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Abstract 
Background: Meal timing resets circadian clocks in peripheral tissues, 
such as the liver, in seven days without affecting the phase of the 
central clock located in the suprachiasmatic nucleus (SCN) of the 
hypothalamus. Anterior hypothalamus plays an essential role in 
energy metabolism, circadian rhythm, and stress response. However, 
it remains to be elucidated whether and how anterior hypothalamus 
adapts its circadian rhythms to meal timing. 
Methods: Here, we applied transcriptomics to profile rhythmic 
transcripts in the anterior hypothalamus of nocturnal female mice 
subjected to day- (DRF) or night (NRF)-time restricted feeding for 
seven days. 
Results: This global profiling identified 128 and 3,518 rhythmic 
transcripts in DRF and NRF, respectively. NRF entrained diurnal 
rhythms among 990 biological processes, including ‘Electron transport 
chain’ and ‘Hippo signaling’ that reached peak time in the late sleep 
and late active phase, respectively. By contrast, DRF entrained only 20 
rhythmic pathways, including ‘Cellular amino acid catabolic process’, 
all of which were restricted to the late active phase. The rhythmic 
transcripts found in both DRF and NRF tissues were largely resistant 
to phase entrainment by meal timing, which were matched to the 
action of the circadian clock. Remarkably, DRF for 36 days partially 
reversed the circadian clock compared to NRF. 
Conclusions: Collectively, our work generates a useful dataset to 
explore anterior hypothalamic circadian biology and sheds light on 
potential rhythmic processes influenced by meal timing in the brain 
(www.circametdb.org.cn).
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Introduction
Meal timing resets circadian clocks in peripheral tissues (peripheral clocks), particularly in the liver.1–3 Day time-
restricted feeding (DRF) in nocturnal rodents is misaligned with daily rhythms generated by the circadian clock. DRF
reverses the liver clockwithin seven days inmicewithout altering the central clock located in the suprachiasmatic nucleus
(SCN).4,5 DRF contributes to increased adiposity and glucose intolerance when combined with high-fat diet feeding.6–9

Conversely, night time-restricted feeding (NRF), is known to protect against metabolic diseases, such as obesity,
insulin resistance, and fatty liver in rodents.10,11 Nevertheless, both DRF and NRF increase longevity in mice, when
compared to arrhythmic feeding.12

Emerging evidence shows that peripheral clocks entrain to DRF in a tissue-specific manner.13,14 Peripheral clocks in the
heart and kidneys exhibit resistance to phase entrainment byDRF in femalemice, so do the diurnal transcriptomes in these
organs.14 This effect is also present in male mice.13 Of note, the liver clock seems to condition circadian rhythms in
transcriptome in distant organs such as the lungs and adipose tissue.13 The tissue specificity of phase entrainment to DRF
lends support to the proposed network organization or hierarchy of peripheral clocks.15–17

Anterior hypothalamus is a center for circadian rhythm biogenesis, thermal regulation, endocrine functions, and energy
metabolism. It includes the medial preoptic nucleus, supraoptic nucleus, SCN, anterior hypothalamic nucleus, and the
paraventricular nucleus of the hypothalamus (PVH). While the SCN generates circadian rhythms, the PVH orchestrates
circadian rhythms of metabolism and endocrine factors.18 In addition, the PVH is a hub for nutrient sensing and receives
neural signaling from the hunger neurons located in the posterior hypothalamus.19,20 The SCN and PVH host cellular
circadian clocks, and the former projects to the latter to output circadian signals.21 Perceivably, the SCN clock is coupled
to the light/dark cycle, whereas the PVH clock integrates circadian signals from both light and food. Genome-wide
transcript profiling studies have been done in the SCN or the hypothalamus for rhythmic transcripts in constant
darkness.22,23 It remains to be elucidated whether and how anterior hypothalamus adapts its circadian biology to meal
timing in mice.

To explore the regulation of anterior hypothalamic circadian biology by time-restricted feeding, we took a systems
approach to profile rhythmic transcripts in this tissue from NRF and DRF female mice. We determined rhythmicity
features of diurnal transcripts as well as the category and distribution of the enriched rhythmic pathways. This is followed
by examining phase entrainment of the circadian clock, rhythmic transcripts and pathways found in both NRF and DRF
tissues. Lastly, we compared the profiles of clock genes in the typical seven-day time-restricted feeding regimen to those
in the 36-day long-term regimen in order to elucidate the dynamics of the circadian clock. In summary, we have defined
circadian signatures of anterior hypothalamus in time-restricted feeding and generated a useful resource to explore the
physiology and pathophysiology associated with different types of time-restricted feeding.

Methods
Animals
Animal use was approved by the Laboratory Animal Welfare and Ethics Committee of the Third Military Medical
University, China (No. AMUWEC20201106, approval date: 2020/04/15). All experiments conform to the relevant
regulatory standards of the institution. All efforts were made to ameliorate harm to animals such as daily monitoring of
food and water availability and routine husbandry. This study is reported in line with the ARRIVE guidelines.41

Special pathogen-free (SPF) mice were purchased from Hunan SJT Laboratory Animal Co. and housed in a SPF
barrier facility. C57BL/6J female mice at seven weeks of age were group housed and entrained to a 12h light:12h dark
cycle with free access to normal chow diet and water during acclimation for one week. Animals were randomly assigned
in a 1:1 ratio to time-restricted feeding groups and fed for seven or 36 days as previously described.24 The body weight
statistics were balanced between groups before subjecting to time-restricted feeding so that there was no significant
difference in bodyweight between experimental groups. DRF permits access to food from zeitgeber time 0 (ZT0, light-on
time) to ZT12 (light-off time), and NRF allows food access from ZT12 to ZT0. At the end of time-restricted feeding,
mice were euthanized by cervical dislocation, and subjected to tissue collection every 4 h for a complete 24-h cycle. Refer
to doi:10.1016/j.xpro.2021.100701 for step-by-step procedures. Anterior hypothalamus was dissected, snap frozen in
liquid nitrogen and stored in -80°C (n = 4 per group per time-point).

RNA extraction and sequencing
Total RNA from mouse anterior hypothalamus was extracted by TRIzol method (Invitrogen). RNA integrity (RIN > 7),
purity and concentration were assessed and all samples passed the quality control. A total of 200 ng total RNA per sample
was subjected to mRNA purification by poly-T oligo magnetic beads and the 150-bp pair-end RNA sequencing in the
MGISEQ2000 (BGISEQ-500, RRID:SCR_017979) platform for a minimal coverage of 43.1 million reads by BGI
(Shenzhen, China) as described.14 The RNA sequencing unit was blinded of the grouping information. Raw reads were

Page 3 of 16

F1000Research 2022, 11:1087 Last updated: 06 DEC 2022



cleaned via SOAPnuke (RRID:SCR_015025) (v1.5.2), mapped to the reference genome (GRCm38.p6) by HISAT2
(RRID:SCR_015530) (v2.0.4), aligned to the reference coding gene set by Bowtie (RRID:SCR_005476) (v2.2.5),
and quantified usingRSEM (RRID:SCR_013027) (v1.2.12). Raw countswere normalized by trimmedmean ofM-values
by edgeR (RRID:SCR_012802) (v3.30.3) and converted to Wagner’s transcripts per million (TPM). No sample was
excluded (Pearson correlation coefficient per time point per group > 0.8). Transcripts with a TPM< 1 inmore than 20%of
samples were filtered. Data were then analyzed byMetaCycle (v1.2.0).25 The cutoff p-value for a rhythmic transcript was
set to BH.Q-value < 0.05.

Phase set enrichment analysis
Pathway enrichment analysis was performed on rhythmic genes as described14,26 (Source file: c5.bp.v7.1.symbols.gmt
from https://www.gsea-msigdb.org/gsea/msigdb). Mouse gene nomenclature was converted to human gene nomencla-
ture via “Human and Mouse Homology Classes with Sequence information” (curated by http://www.informatics.jax.
org). Domain was set from 0 to 24, indicating theminimal andmaximal period length is 0 and 24 h, respectively.Minimal
and maximal items per set are 10 and 10000, respectively. Kuiper’s test FDR q-value < 0.05 is considered as statistical
significance.

Gene expression analysis
Tissue RNA was isolated using Eastep Super Total RNA Extraction Kit (Promega). Complementary DNA (cDNA) was
synthesized using the GoScript Reverse Transcription Mix (Promega). cDNA was amplified and analyzed using
iTaq universal SYBR Green Supermix (Bio-Rad) and the Bio-Rad CFX96 Real-Time PCR Detection System (Bio-
Rad). PCR protocol: DNA denaturation at 95°C for 3 min; denaturation at 95°C for 10 sec; annealing/extension and plate
read at 60°C for 30 sec; 40 cycles of quantitative PCR. Results were normalized to u36B4. Period circadian protein
homolog 2 (Per2)-forward (F), ATGCTCGCCATCCACAAGA; Per2-reverse (R), GCGGAATCGAATGGGAGAAT;
Nuclear receptor subfamily 1 group D member 1 (Nr1d1)-F, TACATTGGCTCTAGTGGCTCC; Nr1d1-R, CAG
TAGGTGATGGTGGGAAGTA; D site-binding protein (Dbp)-F, CGTGGAGGTGCTAATGACCTTT; Dbp-R,
CATGGCCTGGAATGCTTGA; u36B4-F, AGATGCAGCAGATCCGCAT; u36B4-R, GTTCTTGCCCATCAGCA
CC. Experiments were repeated twice with similar results.

Statistics
Statistical analysis was conducted in R Project for Statistical Computing (RRID:SCR_001905) (v 4.0.2) and RStudio
(RRID:SCR_000432) (v 1.2.5033). BH.Q-value < 0.05 (MetaCycle, v1.2.0), Kuiper test FDR q < 0.05 (phase set
enrichment analysis), or p < 0.05 (Bonferroni test or circacompare, v0.1.027) was considered to be statistically significant.
Heatmap of expression profile was visualized by R package: pheatmap (RRID:SCR_016418) (v1.0.12) with row-wise
scaling and gene-specific clustering by Euclidean correlation.

Results
Global transcript profiling of anterior hypothalamus from time-restricted fed female mice
To characterize whether and how diurnal rhythms in the anterior hypothalamus entrain to feeding rhythm, we performed
RNA sequencing on samples dissected from nine week-old female C57BL/6J mice that had been subjected to either DRF
or NRF for seven days. Seven days of DRF is sufficient to entrain peripheral clocks in female mice.14 Samples were
collected every four hours for a complete diurnal cycle and assigned four biological replicates per time point. This is a
commonly used study design used in global transcript profiling experiment. RNA sequencing reached aminimal depth of
43.1 million reads, which follows the guideline for genome-scale analysis of circadian rhythms.28 We applied an
BH-adjusted p-value (meta2d_BH.Q) of 0.05 to filter rhythmic transcripts and acquired 128 and 3,518 rhythmic
transcripts in DRF and NRF tissues, respectively (Figure 1A).41 Notably, DRF significantly decreased the number of
rhythmic transcripts in anterior hypothalamus, compared to NRF. There were 83 rhythmic transcripts that are shared by
DRF and NRF tissues (Figure 1B). As shown in Figure 1C, DRF rhythmic transcripts were clustered in the late active
period (ZT18-ZT0), whereas NRF rhythmic transcripts exhibited a bimodal distribution that clustered in the pre-dawn
hours (ZT23) and the late sleep phase (ZT9). Averagely speaking, rhythmic transcripts in DRF tissue exhibited a higher
amplitude than those in NRFwithout any significant difference in the basal expression levels (midline estimating statistic
of rhythm, MESOR) (Figure 1D).

Rhythmic pathways entrained by NRF in the anterior hypothalamus
Next, we performed pathway analysis among rhythmic transcripts found in NRF tissue. As shown in Figure 2A,
990 pathways were significantly enriched and distributed towards the late active phase (ZT21) and the late sleep phase
(ZT9). We examined these pathways by hour and found that ‘cotranslational protein targeting to membrane’ (ZT8),
‘electron transport chain’ (ZT9), ‘sterol biosynthetic process’ (ZT9), ‘primary alcohol metabolic process’ (ZT10), and
‘negative regulation of cell cycle g2 m phase tr’ (cell cycle G2-M phase transition) (ZT12) (Figure 2B). Compared to the
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late sleep phase, the late active phase is a rush hour for hundreds of rhythmic biological pathways, which are represented
by ‘mRNA cis-splicing via spliceosome’ (ZT20), ‘regulation of translational initiation’ (ZT20), ‘protein k63 linked
ubiquitination’ (ZT20), ‘protein k48 linked ubiquitination’ (ZT20), ‘de novo protein folding’ (ZT21), ‘phosphatidyli-
nositol phosphorylation’ (ZT21), and ‘Hippo signaling’ (ZT22) (Figure 2C).

Previously, microarray-based transcriptome profiling of the SCN has shown that the oxidative phosphorylation pathway
exhibited circadian rhythm in ad libitum feeding and peaked in the late subjective night.23 Examination of the electron
transport chain pathway revealed that transcripts related to three respiratory complexes (CI, CII, and CIV) are rhythmic in
the NRF anterior hypothalamus and peak in the late active phase (Figure 2D). For example, these transcripts include

Figure 1. Global transcript profiling of anterior hypothalamus from time-restricted fed female mice.
(A) Heatmap showing 24-h expression profiles of rhythmic transcripts in the anterior hypothalamus. Samples were
dissected from time-restricted fed nine-week female mice every four hours for a complete daily cycle (n = 4 mice
per time point). (B) Interaction of rhythmic transcripts between day time-restricted feeding (DRF) and night
time-restricted feeding (NRF). (C) Distribution of the phase. (D) Midline estimating statistic of rhythm (MESOR)
and amplitude of rhythmic transcripts. Data are presented as boxplots. Mann-Whitney test; ns, not significant,
****p < 0.0001.
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NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial (Ndufv1) (CI), NADH dehydrogenase [ubiquinone]
1 alpha subcomplex subunit 9, mitochondrial (Ndufa9) (CI), Succinate dehydrogenase [ubiquinone] iron-sulfur subunit,
mitochondrial (Sdhb) (CII), and Cox7a1 (CIV).

Hippo signaling is essential in organ size control through inhibiting cell proliferation and regulating apoptosis.29 We
found that key components from the constituents and regulators of Hippo signaling (e.g., Transcriptional coactivator
YAP1 (Yap1), Serine/threonine-protein kinase LATS2 (Lats2) and Wwc1) (Figure 2E). As shown in Figure 2F,
representative transcripts encoding Serine/threonine-protein kinase Nek8 (Nek8), Yap1, and Tjp1 exhibited robust daily
rhythm in NRF but lost the rhythmicity upon DRF.

Rhythmic pathways entrained by DRF in the anterior hypothalamus
As shown in Figure 1B, the number of rhythmic transcripts was reduced notably by DRF in the tissue, compared to NRF.
Pathway analysis of the 128 rhythmic transcripts revealed 20 enriched rhythmic pathways with peak hours ranging from
ZT17 to ZT20 (Figure 3A). These DRF rhythmic pathways include ‘response to endogenous stimuli’ (ZT17), ‘response
to hormone’ (ZT18), ‘organophosphate metabolic process’ (ZT19), and ‘cellular amino acid metabolic process’ (ZT20)
(Figure 3B). With respect to the magnitude of enrichment, amino acid metabolism is highly scored. Hierarchical analysis
identified two clusters of rhythmic transcripts involved in cellular amino acid metabolism (Figure 3C).

Figure 2. Rhythmic pathways entrainedbyNRF in the anterior hypothalamus. (A) Phase distribution of enriched
rhythmic pathways based on the anterior hypothalamic diurnal transcriptome. (B) Representative rhythmic path-
ways that peak around zeitgeber time 9 h (ZT9). (C) Representative rhythmic pathways that peak around ZT21.
(D) Diurnal expression profiles of the rhythmic genes involved in electron transport chain. (E) Diurnal expression
profiles of the rhythmic genes involved in Hippo signaling. (F) Representative rhythmic transcripts related to Hippo
signaling. Data are presented as mean � SEM (n = 4 mice per time point for seven time points). MetaCycle method,
*BH adjusted p-value < 0.05, **p < 0.01, ***p < 0.001. NRF, night time-restricted feeding; DRF, day time-restricted
feeding; GOBP, gene ontology biological processes; Nek8, NIMA related kinase 8; Yap1, Yes-associated protein 1;
Tjp1, Tight junction protein 1.
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Pipox transcript encoding pipecolic acid and sarcosine oxidase, an essential enzyme in lysine degradation-forms one
cluster by itself, which peaked in the late sleep phase (Figure 3D). Proline dehydrogenase 1 (Prodh) transcript encodes the
first enzyme in proline degradation. Cysteine sulfinic acid decarboxylase (Csad) is an enzyme in cysteine andmethionine
degradation. Serine dehydrastase (Sds) catalyzes serine and threonine degradation. As shown in Figure 3D, transcripts of
Prodh, Csad, and Sds exhibited robust diurnal oscillation in anterior hypothalamus of DRFmice. In particular, Csad and
Sds did not oscillate in NRF. Thus, transcript signatures suggest that DRF entrains diurnal rhythms of cellular amino acid
degradation.

Food entrainment of the circadian clock in the anterior hypothalamus
After examining circadian signatures of the anterior hypothalamus in each time-restricted feeding regimen, we
determined the features associated with rhythmic transcripts found in both NRF and DRF tissues. Hierarchical analysis
segregated the 83 dual-cycling transcripts into three clusters (Figure 4A). DRF reserved only 8.24% of rhythmic
transcripts for more than 8 h compared to NRF, whereas more than 60% of the rhythmic transcripts remained phase-
locked to the light/dark cycle (Figure 4B). This is consistent with the results of pathway analysis. In fact, none of the
37 enriched rhythmic pathways were shifted in phase for more than 2 h by DRF compared to NRF (Figure 4C).
Representative enriched pathways include ‘lipid metabolic process’ (phase-shift 1 h), ‘regulation of phosphorylation’
(phase-shift 2 h), and ‘circulatory system development’ (phase shift 2 h) (Figure 4D).

The weak response in phase entrainment is matched with the response of the circadian clock. Hierarchical analysis
segregated the core clock genes into two clusters. One cluster of genes, e.g., Brain-and-muscle ANRT-like 1 (Bmal1/
Arntl) and Circadian locomotor output cycles protein kaput (Clock), reached the peak time in the dawn under NRF and
damped under DRF (Figure 4E). The other cluster of genes, e.g., Per1, Per2, Per3, Nr1d1 and Nr1d2, reached the peak
time in the dusk in both DRF and NRF (Figure 4E). As expected, representative transcripts encoding Per2, Nr1d1, and
Dbp,was not shifted in phase byDRF (Figure 4F). After an extension of the time from seven days to 36 days,Per2 rhythm

Figure 3. Rhythmic pathways entrained byDRF in the anterior hypothalamus. (A) Phase distribution of enriched
rhythmic pathways based on the anterior hypothalamic diurnal transcriptome. (B) Representative rhythmic path-
ways that peak around zeitgeber time 18.5 h (ZT18.5). (C) Diurnal expression profiles of the rhythmic genes involved
in cellular amino acidmetabolism. (D) Representative rhythmic transcripts related to cellular amino acidmetabolism.
Data are presented as mean � SEM (n = 4 mice per time point for seven time points). MetaCycle method, *BH
adjusted p-value < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. NRF, night time-restricted feeding; DRF, day time-
restricted feeding; GOBP, gene ontology biological processes; Pipox, Pipecolic acid and sarcosine oxidase; Prodh,
Proline dehydrogenase 1; Csad, Cysteine sulfinic acid decarboxylase; Sds, Serine dehydrastase.
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damped in DRF (Figure 4G). Remarkably, 36 days of DRF significantly inverted the phase and reduced the amplitude of
Nr1d1 and Dbp in the anterior hypothalamus compared to NRF (Figure 4G).

Discussion/conclusions
In this study, we applied an unbiased approach to characterize circadian signatures of the anterior hypothalamus in time-
restricted fed female mice.We found that DRF, the feeding rhythm that is mis-aligned with the circadian clock, decreased
the number of rhythmic transcripts from 3,518 to only 128 compared to NRF within seven days. Pathway analysis
identified synchronized rhythms among 990 and 20 biological processes in NRF and DRF, respectively. Typical NRF

Figure 4. Food entrainment of the circadian clock in the anterior hypothalamus. (A) Hierarchical clustering
analysis of rhythmic transcripts found in both DRF and NRF anterior hypothalamus. (B-C) Distribution of the phase-
shift between DRF and NRF among (B) rhythmic transcripts or (C) enriched rhythmic pathways. (D) Representative
enriched pathways based on shared rhythmic transcripts between DRF and NRF. (E) Hierarchical clustering analysis
of the circadian clock genes. (F-G) Diurnal expression of selected clock genes in the anterior hypothalamus from
femalemice subjected to DRF or NRF for (F) seven days or (G) 36 days. Data are presented asmean� SEM (n = 4mice
per time point). MetaCycle, *BH adjusted p-value < 0.05; Circacompare method, *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001. NRF, night time-restricted feeding;DRF, day time-restricted feeding; GOBP, gene ontology biological
processes; Per2, Period circadian protein homolog 2; Nr1d1, Nuclear receptor subfamily 1 group Dmember 1; Dbp,
D site-binding protein.
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active pathways include ‘electron transport chain’ (peak time ZT9) and ‘Hippo signaling’ (ZT22). Meanwhile, DRF
entrained robust diurnal oscillation among 43 transcripts including those related to ‘cellular amino acid catabolic process’
(ZT20). At the transcriptomic level, only 8.24% rhythmic transcripts were reversed in phase by DRF compared to NRF.
This is matched with the resistance of the anterior hypothalamic clock to DRF. However, long-term DRF inverted the
phase in some clock genes, such as Nr1d1 and Dbp.

Global profiling of rhythmic transcripts andmetabolites have been conducted in a few brain regions particularly including
the SCN. In constant darkness, 365 and 642 rhythmic transcripts were identified in the SCN and hypothalamus,
respectively.22,23 High-fat diet feeding increases the number of rhythmic metabolites in the SCN but not in the prefrontal
cortex.30 Our transcriptome profiling of anterior hypothalamus uncovered 3,518 rhythmic transcripts in NRF, which
suggests that synchronized rhythms from the light and food may markedly increase the prevalence of diurnal rhythms in
the hypothalamus.

Anterior hypothalamus is composed of different hub neural regions, such as the preoptic area, SCN and PVH. Our
study identified distinct sets of circadian signatures in this tissue under different regimens of time-restricted feeding.
Compared to previous studies elucidating the landscape of circadian rhythms in the SCN, hunger neurons, or the
hypothalamus,22,23,31 NRF entrains diurnal rhythms among a similar set of biological pathways, including oxidative
phosphorylation and intracellular trafficking among organelles. By contrast, DRF almost ablates the diurnal rhythms in
anterior hypothalamus. This effect may come as a trade-off of two reverse rhythms originating from the light/dark cycles
to the SCN and from the feed/fast cycle to the PVH, respectively. Cellular amino acid metabolism is a key circadian
signature associated with DRF, which implies the robust daily activity and signaling related to amino acids in anterior
hypothalamus. This is supported by a recent study reporting the role of tryptophan metabolism in the entrainment of the
brain clock after integrating signals from the light and food.32

The PVH is emerging as a critical peripheral oscillator on top of its well-recognized role as a hub for nutrient sensing
and energy homeostasis.19,20 It outputs circadian rhythm of energy expenditure, the rhythmicity of which is crucial for
body weight homeostasis.33 PVH also mediates the circadian tone from the SCN to orchestrate daily rhythm of plasma
glucose.34 Recently, it has been shown that corticotrophin-releasing hormone-producing neurons in the PVH receive
circadian inputs from the SCN and drive daily release of glucocorticoids.35 Previously, olfactory bulb and cerebellum are
proposed as food entrainable peripheral oscillators and involved in food anticipatory behavior induced by DRF.36–38 In
our study, the anterior hypothalamus is partially food-entrainable as indicated by transcript rhythms of Nr1d1 and Dbp
after a 36-dayDRF. It could be due to the actions in the non-SCNbrain areawithin the anterior hypothalamus, or the SCN.
It has been shown recently that time-restricted feeding near the light-on time modulates the SCN functions and impacts
thermal homeostasis, locomotor activity andwakefulness.39,40 These results suggest that brain regions within the anterior
hypothalamus may entrain to the feeding rhythm after a long DRF.

In summary, we have determined circadian signatures of the anterior hypothalamus in time-restricted fed mice. The
accessibility of the global transcript profiling data in CircaMetDB42,43 would provide a useful resource to study the
physiological significance and the entrainment of circadian rhythms in anterior hypothalamus.

Data availability
Reporting guidelines and underlying data
Mendeley Data: F1000Research-125368, Zhou, Chen. https://doi.org/10.17632/h4bvgm2z6s.1.41

This project contains the following underlying data:

- Raw data from RT-qPCR experiment, associated with Figure 4G

- ARRIVE checklist – The ARRIVE Essential 10

- Gene expression profile.csv

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).

The accession numbers for the global profiling dataset:

Gene Expression Omnibus: Global circadian transcript profile of mouse anterior hypothalamus entrained by inverted
feeding. Accession number GSE150958; https://identifiers.org/geo:GSE150958.42
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inverted feeding. Accession number CNP0001601; https://db.cngb.org/search/project/CNP0001601/.43
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In this study, the authors used transcriptomics to profile rhythmic transcripts in the anterior 
hypothalamus of nocturnal female mice subjected to time-restricted feeding that was aligned 
(night-restricted feeding, NRF) or misaligned (day-restricted feeding, DRF) for seven days.  
 
They found 3,518 diurnally rhythmic transcripts in the aligned feeding group while only 128 
diurnally rhythmic transcripts in the misaligned feeding group. Impacted pathways were 
identified.   
 
Strengths:

RNA-seq appears to be technically solid. 
 

○

The authors appear to be well-versed in circadian rhythms and collected samples of the 
anterior hypothalamus every 4 hrs with n=4 per sample. This sampling frequency is 
sufficient to look at diurnal rhythms in transcriptions under the aligned (NRF) and 
misaligned (DRF) time-restricted feeding.  
 

○

An unbiased hierarchical clustering analysis was used.  
 

○

The dramatic loss of rhythmicity from the misaligned feeding group is a surprising finding.    
 

○

The dataset has been deposited and this work may well guide future studies. ○

 
Weaknesses:

The anterior hypothalamus is an anatomically heterogeneous region containing structures 
central to circadian rhythms like the SCN but also those involved with response to feeding 
like the PVH.  
 

○
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The authors just used female mice so sex differences cannot be explored.  
 

○

Bulk RNA-seq used in this study captures the expression profiles averaged from thousands 
of cells and single-cell RNA-seq may have been more informative.  
 

○

Control data from mice on ad lib feeding and subjected to the same analysis would have 
added to the study.  
 

○

The transcription factors driving the robust rhythms under aligned feeding and those 
compromised by the misaligned feeding were not explored. 

○
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This manuscript by Zhou and Chen, et al., focuses on an important question in circadian biology 
and metabolism: how do clocks in the hypothalamus adjust to meal timing? To address this 
question, the authors use transcriptomics on anterior hypothalamus tissue taken from female 
mice every 4 h throughout the day. These mice were subjected to either day-restricted or night-
restricted feeding. The authors found that there were many more cycling transcripts in the 
anterior hypothalamus from mice under night-restricted feeding compared to those under-day 
restricted feeding. Using pathway enrichment analysis, the authors found that many more 
rhythmic pathways were entrained in mice under night-restricted feeding compared to mice 
under day-restricted feeding. Night-restricted feeding-entrained pathways included those involved 
in oxidative phosphorylation and cell proliferation/apoptosis, and day-restricted feeding-entrained 
pathways included those involved in amino acid metabolism. Pathways associated with transcripts 
that cycled in both day-restricted and night-restricted feeding paradigms were largely resistant to 
food entrainment. Finally, and most excitingly, the authors find that extending day-restricted 
feeding from 7 d to 36 d inverts the phase of several core clock genes in the anterior 
hypothalamus. Overall, this study is novel and interesting. I greatly appreciate the online resource 
the authors developed. I do have a few minor concerns:

My largest concern is that the amount of tissue obtained for analysis is large and contains 
several brain regions including the SCN. Clock gene expression rhythms that are out of 
phase to those in the SCN have been reported in several of these regions (see, for instance, 
Figure 1 in Paul et al., Eur J Neurosci 20191). The authors mention that antiphase rhythms in 
the SCN and PVN may contribute to the blunting of diurnal rhythms in the anterior 
hypothalamus observed in mice under the day-restricted feeding paradigm. The authors 
should elaborate more on this limitation to their study in the Discussion section. 
 

1. 

The authors should elaborate more on their pathway enrichment analysis findings in the 
Discussion. Why might different feeding paradigms entrain different metabolic pathways? 
The authors mention that oxidative phosphorylation has been previously demonstrated to 
be rhythmic, but what about Hippo signaling (or apoptosis, cell proliferation, etc.)? Why 
might feeding schedule entrain certain pathways such that they peak at different times of 
day (ZT 9 vs. ZT 21)? Why are pathways presumably unrelated to metabolism (e.g., prostate 
gland development) entrained by night-restricted feeding? 
 

2. 

Was the phase of any other transcript rhythm (including transcripts that aren’t core clock 
genes) inverted by 36 d of time-restricted feeding compared to 7 d? 
 

3. 

It would be helpful for the authors to invert the colors on their heatmaps in Figs 2B, C, 3B, 
4D. Typically “warmer” colors indicate a higher magnitude response. 
 

4. 

In the Methods, the authors mention that for phase set enrichment analysis, they set 
domain from 0 to 24 to indicate that minimal and maximal period lengths were between 0 
and 24 h. Is there a reason the authors didn’t examine periods that were longer than 24 h? 
 

5. 

Was there a reason the authors used female mice instead of a mix of male and female mice? 
 

6. 

"We examined these pathways by hour and found that… (Figure 2B)” and “We found that key 
components from the constituents… (Figure 2E)” are sentence fragments.

7. 
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