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Abstract
Lung cancer has a very high mortality in females and males. Most (~ 85%) of lung cancers are non-small cell lung cancers 
(NSCLC). When lung cancer is diagnosed, most of them have either local or distant metastasis, with a poor prognosis. In 
order to achieve better outcomes, it is imperative to identify the molecular signature based on genetic and epigenetic vari-
ations for different NSCLC subgroups. We hypothesize that DNA and histone modifications play significant roles in the 
framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Epigenetics has a significant impact 
on tumorigenicity, tumor heterogeneity, and tumor resistance to chemotherapy, targeted therapy, and immunotherapy. An 
increasing interest is that epigenomic regulation is recognized as a potential treatment option for NSCLC. Most attention has 
been paid to the epigenetic alteration patterns of DNA and histones. This article aims to review the roles DNA and histone 
modifications play in tumorigenesis, early detection and diagnosis, and advancements and therapies of NSCLC, and also 
explore the connection between DNA and histone modifications and PPPM, which may provide an important contribution 
to improve the prognosis of NSCLC. We found that the success of targeting DNA and histone modifications is limited in the 
clinic, and how to combine the therapies to improve patient outcomes is necessary in further studies, especially for predic-
tive diagnostics, targeted prevention, and personalization of medical services in the 3P medicine approach. It is concluded 
that DNA and histone modifications are potent diagnostic and therapeutic targets to advance non-small cell lung cancer 
management from the perspective of 3P medicine.

Keywords Epigenetics · DNA modification · Histone modification · Non-small cell lung cancer (NSCLC) · Predictive 
diagnosis · Patient stratification · Personalized target therapy · Predictive preventive personalized medicine (PPPM / 3P 
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Introduction

Lung cancer‑caused health problem

There were more than 2.2 million cases of newly diagnosed 
lung cancers worldwide and 1.9 million cases of deaths 
in 2020; thus, it was one of the most prevalent malignant 
tumors [1]. Lung cancers were grouped into two types: small 
cell lung cancer (SCLC; 15–20%) and non-small cell lung 
cancer (NSCLC; 80–85%). NSCLC includes squamous cell 
carcinoma (LUSC), adenocarcinoma (LUAD), and large-cell 
carcinoma [2]. Although many advances have been made 
in early diagnosis and treatment, approximately 40% of 
NSCLC cases have metastasis when they are first diagnosed, 
with poor prognosis [3].
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Importance of epigenetics in lung cancer

Epigenetics, coined by Conrad Waddington, refers to herit-
able modifications of a cellular phenotype, which is distinct 
from changes in DNA sequences, including DNA methyla-
tion, gene silencing, maternal effects, and RNA modifica-
tions [4]. Epigenetic changes are responsible for regulating 
all DNA-based functions, including transcription, DNA 
repair, and replication. Typically, epigenetic dysfunction 
is caused by aberrant DNA and histone alterations. Sev-
eral studies demonstrate that aberrant chromatin regulator 
expression patterns and genomic changes can induce car-
cinogenesis in NSCLC. The whole-genome sequencing of 
NSCLC produced a database of recurrent somatic mutations 
in several epigenetic regulators.

Roles of modifications in DNA and histone in NSCLC

Genetic information plays a significant role in the occur-
rence, development, and prognosis of NSCLC [4]. Modifi-
cations in DNA and histone are the most studied epigenet-
ics, which do not change the gene sequence but change the 
gene expressions. DNA and histone modifications also play 
important roles in the processes of tumorigenesis, progres-
sion, and metastasis. Studies found that DNA and histone 
modifications provide potentials for early detection and diag-
nosis, progression, distant metastasis, therapies, prognosis, 
and screening recurrence of NSCLC in the framework of 
3P medicine.

Importance of PPPM approach in improvement 
of the overall management of lung cancer‑caused 
health problems

Despite great progressions in treatment options of lung can-
cer including surgery, radiotherapy, and chemotherapy, its 
survival improvement is still a big challenge, with a low 
5-year survival rate (20%). Most (~ 85%) of lung cancers are 
non-small cell lung cancers (NSCLC). Upon being first diag-
nosed, most patients are found with local or distant metasta-
ses, with a poor prognosis [1–3], whose main reason is that 
the early symptoms of lung cancer are commonly ignored 
causing most patients to be diagnosed in middle or advanced 
stages [3]. Although targeted therapy and immunotherapy 
are very effective for NSCLC patients, only a minority of 
patients with driver gene mutations or PD-L1 high expres-
sion have a well-response to these treatments. Basic attrib-
utes of PPPM meet the requirements of cancer therapeutic 
strategy for better prevention, early diagnosis, discovery of 
the best possible treatment for every patient, and prediction 
of the patient response [5, 6]. In the context of 3P medicine, 

DNA and histone modifications will be helpful in early diag-
nosis, predicting disease development, progression, patient 
stratification, individualized therapy, and screening recur-
rence of NSCLC.

Working hypothesis in the PPPM framework 
of NSCLC

We hypothesize a series of molecular event and signaling 
pathway alterations mediated by DNA modifications and 
histone modifications in NSCLC. We will focus on the 
regulators of DNA and histone modifications, and modi-
fied substrates to discuss the significant roles of DNA and 
histone modifications, and the corresponding molecular 
pathway alterations, and discover the key molecules related 
to NSCLC. It will benefit the clarification of molecular 
mechanisms of NSCLC, discovery of new therapeutic tar-
gets/drugs, and establishment of effective biomarkers based 
on DNA and histone modifications, which play an important 
role in predictive diagnostics, targeted prevention, and per-
sonalization of medical services [7, 8]. This review aims to 
introduce advances in modifications in DNA and histones 
and their significant roles in the diagnosis, therapeutics, 
and prognosis of NSCLC. This review also aims to explore 
the connection between DNA and histone modification and 
the PPPM, which may provide an important contribution to 
improve the prognosis of NSCLC.

DNA modifications in NSCLC

Living organisms encode genetic information through four 
nucleobases (adenine, thymine, cytosine, and guanine) as 
well as modified nucleobases. DNA cytosine methylation 
(m5C), the most studied epigenetic alteration, controls 
gene expression in mammalian cells. Besides m5C, animal 
genomes contain a variety of DNA alterations. N6-methyl-
adenosine (m6A) can be used by prokaryotes and eukaryotes 
[9]. m6A has been found in a number of mammals [10–12]. 
Per the earlier literature, most m6A modifications are found 
in mitochondrial DNA, which is then incorporated into 
genomic DNA via nucleotide-salvage processes [13–15]. 
The thymine modification 5-hydroxymethyluracil (5hmU) 
can be found in mammal genomes [16]. The TET enzymes 
in mammalian genomic DNA oxidize thymine to produce 
5hmU and 5fU [16]. DNA oxidation results in a main prod-
uct, 8-oxo-7,8-dihydroguanine (OG) [17], which controls 
gene expressions [17, 18]. Phosphothioate can modify the 
DNAs of bacteria and archaea, but cannot modify the DNA 
of eukaryotes [19].

650 EPMA Journal (2022) 13:649–669



1 3

Cytosine modification: DNA methylation

A lot of attentions were paid to cytosine methylation as a 
DNA alteration, which was recognized as a tuberculinic 
acid hydrolysis byproduct by Johnson and Coghill in 1925, 
although it was discovered in 1898 [20]. In the field of epi-
genetics, DNA methylation has received the most attention 
because it alters chromatin shape and transcription factor 
binding to control gene expression. DNA methylation is an 
addition of a methyl group to the cytosine 5th carbon atom 
by DNA methyltransferases [20]. Even if the DNA sequence 
is not altered, DNA methylation can mutate the genes bound 
to the methyl group (Fig. 1). During DNA methylation, a 
large number of genes can be methylated or demethylated at 

different times in cells [21]. In NSCLC, hypermethylation of 
local promoters and abnormal hypomethylation of genome-
wide DNA are detected [22].

Thymine modifications: 5hmu and 5fu

Numerous eukaryotes, including mammals, contain the thy-
mine alteration 5-hydroxymethyluracil (5hmU) [16], and 
studies demonstrate that either passive replication-dependent 
loss or active TET-assisted oxidation could use 5hmC as an 
intermediary in DNA demethylation [16]. However, some 
researchers believe that DNA demethylation is not required 
for 5hmC to exert epigenetic activity [16].

Fig. 1  Epigenetic dysregula-
tion is often caused by DNA 
and histone modifications. The 
purpose of this review is to 
highlight current progress in the 
identification, management, and 
prognosis of NSCLC based on 
DNA and histone alterations
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Adenine modifications: N6‑methyladenosine

N6-Methylladenosine (m6A) is commonly used to modify 
DNA by prokaryotes and eukaryotes [23]. It was firstly dis-
covered to play significant roles in prokaryotic restriction-
modification mechanisms and gene expression regulation 
[24] and was later detected in mammals [10, 11]. As a result 
of the nucleotide-salvage pathway, DNA polymerases incor-
porated m6A into genomic DNA from the RNA nucleoside 
of m6A, which was degraded in mitochondrial DNA [11].

DNA methylation in the mechanism 
of tumorigenesis

DNMT dysregulation

DNMT dysregulation plays an important role in the methyla-
tion pathway and is closely associated with cancer patho-
physiology. Humans have five known DNMTs with different 
specificities for methylated and unmethylated DNA: DNMT-
1, DNMT-2, v3A, DNMT-3B, and DNMT-3L [25]. It is 
possible that aberrant DNMT activities contribute to lung 
cancer in different ways. In view of the positive correlation 
between higher DNMT expression and proliferation, DNMT 
dysregulation can disrupt the cell cycle. Non-small cell lung 
cancers are found to overexpress DNMTs, such as DNMT1 
upregulation, which is independently linked to poor prog-
nosis [26]. Another study found that DNMT3a expression is 
a marker for prognosis, and the lack of DNMT3a is thought 
to facilitate tumor progression in LUAD [27]. In the mouse 

model of LUAD tumor progression, eliminating DNMT3a 
promotes tumor growth. Different histological types of lung 
cancer seem to specifically influence the expression levels 
of DNMT3a [28], and DNMT1 increased cell proliferation 
in EGFR-mutated NSCLC by deregulating hMLH1 and 
hMSH2, which disturb the cell cycle [28].

TET dysregulation

Ten-eleven translocation enzymes (TET) act on m5C to oxi-
dize it, which reverses DNA methylation (DNAm) to erase 
DNA methylation; thus, this process is irreversible (Fig. 2). 
TET proteins have three subtypes: TET1, 2, and 3; and they 
have similar catalytic activities, but differ in the architecture 
of their domains [29]. One study demonstrated that TET1 is 
frequently upregulated and serves as an oncogene in NSCLC 
with lost p53 function and that TET1 might not be repressed 
by TP53-carrying transversion mutations [30].

Hypermethylation with NSCLC

NSCLC as well as other lung cancers have been exten-
sively studied in terms of hypermethylation targets and 
roles. The hypermethylation of many CGIs of potential 
tumor suppressor genes has been consistently identified 
in NSCLCs [31, 32]. These tumor suppressor genes play 
important roles in NSCLC cellular functions, including 
apoptosis, control of the cell cycle, adhesion, invasion, DNA 
repair, and modulation of signaling pathways. DNA hyper-
methylation markers are summarized to relate to NSCLC 

Fig. 2  Methylation and demethylation of DNA. DNA methyl-
transferases (DNMTs) methylate cytosine (C) at site C5, creating 
5-methylcytosine (m5C). Through the proposed demethylation route, 
ten-eleven translocation enzymes catalyze the repeated oxidation of 
m5C to 5-(hydroxymethyl)cytosine (5hmC), 5-formylcytosine (5fC), 

and 5-carboxycytosine (5caC). In order to create apyrimidinic (AP) 
sites, 5fC and 5caC are removed by the G/T-mismatch-specific thy-
mine DNA glycosylase, followed by base excision repair (BER) to 
reinstall the cytosine
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pathogenesis, progression, and outcome at the experimental 
level (Table 1). The silencing of some of these genes by 
DNAm continues to be confirmed when NSCLC lines are 
treated with methylation inhibitors [63]. Although methyla-
tion does not necessarily inactivate genes, it is proven to be 
useful as an epigenetic marker in NSCLC [64].

Hypomethylation with NSCLC

Lung cancers exhibit extensive global hypomethylation, 
particularly at repetitive sequences and segmental duplica-
tions [31]. A study found that LUAD patients with LINE-1 
hypomethylation had a worse prognosis and progressed to a 

more advanced stage regardless of their driver gene muta-
tions [65]. SNCG was also found to associate with advanced 
cancer cell invasion and migration stages [66]. Another 
study found that MAGE genes were overexpressed in most 
of NSCLCs, and such overexpression was related to the loss 
of methylation [67]. Lung cancer patients with MAGE over-
expression had a poor prognosis and were more likely to 
develop metastasis and tumor growth [62]. Moreover, the 
increased hypomethylation of LINE-1 and Alu leads to their 
transcription enhancement and genomic instability increase 
in NSCLC [66]. Thereby, DNA hypomethylation is involved 
in the altered microenvironment, mutagenesis, and increased 
chromosomal instability.

Table 1  Summary of DNA modification markers in the pathogenesis, progression and metastasis, and prognosis of NSCLC

DNA methylation marker Pathway Function Reference

Upregulation
  APC Cell proliferation, migration, and cell adhesion Pathogenesis and progression [33]
  CDH1 Cell adhesion Pathogenesis [34]
  CDH13 Cell adhesion Pathogenesis [35]
  P16 Cell cycle regulation Pathogenesis [36]
  DAPK Apoptosis Pathogenesis [37]
  DAL-1 Progression and metastasis [38]
  EPHB6 Pathogenesis, progression, and metastasis [39]
  HS3ST2 Pathogenesis, progression, and metastasis [40]
  TMEM88 Progression and metastasis [41]
  MGMT Progression and metastasis [42]
  HMLH1 Prognosis [43]
  IGFBP-3 Prognosis [44]
  RASSF1A Cell cycle regulation, genomic-stability maintenance, apopto-

sis, cell migration, and invasion
Prognosis [45]

  TMEM196 Prognosis [46]
  GRK6 Prognosis [47]
  GSTP1 Pathogenesis [48]
  FHIT Prognosis [49]
  MLH1 DNA repair Pathogenesis [50]
  MSH2 DNA repair Pathogenesis [50]
  PTEN Cell cycle regulation NA [51]
  RUNX3 TGF-β/Wnt signaling pathway Pathogenesis [52]
  SEMA3B Cell adhesion Pathogenesis [53]
  RARβ Cell differentiation and proliferation Prognosis [54]
  RARβ2 Cell differentiation and proliferation Prognosis [55]
  SHOX2 Cell differentiation and proliferation Prognosis [56]
  TGFBR2 Signaling Pathogenesis [57]
  TSLC1 Cell adhesion Progression [58]

Downregulation
  LINE-1 Prognosis [59]
  ELMO3 Progression and metastasis [60]
  FAM83A Prognosis [61]
  MAGE Transcriptional regulation, cancer development, and progres-

sion
Pathogenesis [62]
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Smoking and DNA methylation with NSCLC

A study reported that smoking was strongly associated with 
NSCLC; only 15–25% of NSCLC cases occurred in non-
smokers [68]. Another study demonstrated that smoking 
was also strongly related to lung tumorigenesis via DNAm 
[69]. Moreover, the hypomethylation of AHRR, 6p21.33, 
and F2RL3 was related to smoking and the increased risk of 
developing NSCLC [70]. Three additional hypomethylated 
CpGs (cg21566642, cg05951221, and cg23387569) were 
also associated with lung cancer [71]. Several genes (p16, 
APC, and MGMT) were also found to be upregulated in 
smoking-associated lung cancer [72–74]. A smoking car-
cinogen might alter the ubiquitination level of DNMT1 and 
its degradation mechanisms to control DNMT1 production, 
which resulted in de novo hypermethylation of TSGs and 
ultimately caused carcinogenesis in NSCLC [75, 76]. With 
the increasing reactive oxygen species (ROS) and chronic 
inflammation, smoking also resulted in aberrant methylation 
and the activation of silencing complexes [77].

DNA methylation in diagnosis of NSCLC

In the past few years, clinical doctors have had increasing 
interests in DNA methylation detection. A study demon-
strates that DNAm can be used to estimate tumor risk and 
has great use for tumor risk prevention [78]. DNAm markers 
in NSCLC early diagnosis are summarized (Table 2).

A study first reported the use of methylation detection 
in NSCLC early diagnosis [87]. Due to its sensitivity and 

stability, DNA methylation was an effective method to 
compensate for imaging examination defects and improve 
early diagnosis of lung cancer. Some examples are taken 
here. Studies also found that the methylated genes such 
as PTGER4, SHOX2, and RASSF1A were more likely to 
cause lung cancer [82, 88]. The analysis of alveolar lav-
age fluid of lung cancer patients revealed that SHOX2 gene 
methylation was used to distinguish benign from malignant 
lung tissues with specificity (95%) and sensitivity (68%) 
and also was used to diagnose LUAD with 82% sensitiv-
ity [83]. RASSF1A methylation was substantially corre-
lated with NSCLC, which confirmed that RASSF1A was 
a tumor suppressor gene [89], and also, RASSF1A might 
be an indicator of invasive lung cancer because of its high 
specificity (93%) and sensitivity (17%), as well as its optimal 
performance within a screening interval of 2 years. A com-
prehensive analysis of tumor tissue, sputum, and blood sam-
ples from 155 lung cancer patients found that TMEM196 
was methylated in lung cancer samples but not controls, 
and TMEM196 methylation was an independent prognostic 
indicator, which offered new potential clinical application 
of TMEM196 methylation as biomarkers for early diagnosis 
and prognosis in NSCLC [46]. The level of RAR2 methyla-
tion in stage III lung cancer patients was higher than that in 
stages I and II, and NSCLC patients had a higher level of 
RAR2 methylation in their plasma and cell surface-bound 
cirDNA; thus, cirDNA-based tests might be valuable to con-
firm methylated DNA markers in lung cancer diagnosis [55]. 
The promoter methylation index (PMI) varied significantly 
in lung cancers compared to healthy controls with ROC 

Table 2  Summary of DNA methylation markers in lung cancer early diagnosis

Single/combination marker Tumor type Sensitivity(%) Specificity(%) Sample type Reference

P16
RARB2

Lung cancer 69 87 Bronchial aspirates [36]

RASSF1A Lung cancer 64 100 Carcinoma tissues [79]
Lung cancer 60 90 Brushing sample

RASSF1A Lung cancer 92 100 Carcinoma tissues [80]
PCDHGB6 + HOXA9 Lung cancer 80 100 Brushing sample
RASSF1A NSCLC 87 75 Plasma(cirDNA) [81]
RARB2 Lung cancer
SHOX2 Squamous cell 

carcinoma
60 90 Plasma [82]

SHOX2 Lung cancer 68 95 Alveolar lavage fluid [83]
SHOX2 Lung cancer 65.5 90 Plasma [56]
PTGER4 Lung cancer 56.3 90
SHOX2 + PTGER4 Lung cancer 75.6 84.8
SHOX2 Lung cancer 67 90 Plasma [84]
PTGER4 Lung cancer 90 73
SHOX2 + RASSF1A Lung cancer 81 97.4 Bronchoalveolar lavage fluid [85]
HOXA9 NSCLC 55.2 74.3 Plasma [86]
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curve analysis (n = 100, AUC = 0.69, p = 0.0012), which 
shows that MIRA might be a viable non-invasive tech-
nique to detect early lung cancers [59]. Hypomethylation 
of L1RE1 was frequently detected in tumors compared to 
benign controls, whereas increased methylation of RARB 
was an independent tumor marker for high-grade lung can-
cer. RASSF1 hypermethylation was prevalent in NET, which 
might serve as an auxiliary biomarker to distinguish NSCLC 
from NET [90]. The combination of L1RE1 and RARB or 
RASSF1 methylations could serve as biomarkers to distin-
guish lung cancers from non-cancerous tissues [90]. HOXA9 
gene methylation was proven to diagnose LUSC with sen-
sitivity (55.2%) and specificity (74.3%) [86]. Further, the 
combination detection of two or more gene methylations 
might significantly increase the sensitivity and specificity. 
For instance, single-gene methylation analysis revealed that 
RASSF1A was sensitive in 64% of carcinoma tissues and 
about 60% in bronchial brushing samples [91]. However, 
the methylation of HOXA9, PCDHGB6, and RASSF1A was 
evaluated simultaneously; the sensitivity rose up to 92% in 
carcinoma tissues and 80% in bronchial brushing samples 
[91]. Thereby, dual- or multi-gene methylation detection had 
higher sensitivity and specificity than single-gene methyla-
tion detection in lung cancer diagnosis, which is the future 
direction to reduce contingencies, improve diagnostic accu-
racy, and lead to earlier diagnosis [64].

DNA methylation in NSCLC therapeutics

DNAm plays important roles in NSCLC treatment. With 
the determination of the methylation status of biomarkers, 
physicians are able to more effectively foresee the kind and 
stage of NSCLC and make a better treatment plan [86]. 
Several tumor suppressor genes can be demethylated to 
restore their normal expression and prevent the growth of 
NSCLC; DNMT might be a primary target of tumor epige-
netic medications, with the use of DNA methyltransferase 
inhibitors (DNMTis) [86]. A study revealed that DNMTis 
in combination with histone deacetylase inhibitors were a 
more effective approach to treat NSCLC [92]. NSCLC can 
be effectively treated with immunotherapy, such as anti-pro-
grammed cell death protein 1 (PD1) and anti-programmed 
cell death ligand 1 (PD-L1) therapies. However, screening 
for suitable patients for anti-PD1/PD-L1 therapy has become 
a major challenge. Tumor mutation burden (TMB) is proven 
to be a predictor for the effectiveness of immunotherapy 
[93]. Previous studies demonstrate that DNAm is a good 
marker to predict immunotherapy efficacy, and a substantial 
increase occurs in DNAm aberrations and copy number vari-
ations (CNVs) in high-TMB NSCLCs, thus the association 
between DNAm and TMB contributes to the prediction of 
the immunotherapy efficacy of NSCLC [94]. A study dem-
onstrated that hMLH1 gene methylation was a biomarker 

for tumor recurrence in NSCLC patients treated with cispl-
atin-based adjuvant cisplatin, and NSCLC patients without 
hMLH1 methylation benefited better from cisplatin-based 
adjuvant treatment [43]. Thus, hMLH1 methylation will 
become a biomarker that allows NSCLC patients to receive 
individualized treatment [43]. Also, cisplatin might be less 
toxic to NSCLC tumor cells when IGFBP-3 expression was 
decreased due to promoter-hypermethylation [44]. It is pos-
sible to identify patients who may benefit from CDDP ther-
apy alone or in conjunction with epigenetic therapy based on 
IGFBP-3’s basal methylation status prior to chemotherapy 
[44].

Histone modifications in NSCLC

A protein octamer with four core histones (H-2A, -2B, -3, 
-4) surrounds the DNA to form the structure of the nucleo-
some in eukaryotic cells [95]. Some studies found that the 
histone alterations may influence the control of the transcrip-
tion process [95]. Some studies found that histone modifi-
cations affect not only the transcription but also the DNA-
templated processes. Histone proteins have tails, which are 
classic sites for post-translational modifications (PTMs). 
By altering DNA and histone charge density, DNA meth-
ylation and histone PTMs can affect the loosening of the 
nucleosome, as well as promote transcription factors and 
RNA polymerase to reach their targets [96–98]. The acety-
lation of histones was found to contribute to the develop-
ment of lung cancer by stimulating gene transcription [99, 
100]. Studies revealed that a number of histone deacetylase 
(HDAC) inhibitors were effective treatments for NSCLC in 
pre-clinical and clinical trials [98, 100].

Histone acetylation

Histone acetylation is a major PTM in histones, and this 
modification occurs when histone deacetylase and acetyl-
transferase work together [101]. After the acetyl groups are 
removed from histones, HDACs cause compacted chromatin 
to reorganize, which in turn decreases gene transcription 
[102]. Histone lysine acetylation is generally reversible. 
The acetylated lysine residue can be deacetylated by his-
tone acetyltransferases and histone deacetylases (Fig. 3A).

Histone acetylation in NSCLC

Histone modifications in NSCLC cells differ from normal 
cells [103]. In addition, most LUSC samples exhibit ele-
vated levels of HDAC3 [104]. In LUAD, a poor progno-
sis is strongly correlated with higher levels of HDAC1 and 
HDAC3, and also a poor prognosis in NSCLC is associated 
with down-expression of HDAC2 [105, 106]. Another study 
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found that FLIP was overexpressed in a subset of NSCLCs, 
FLIP inhibited caspase-8 activation to block the extrinsic 
apoptosis pathway. Overall survival is significantly reduced 
when FLIP expression is high in the cytoplasm. In NSCLC 
but not in healthy cells, an HDACi that targets HDAC1-3 
decreases FLIP expression via the post-transcriptional mech-
anism and causes apoptosis [107].

Histone acetylation in NSCLC therapeutics

Single use of HDACi Despite a substantial amount of preclin-
ical evidence supporting their efficacy in NSCLC, HDACi 
has a limited clinical efficacy in clinical trials. Only three 
of 47 patients with advanced NSCLC who had previously 
received treatment responded partially to pivanex in a phase 
II study [108]. Vorinostat monotherapy in recurrent NSCLC 
patients did not show any objective tumor response, but 
showed obvious toxicity, including tiredness, cytopenias, 
and one death [109]. The completed and continuing clinical 
studies for NSCLC treatment based on histone acetylation 
are summarized (Table 3).

Combination of HDACi with cytotoxic chemotherapy There 
is overwhelming proof that HDACi in combination with 
cytotoxic chemotherapy has synergistic effects. The com-
bination of HDACi with paclitaxel exerts synergistic anti-
tumor effects by inducing hyperacetylation of p53 and 
tubulin, and by preventing p21 upregulation [129]. With 
the combination of HDACi with vinorelbine and platinum, 
the enhanced expressions of CHK1-2, p21, and p27 led to 
cell-cycle arrest and increased apoptosis [130]. A study 
about paclitaxel-resistant NSCLC cells found that HDAC1 
was overexpressed, and combination treatment with pacli-
taxel and HDACi SNOH-3 options overcomes resistance 
to paclitaxel [131]. Based on this pre-clinical data, a ran-
domized, double-blind, placebo-controlled study was per-
formed to randomly assign patients to two groups and given 
either normal carboplatin dosages or paclitaxel plus either 
vorinostat or both. The response rate was greater in vori-
nostat group than placebo group (34% vs. 12%, p = 0.02). 
Progression-free survival (PFS) and overall survival (OS) 
were marginally better in vorinostat group although there 
were no statistical differences. In contrast, 3% of patients 

Fig. 3  Regulators of histone 
acetylation and methylation. A 
Histone lysine can be acetylated 
in a highly reversible manner. 
During histone deacetyla-
tion, histone acetyltransferase 
enzymes (HATs/KATs) 
(HDACs) add acetylated lysine 
residues to the histone. B The 
histone is methylated. A histone 
methyltransferase adds methyl 
(CH3) groups to histone lysines 
or arginines with the help of 
histone demethylase. Methyla-
tion status of lysine or arginine 
is indicated
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in the placebo group developed grade 4 thrombocytopenia, 
while 18% of patients in the vorinostat group did (p ≤ 0.05) 
[113]. In a phase I study, belinostat was tested through com-
bination of paclitaxel and carboplatin, which obtained the 
objective response rate of 35% (partial responses), and the 
median PFS of 5.7 months. Although the combination of 
chemotherapy and HDACi has therapeutic benefits, its toxic-
ity prevents its extensive use in clinical practice [114].

Combination of HDACi with immune checkpoint inhibi‑
tion Combined with cytotoxic chemotherapy, immune 
checkpoint inhibition (ICI) is becoming the norm to treat 
advanced NSCLC. Epigenetic control of the tumor micro-
environment may be used to improve responses to ICI [132]. 
HDACi and ICI were initially investigated in a study that 
evaluated entinostat and azacitidine for dual epigenetic 
modulation; as a result, a total of five of the six NSCLC 
patients had PFS with 6 months, which was a satisfactory 
outcome for patients who failed to treat with ICI [133]. 
HDACi have been shown to prime the tumor microenvi-
ronment for response to ICI through multiple mechanisms, 
including upregulation of MHC expression, T cell function-
ality, tumor antigens, T cell chemokines, and stimulatory 
effects on T cells [134]. Based on gene signature mappings 
in NSCLC cancers and investigations of pathways induced 
by azacitidine in the cancer genome atlas, one found that that 
azacitidine promoted genetic factors related to the innate and 
adaptive immune systems, as well as genes implicated in 
immune evasion; and inhibition of both HDAC and HSP90 
decreased gene transcription of PD-L1 in lung cancer cells 
treated with IFN-gamma, which suggests that it impacts the 
tumor immunosuppressive potential [135]. A combination 
of pembrolizumab and vorinostat, an inhibitor of the PD-1 
receptor, was utilized in the advanced NSCLC patient group 
in a phase I/Ib study [128]. After phase I, phase Ib required 
patients to receive ICI-pretreatment. Every 3 weeks, 200 
or 400 mg of vorinostat were given together with 200 or 
400 mg of pembrolizumab as part of the therapy. No dose-
limiting effects were detected. The most prevalent adverse 
responses were fatigue (33%) and nausea/vomiting (27%). 
The ICI-pretreated group contained eleven patients with 
stable illness, whereas three individuals showed a partial 
response. For future testing of this mixture in patients who 
have already received ICI, the findings of this exploratory 
trial were very positive. We are expecting the long-term 
results of this trial’s participants as well as the outcomes of 
many other ongoing trials about the combination of addi-
tional HDACi with ICI [128].

Combination of HDACi with tyrosine kinase inhibitors The 
anti-EGFR antibody tyrosine kinase inhibitors (TKI) in a 
large percentage of advanced NSCLC tumors inhibited the 
activation of epidermal growth factor receptors to result in 

powerful responses to these medications [122]. TKI resist-
ance ultimately develops in the overwhelming majority of 
patients despite their remarkable initial responses. One of 
these resistance mechanisms was the Bcl2-like protein 11 
(commonly called BIM). In EGFR-mutated lung cancers, 
the proapoptotic molecule BIM may contribute to mortality 
[119]. In a phase I clinical study, vorinostat and gefitinib 
were used to treat NSCLC patients with BIM-deleting poly-
morphisms and EGFR mutations. Twelve EGFR-mutated 
NSCLC patients who previously received chemotherapy and 
an EGFR TKI were given escalating doses of gefitinib and 
vorinostat, which resulted in a combination’s well-tolerated 
effects, 83.3% disease control rate at 6 weeks, a modest 
median PFS (5.2 months), and the heartening median OS 
(22.1 months) [122]. Similarly, a study also demonstrated 
that the HDACi panobinostat in combination with the third-
generation EGFR TKI osimertinib increased apoptosis 
induction and decreased the continued availability of cell 
cultures and xenograft models resistant to osimertinib, such 
as those with C797S alterations, through BIM upregulation 
[122].

Combination of HDACi with radiation therapy Ionizing 
radiation can cause the single-strand breaks (SSBs), dou-
ble-strand breaks (DSBs), and inter-strand crosslinks of 
DNA, which can produce an anti-tumor effect [136]. When 
DNA breaks in the double strands, DNA damage response 
mechanisms are activated, including recombination between 
homologous and non-homologous ends. Improvement of 
DNA double-strand breaks might contribute to the resistance 
to ionizing radiation. A DSB marker, HDACi, is upregulated 
by ionizing radiation in lung cancer cell lines [136]. RAD51, 
CHK1, and BRCA2 are downregulated by HDACi, which 
assist in repairing radiation-caused DNA damage, and the 
NHEJ pathway is also inhibited by Ku70/80 and XRCC4 
acetylation caused by HDAC inhibition [134]. The mixture 
of HDACi with radiation exposure in NSCLC is now being 
tested in several clinical studies [137].

Histone methylation

Histone methylation is one of the most extensively studied 
modifications in histone, which has been shown to activate 
or inhibit transcription at several gene loci in NSCLC [96]. 
Methyltransferases and their equivalent demethylases are 
referred to as heterocyclic methyltransferases because they 
write and remove residues of histone lysine [96].

The functions of lysine methyltransferases in NSCLC

Lysine methyltransferases (KMTs) can eliminate the methyl 
groups at the methylated lysine residues in both histone and 
none histone substrates (Fig. 3B) [138, 139]. The structural 
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organization and catalytic domain of KMTs with and without 
the SET domain (the SET domain is an important domain 
of histone methyltransferases) are used to categorize KMTs 
[140, 141]. EZH2 is a homolog of Drosophila En (zeste) 
(PRC2), an element of the Polycomb repressive complex II. 
Together with cofactors SUZ12 and EED, EZH2 transfers 1, 
2, or 3 marks of methylation on H3K27 in a SAM-dependent 
manner. The EZH2 positive expression was associated with 
greater resistance to platinum-based treatments compared to 
the EZH2 negative expression in advanced NSCLC patients 
[142, 143]. Several malignancies are associated with dys-
regulation or loss of function of the MLL (KMT2) methyl-
transferase family [144]. Study found that MLL2 was a type 
of the most often altered genes in NSCLC patients in China 
with whole-exome sequencing, negative MLL2 mutations 
were present in 11.4 percent of NSCLC patients, and lack of 
MLL2 expression was common in NSCLC [145]. The mono- 
and di-methylation of H3K9 (H3K9me1, me2) was catalyzed 
by the G9a KMT [146]. G9a promoted the proliferation and 
invasion of NSCLC cells by raising H3K9me2 levels close 
to the CASP1 promoter and inhibiting caspase 1 [147]. A 
study found that the SET and MYND property 2 methylated 
the lysine residue in anaplastic lymphoma kinase, and acti-
vated oncogenic ALK. Crisotinib (an inhibitor of ALK) and 
LLY-507 (an inhibitor of SMYD2) both greatly limited the 
development of NSCLC cells [148]. SETD2 mutations were 
found in primary NSCLCs [149]. In mice, LUADs in both 
their early and late stages were accelerated by SETD2 dele-
tion and subsequent H3K36me3 loss [150]. It suggests that it 
is conceivable for SETD2 to be used as a prognostic or diag-
nostic indicator for NSCLC. KMT5A, sometimes referred 
to as SET8, selectively methylates H4K20 and is associated 
with many cancer-related processes [151]. The tumor sup-
pressor miR382 prevented carcinogenesis and metastasis in 
NSCLC cells by suppressing SETD8; however, restoring 
SETD8 might promote proliferation, migration, and inva-
sion of NSCLC cells [152].

The functions of KDMs in NSCLC

Both lysine-specific demethylases and Jumonji (JmjC) 
domain-containing demethylases may be categorized as 
KDMs in accordance with the oxidative mechanisms of 
the demethylation reactions as well as the composition of 
the catalytic domains. LSD1, which is the first discovered 
and most extensively studied KDM demethylase, belongs to 
the LSD family that does not contain JmjC domain [153]. 
In NSCLC patients, overexpression of LSD1 was strongly 
related to a shorter overall survival time [154]. Increased 
tumor proliferation and EMT (epithelial-mesenchymal tran-
sition) process were brought about via LSD1 being drawn to 
the Kruppel-like factor 2 or Ecadherin promoters in NSCLC 
cells [155]. KDM2 accelerated H3K36 demethylation, which 

was associated with gene activation; and lung cancer was 
linked to KDM2A but not to its homologous gene KDM2B 
[156]. KDM2A was dysregulated in 54 NSCLC cell lines, 
and its protein level was significantly higher in primary 
NSCLC tissues than adjacent healthy control tissues [157]. 
Furthermore, KDM2A increased transcription of HDAC3 
target genes while demethylating H3K36me2 at the HDAC3 
promoter in order to reduce transcription of HDAC3 itself, 
such as NANOS1 that was related to cell invasion, and 
CDK6 that was related to cell cycle, in NSCLC cells with 
overexpressed KDM2A [158]. More than 50% of NSCLC 
patients were discovered to have overexpressed KDM3A, 
a KDM demethylase specific to the H3K9 protein [159]. 
By enhancing the expression of the anti-tumor miRNA 
let-7c and lowering the presence of the tumor-promoting 
EZH2, KDM3A knockdown prevented tumor growth among 
NSCLC cell cultures and a xenograft model [160]. KDM6A, 
an H3K27-specific demethylase that normally opposes 
EZH2, was investigated in NSCLC cells with conflicting 
findings about its link to lung cancer: when a spectrum of 
NSCLC cell lines used its inhibitor GSKJ4 to show antitu-
mor activity, KDM6A epigenetically suppressed the TGF-
induced EMT process. Based on human lung cancer tissues 
and transgenic NSCLC mice models, the KDM6A gene was 
identified as one of the important tumor suppressor genes 
[161].

Histone methyltransferase/demethylase inhibitors

Histone methyltransferase or demethylase inhibitors, alone 
or combined with other drugs, have been extensively docu-
mented to have antitumor effects for a variety of malignan-
cies. The roles of typical histone methyltransferase/dem-
ethylase inhibitors are summarized (Table 4), along with 
any possible therapeutic benefits for NSCLC. In NSCLC 
cells that are resistant to erlotinib (NSCLC cells are resist-
ant because erlotinib inhibits the tyrosine kinase), PRMT1 
overexpression decreased E-cadherin function and facili-
tated EMT [162]. Considerably worse clinical outcomes 
were linked to significantly higher JMJD6 transcription in 
LUAD, which was positively associated with the extent and 
size of the tumor. A high JMJD6 level was also strongly cor-
related with pT condition, pN condition, and pathological 
grading, which suggests that it might be used as a prognostic 
and diagnostic indicator for NSCLC [163]. In NSCLC cells 
that are resistant to gefitinib, PAD4 expression drastically 
reduced (the tyrosine kinase inhibitor gefitinib is widely uti-
lized to treat NSCLC). The overexpression of PAD4 inhib-
its the ETS-domain protein, which controls EMT activity 
and prevents gefitinib resistance [164]. Studies found that 
DZNep dose-dependently suppresses the development 
of NSCLC cell lines [165]. Lung cancers were also more 
responsive to other inhibitors after pharmacological EZH2 
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suppression, for example, DZNep or GSK126 administration 
may increase the anticancer impact in terms pf doxorubicin, 
a topoII regulator, vs BRG1 and EGFR mutated cancer of 
lungs [166].

Future perspectives

A few topics are still needed to be further investigated 
despite recent achievements in DNA and histone modifi-
cations. Although cell lines are a good model for cancer 
research, several studies have demonstrated that DNA and 
histone information from cell lines could not be comparable 
to those from actual endogenous tumor cells in cancer tissue. 
The bulk of DNA and histone alteration markers derived 
from cell lines do not have enough specificity and sensitivity 
to be widely used in clinical settings. In addition, progress 
in DNA and histone alteration studies was hampered by a 
lack of extremely sensitive and precise detection methods. 
More methods must be quickly developed for very sensitive 
and precise detection of DNA and histone changes. Earlier 
studies demonstrate that the identification of dual-gene or 
multi-gene alterations is more accurate and precise than the 
detection of single-gene mutations. Future detection of DNA 
and histone modifications will likely rely more heavily on 

double-gene or multi-gene combinations since these tech-
niques not only reduce the contingency of findings but also 
enhance diagnostic precision, which is more suitable for 
early detection.

Moreover, there are at least ten types of modifica-
tions occurred in DNA, and many types of modifications 
occurred in histones [173]. The characteristics of each type 
of modification are different, which need different analytical 
approaches. Multiomics including genomics (DNA sequenc-
ing) and PTM-proteomics might be the effective methods to 
deeply reveal DNA and histone modifications in NSCLC, 
respectively [173, 174]. It would be necessary to study dif-
ferent types of modifications that occur in DNA, and in his-
tones, to completely reveal the biological roles and effects of 
modifications in DNA and histones in NSCLC pathophysi-
ological processes.

Conclusions and expert recommendation 
in the framework of 3P medicine

DNA and histone alterations are important molecular events 
in cancer pathophysiological processes and have become a 
popular focus of cancer research. This review article dis-
cussed the significance of DNA and histone alterations in 

Table 4  Histone methyltransferases and demethylases with reported functions and representative methyltransferase/demethylase inhibitors in 
lung cancer (including NSCLC)

Enzymes and their inhibitors Target Function Reference

Histone methyltransferases
  MLL2 H3K4 Loss of expression and deleterious mutations in 

NSCLC
[145]

  SMYD2 H3K36 Contributed to NSCLC cell growth [148]
  SETD2 H3K36 Deleterious mutations in primary NSCLC [149]
  DOT1L H3K79 Contributed to NSCLC cell growth [167]
  PRMTs Arginine on H3 and H4 Contributed to NSCLC cell growth and overex-

pressed in TKI-resistant NSCLC
[164]

Histone demethylases
  KDM2A H3K36me2/me1 Overexpressed in NSCLC [157]
  PAD4 Arginine on H3 and H4 Overexpression led to gefitinib resistance in 

NSCLC
[164]

  KDM3 H3K9me2/me1 Overexpressed in NSCLC [159]
EZH2 inhibitors

Clinical Trial Number
  DZNep SAH hydrolase inhibitor (Ki = 50 pM) NA [168]
  GSK2816126 (GSK126) SAM-competitive EZH2 inhibitor (IC50 = 9.9 nM NCT02082977 [169]
  EPZ6438 (Tazemetostat) SAM-competitive EZH2 inhibitor (Ki = 2.5 nM) 

(IC50 = 11 nM)
NCT01897571 NCT02601950 NCT02601937 [170]

  CPI1205 SAM-competitive EZH2 inhibitor NCT02395601 [171]
LSD1 inhibitor

  RG6016 (ORY-1001) FAD-dependent irreversible LSD1 inhibitor (IC50 
b 20 nM)

NCT02913443 [172]

661EPMA Journal (2022) 13:649–669



1 3

NSCLC etiology, early detection, development and metas-
tasis, therapy, and prognosis, as well as the most recent 
advances in the field. The in-depth investigation of DNA 
and histone dysregulation in NSCLC leads to identifying 
potential molecular targets and biomarkers for personalized 
treatment of NSCLC as well as improves our understanding 
of the mechanisms behind carcinogenesis and the develop-
ment of NSCLC. Moreover, NSCLC with specific DNA and 
histone alteration traits may provide new, accurate classifica-
tions, which may ultimately provide more precise personal-
ized treatment for NSCLC patients.

We recommend the emphasis on the research practice of 
modifications in DNA and histones in NSCLC. We propose 
further PPPM development and practical application of the 
DNA and histone modifications in NSCLC, in the following 
aspects:

 (i) Predictive medical approach: It is necessary to clarify 
the roles of DNA and histone modifications in the 
predictive approach (mechanism of tumorigenesis 
for NSCLC). It is possible that aberrant DNMT 
activity contributes to NSCLC in different ways [26, 
27]. The hypermethylation and hypomethylation of 
many potential tumor suppressor genes have been 
consistently identified in NSCLCs. Several studies 
demonstrated that smoking is also strongly related 
to NSCLC tumorigenesis via DNA methylation [69]. 
Also, histone acetylation contributes to the develop-
ment of lung cancer by stimulating gene transcription 
[99, 100]. Histone methylation can activate or inhibit 
transcription at several gene loci in NSCLC [96]. An 
in-depth clarification of DNA modification of these 
genes and histone modification might offer an effec-
tive predictive medical approach for NSCLC.

 (ii) Targeted prevention: The DNA and histone modifi-
cations have potential utility for targeted prevention, 
including reducing tumorigenesis (primary preven-
tion) and early diagnosis (secondary prevention) of 
NSCLC. The study demonstrates that DNA meth-
ylation epigenetically can be used to estimate tumor 
risk and has great use for tumor risk prevention [78]. 
Previous studies have shown that DNA methyla-
tion markers can be used in NSCLC early diagnosis 
(Table 2). There are relatively few studies on histone 
modification for early diagnosis of NSCLC; how-
ever, future uses of SETD2 as a diagnostic marker 
for NSCLC are conceivable. It might be a potential 
biomarker pattern in combination with other markers 
for early diagnosis of NSCLC.

 (iii) Personalized treatments: The DNA and histone 
modifications have potential utility for NSCLC per-
sonalized treatments. DNA methylation also plays 
important roles in NSCLC treatment. By determining 

the methylation status of biomarkers, physicians are 
better able to foresee the kind and stage of NSCLC 
and make a better treatment plan [86]. Previous stud-
ies have shown that DNA methylation is also a good 
marker to predict immunotherapy efficacy [91]. A 
number of HDACis have shown to be an effective 
treatment for NSCLC in pre-clinical and clinical tri-
als [98, 100]. Histone acetylation in NSCLC thera-
peutics includes a single use of HDACi, combination 
of HDACi with cytotoxic chemotherapy, a combi-
nation of HDACi with immune checkpoint inhibi-
tion, a combination of HDACi along with tyrosine 
kinase inhibitor, and a combination of HDACi with 
radiation. Histone methyltransferases/demethylase 
inhibitors, alone or in combination with other drugs, 
have been extensively documented to have antitumor 
effects for a variety of malignancies. Thereby, DNA 
and histone modifications are the potential effec-
tive therapeutic targets for personalized treatment of 
NSCLC.
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