Skip to main content
. 2022 Dec 2;31:102076. doi: 10.1016/j.pmedr.2022.102076

Table 4.

Relationships between change in exercise behavior and incidence of MetS by Cox regressiona (n = 22,594).

Sex Incidence of MetS
Incidence of MetS
Model 1
Model 2
Model 3
Model 4
(Per 1,000
ref = maintain regular exercise
ref = maintain irregular exercise
ref = no exercise
ref = increase
person-years) HR 95 % CI HR 95 % CI HR 95 % CI HR 95 % CI
Menb 43.31c
Change in exercise behavior
 Maintain regular exercise 48.44
 Maintain irregular exercise 38.95 0.93 0.78 1.11
 Maintain no exercise 40.07 0.79 0.68 0.92 0.85 0.71 1.02
 Increase 42.46 0.85 0.73 0.98 0.91 0.77 1.09 1.07 0.93 1.24
 Decrease 46.48 0.91 0.77 1.06 0.98 0.81 1.18 1.15 0.98 1.35 1.07 0.92 1.25
Womenb 43.70c
Change in exercise behavior
 Maintain regular exercise 45.34
 Maintain irregular exercise 36.77 0.95 0.84 1.09
 Maintain no exercise 46.55 1 0.9 1.11 1.05 0.92 1.19
 Increase 41.76 0.94 0.85 1.04 0.98 0.87 1.12 0.94 0.86 1.03
 Decrease 45.59 1.01 0.91 1.13 1.06 0.93 1.22 1.02 0.91 1.13 1.08 0.98 1.2
a Adjusted for all covariates: age, education, degree of PA at work, living area, BMI, number of screenings attended, number of MetS components, personal disease history, health-related behaviors (smoking, chewing betel nuts, drinking alcohol), and dietary habits (vegetables, fruit, beverages, snacks).
b In general, there is no statistically significant sex difference (p = 0.29) in the incidence of MetS by multivariate Cox regression model (n = 22,594).
c Incidence of MetS = number of new cases of MetS/summed person-years of observation.