 6j–l: TWZ was initialized to the offer and ΔTWZ=+ 1/s.
Figure 7a–c: The initial parameter set and the initial model as described above.
Figure 7d–f: The modification used in Fig. 6d–f: TWZ= offer and ΔTWZ= 0/s.
Figure 7g–i: The initial parameter set as described above, with the modification

that we forced W(t) ≤ W(t-1). If the random draw pulled ΔW > 0, W(t) was set to
be W(t-1).

Figure 7j–l: Combining both modifications used in 7d, g.
Figure 8b, c: 20 simulations of 1M offers each were made for each combination

of (σW ∊ {0, 0.25, 0.5, 1, 3, 5, 8, 10, 20} x σN ∊ {0, 2, 3, 5}). The total sunk cost
bubble and slope of the line at 0 s was measured as above. From each simulated
session, we calculated the tangent of the probit fit at threshold and plotted the σW
that generated it. The function was fit with MATLAB 2021a’s fit function (‘a+ b/
x’), adjusted-R2 as reported from the goodness-of-fit from that function. A
hyperbolic fit was found (adjusted-R2= 0.9997).

Figure 9: Simulations used the initial parameter set as described above, but
agents accepted every offer and were prevented from leaving the wait zone for DZ
seconds, after which W(t) was set to W0 and drifted normally with standard
deviation σN. In the first model (9a), TWZ was set to offer at the conclusion of DZ
seconds and decreased at a rate of 1/s. In the second model (9e), TWZ was set to
offer at entry into the wait zone and decreased at a rate of 1/s as per the original
model. Linear and quadratic fits were made with Matlab 2021a’s fit function,
adjusted-R2 as reported from the goodness-of-fit from that function.

Figure 10: For rat and mouse data, latency to accrual was identified as the delay
in seconds to when the sunk cost bubble began to grow. Outliers were defined as
points with a latency to accrual larger than 15 s. For the rats, this included 97% of
the data (all but one sample at 29 s, all other samples were in the range of 4s-8s).
For the mice, this included 96% of the data (all but 5/115 samples). Linear and
quadratic fits were made with Matlab 2021a’s fit function, adjusted-R2 as reported
from the goodness-of-fit from that function.

Subjects. Mice (Sweis et al.19) 32M C57B6J mice, age 13 weeks
Mice (Durand-de Cuttoli et al.20) 32M C57BL6J mice, age 10 weeks
Rats (Sweis et al.19) 4M 6F FBNF-1 rats.
Humans (Sweis et al.19) 65 undergraduate students were recruited from the

University of Minnesota (24 M, 41 F, mean age= 20 yrs). Ethnicity as reported by
the students: 73% white, 16.5% asian, 4.5% Black/African American, 2.5%
Hispanic/Latinx, 3.5% other or declined to answer.

Humans (Huynh et al.23) 178 humans, including 31 undergraduates recruited
from Wabash College, and the rest recruited online. Online recruited from Amazon
mTurk, restricted to workers form the US. 97 M 80 F 1 non-binary as identied by
the subject. Mean age= 39 yrs. Ethnicity as reported by the subject: 3% Black/
African American, 62% white, 8.5% asian, 5.5% Hispanic/Latinx, 21% other or
declined to answer.

Humans (Kazinka et al.26) 259 humans in the original version; 280 humans in
the distractor version. Online recruited through Amazon mTurk. Inclusion criteria
detailed in the original study26. Original version: 47% M, 53% F, <1% non-binary
as reported by subject, mean age= 37 yrs; Distractor version: 50% M, 49% F, <1%

non-binary as reported by subject, mean age= 38 yrs. Ethnicity as reported by the
subject: Original version, 73% White, 10% Black/African American, 10% mixed/
other, 7% Asian, 1% refused. Distractor version: 77% White, 12% Black/African
American, 5% Asian, 4% mixed/other, 1% refused.

Humans (NCST dataset) 232 humans. Online recruited from Prolific, restricted
to participants from the US. 110M 117 F 5 non-binary as identified by the subject.
Mean age 37. Ethnicity as defined by the subject: 9% Black/African American,
68.5% white, 7% asian, 8% Hispanic/Latinx, 7.5% other or declined to answer.

Rats (PJC/GWD dataset):7 M 8 F FBNF-1 rats, age 10–17 mos.
Rats (BJC/YAB dataset): 21 M BN rats, age 8–12 mos.

Data reporting and ethics statements. Experimental data analyzed here were
drawn from the following experiments:

Figure 3: a Mice, Sweis et al. 2018;19 b Mice, Durand-de Cuttoli et al. 2022;20

c Rats, Sweis et al. 2018;19 d Humans, (UG in person) Sweis et al. 2018;19 e
Humans, (online) Huynh et al. 2021;23 f Humans, (online) [NCST dataset].

Figure 8: d Mice, Sweis et al. 201819, Durand-de Cuttoli et al. 2022;20 e Rats,
including Sweis et al. 201819 and data from the Redish lab [PJC/GWD dataset].

Figure 10: a Rats without an offer zone from Sweis et al.19 b, c Rats, Sweis
et al.19 and data from the Redish lab [BJS/YAB dataset]; d mice with limited
experience, including mice C57BLJ6 from Sweis et al. 2018a,b17,19. e, f Each mouse
provides two lines, one early and one late.

All experiments were approved by the appropriate boards and comply with the
ethical regulations of their respective universities as well as US National Institute of
Health guidelines. All human subjects provided informed consent as in the original
studies and as follows:

● Approved by the University of Minnesota IACUC: Sweis et al. 201819, PJC/
GWD dataset, BJS/YAB dataset.

● Approved by the Mount Sinai IACUC: Durand-de Cuttoli et al. 202220.
● Approved by the University of Minnesota IRB: Sweis et al. 201819, Kazinka

et al. 202126.
● Approved by the Wabash College IRB: Huynh et al. 2021;23 NCST dataset.

All human studies were designed to include as diverse a population as possible.
Inclusion criteria were described in the original studies and are provided above.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Simulation code, data, and figure generation code are all available at https://github.com/
adredish/SunkCostModelsAndData2022.
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