Skip to main content
. 2022 Nov 23;13:1030045. doi: 10.3389/fendo.2022.1030045

Table 2.

Predictive performance comparison of the eight types of machine learning algorithms in the training and validation dataset.

Methods Training dataset Validation dataset
AUC Sensitivity Specificity AUC Sensitivity Specificity
LR 0.744 0.615 0.771 0.693 0.881 0.433
GBM 0.878 0.692 0.937 0.858 0.742 0.837
XGB 0.907 0.762 0.934 0.849 0.682 0.865
RF 0.902 0.767 0.950 0.843 0.795 0.798
DT 0.692 0.659 0.724 0.652 0.603 0.680
NNET 0.889 0.692 0.945 0.811 0.656 0.837
SVM 0.771 0.541 0.876 0.750 0.642 0.764
BN 0.781 0.674 0.755 0.777 0.675 0.792

AUC, the area under the curve; LR, logistic regression; GBM, gradient boosting machine; XGB, extreme gradient boosting; RF, random forest; DT, decision tree; NNET, neural network; SVM, support vector machine; BN, Bayesian network.