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Throughout the life sciences, biological populations undergo multiple phases
of growth, often referred to as biphasic growth for the commonly encountered
situation involving two phases. Biphasic population growth occurs over a
massive range of spatial and temporal scales, ranging from microscopic
growth of tumours over several days, to decades-long regrowth of corals in
coral reefs that can extend for hundreds of kilometres. Different mathematical
models and statistical methods are used to diagnose, understand and predict
biphasic growth. Common approaches can lead to inaccurate predictions
of future growth that may result in inappropriate management and inter-
vention strategies being implemented. Here, we develop a very general
computationally efficient framework, based on profile likelihood analysis,
for diagnosing, understanding and predicting biphasic population growth.
The two key components of the framework are as follows: (i) an efficient
method to form approximate confidence intervals for the change point of
the growth dynamics and model parameters and (ii) parameter-wise profile
predictions that systematically reveal the influence of individual model
parameters on predictions. To illustrate our framework we explore real-world
case studies across the life sciences.
1. Introduction
Quantifying population growth, whether it be the total number of individuals
in a group or the total area covered by a species, has motivated the
development of a range of mathematical models [1–3]. Here, we focus on popu-
lations that undergo two phases of growth, often called biphasic growth. Biphasic
growth is prevalent across a wide range of applications in the life sciences,
including ecological applications, for example coral reef growth after a disturb-
ance (figure 1a) [6]; two-dimensional cell biology assays, for example
proliferation and scratch-wound assays (figure 1b) [7,8]; three-dimensional
cancer tumour spheroid cell biology experiments (figure 1c) [5,9]; decay of
pathogens [10]; and bacterial dynamics [11,12]. Given the wide range of appli-
cations, a variety of mathematical and statistical methods have been developed
in different disciplines to understand specific cases of biphasic population
growth. Here, we develop a new computationally efficient general framework
for diagnosing, understanding and predicting biphasic population growth
that is broadly applicable across the life sciences. The approach, based on profile
likelihood analysis in combination with parameter-wise profile predictions,
enhances the accuracy and reliability of previous methods. These improvements
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Figure 1. Case studies and methods for diagnosing, understanding and predicting biphasic population growth in the life sciences: (a) coral reef growth after a
disturbance (reproduced from [4] (CC BY 4.0)); (b) two-dimensional cell proliferation assays; and (c) a three-dimensional tumour spheroid experiment (reproduced
from [5] (CC BY 4.0)). Existing methods to analyse biphasic population growth and the temporal evolution of a population C(t) range between: (d ) overlooking the
first phase ( pink); (e) manually identifying the change point through visual inspection (first phase (grey), point estimate of change point (black-dashed), second
phase ( pink)); and ( f ) analysing and identifying a change point in per capita growth rate data, 1=CðtÞ dCðtÞ=dt against C(t), and mapping this to a change point
in time (first phase (grey), point estimate of change point (black-dashed) and second phase (pink)). (g) In this study, we form a profile likelihood for the change
point (blue shaded) and each model parameter. Using the profile likelihoods, we estimate approximate confidence intervals. To quantify and visualize how variations
in a model parameter influence predictions, we use parameter-wise profile predictions.
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enable greater understanding of population growth dynamics
and assist decision-making.

As biphasic population growth occurs across a wide range
of applications and disciplines, different terminology is used
to describe similar phenomena. A key term we refer to is the
change point, which is the time at which the growth dynamics
switches from the first phase to the second phase. In cell biology
and ecological applications, the first phase is sometimes
referred to as a lag, delay, adaptation or settling phase and
the change point is sometimes referred to as the end of those
respective phases or the start of the growth phase [6–8].
Change point detection has a long history, with applications
in signal analysis and econometrics [13–15], and standard
tools have been developed in software such as Matlab [16].
However, such tools and approaches typically do not incorpor-
ate a mechanistic model. In contrast, mechanistic model-based
approaches usually assume a specific model or do not provide
a systematic statistical framework to assess uncertainty in
change point estimates. Here, we aim to bridge this gap by
developing a general differential equation-based framework
that does not rely on a specific model formwhile also providing
systematic statistical uncertainty quantification.

Existing methods to analyse biphasic population growth
vary in terms of simplicity, accuracy and reliability. The sim-
plest method to interpret biphasic population growth is to
overlook the two phases and analyse the experimental data
with a single-phase model (figure 1d ) [6,17–19]. Other
approaches explicitly account for the existence of the two
phases of growth and identify the change point manually
through visual inspection (figure 1e) [5,7,9]. More sophisti-
cated methods involve seeking statistical point estimates of
the change point. In econometrics, this is sometimes referred
to as a regression discontinuity study or two-segment
regression with change point detection [13,14]. Recent studies
explore noisy per capita growth rate data to identify a change
point in time (figure 1f ) [6,8]. In another recent study exam-
ining biphasic growth of individual fish [20], profile
likelihood analysis is used to form an approximate confi-
dence interval for the change point, albeit for a specific
mathematical model only (figure 1g).

When using differential equations to describe and interpret
data, one should consider whether model parameters are
identifiable. Many studies focus on the formal question of
structural identifiability, namely, whether parameters of the math-
ematical model be uniquely identified given a set of continuous
noise-free observations [21–23]. Such analysis can be performed
using software tools such as DAISY [24] or GenSSI [25]. How-
ever, such tools focus on differential equations that are
described by smooth functions and do not apply to biphasic
growth models that are defined piecewise. Here, we focus on
practical identifiability, namely, whether given a finite set of noisy
experimental data can we uniquely identify model parameters.
Profile likelihood analysis is one approach to assess parameter
identifiability [22,26–32]. We choose to base our framework on
profile likelihood analysis for two key reasons: (i) computational
efficiency in comparison with other standard approaches [33]
and (ii) to introduce new parameter-wise profile predictions to
quantify and visualize how variations in a model parameter
influence predictions of population growth trajectories. Alterna-
tive approaches to assess parameter identifiability include
Markov chain Monte Carlo techniques [34–36].

To illustrate our framework, we explore four case studies
across the life sciences: (i) coral reef regrowth after a disturb-
ance; (ii) two different examples of two-dimensional cell
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proliferation assays and (iii) a three-dimensional cancer
tumour spheroid experiment. In §2, we describe the various
experimental and field-scale datasets. In §§3–5, we detail the
mathematical model, techniques for parameter estimation,
practical identifiability analysis and prediction intervals,
including parameter-wise profile predictions. In §6, we apply
our framework, and in §7, we discuss insights that are gained
by using this new framework.
 .org/journal/rsif
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2. Data
In this section, we describe the data used in this study. Since we
deal with two different proliferation assay experiments, we pre-
sent one of these cases, based on a bladder cancer cell line, in
electronic supplementary material, F.

2.1. Coral reef growth after disturbance
Coral reef data analysed in this study are published in [6,37]
and are part of the Australian Institute of Marine Science’s
Long Term Monitoring Program. The data describe the tem-
poral evolution of the percentage coral cover following a
major storm disturbance event (19 November 2008 to
18 September 2018) at Broomfield Island located within the
Great Barrier Reef, Australia (figure 2a).

2.2. Two-dimensional cell proliferation assay
This dataset is obtained from an in vitro cell proliferation
assay performed in [7]. A freshly prepared flask is placed in
an incubator on a microscopic stage, and the number of
cells are observed as they divide to form a confluent mono-
layer. The experiment is performed on tissue culture plastic
with NIH-3T3 fibroblast cells for 120 hours (5 days). Exper-
imental measurements are normalized using the mean
maximum cell density such that the normalized cell density
ranges from zero to unity.

2.3. Three-dimensional cancer tumour spheroid
experiment

This dataset is obtained from tumour spheroid experiments we
performed in [5,9]. The experiment is performed for 432 hours
(18 days) with human melanoma WM983b spheroids formed
with 5000 cells per well in a 96-well plate. Top-down area
measurements of the spheroid are obtained using automated
brightfield imaging and processing with the IncuCyte S3 live
cell imaging system (Sartorius, Goettingen, Germany) (elec-
tronic supplementary material, table S1). Images are captured
every 2 hours for the first 2 days and every 6 hours for the
remainder of the experiment. In the first phase, the cells in
the well migrate and adhere to form a shrinking spheroid. In
the second phase, the spheroid grows as a solid mass. We
quantify both phases by estimating the area enclosed by a pro-
jection of the spheroids,A, and, assuming a spherical geometry,
convert these estimates into an equivalent radius (r ¼ ffiffiffiffiffiffiffiffiffiffi

A=p
p Þ.
3. Mathematical model
3.1. Process model
Let C(t) denote the variable of interest: for coral reef data,
this is coral cover percentage [6]; for two-dimensional cell
proliferation assays, this is the normalized cell density [7];
and for three-dimensional tumour spheroid experiments, this
is the tumour spheroid radius [5,9]. To describe the population
dynamics, we prescribe a biphasic mathematical model,

dCðtÞ
dt

¼ f1ðCÞ, t � T,
f2ðCÞ, t . T,

�
ð3:1Þ

where f1(C) and f2(C) describe the time rate of change of C(t)
before and after the change point, t = T, respectively. This
framework is very general and can be used to describe several
phenomena depending on how we specify f1(C) and f2(C). For
example, if there is no growth or decay before t = T and logistic
growth for t > T, we set f1(C) = 0 and f2(C) = r C (1−C/K),
where r > 0 is the growth rate and K > 0 is the long-time carry-
ing capacity. For this application, we have four unknown
parameters, i.e. a vector (r, K, C(0), T ), that we will estimate
from data. For this particular choice of f1(C) and f2(C),
we can solve the model exactly to give C(t) =C(0) for t≤ T
and C(t) =KC(0)/[C(0) + (K−C(0))exp(− r(t− T ))] for t > T.
Although, in principle, we can solve for C(t) exactly for certain
choices of f1(C) and f2(C), all results presented in this work
involve solving the mathematical model numerically using a
second-order explicit Runge–Kutta method that means that
we do not have to rely on integrating equation (3.1) to obtain
a closed-form solution.

3.2. Observation model
We assume that observed data yoi are measured at I discrete
times, ti, for i = 1, 2, 3,…, I. We use a superscript ‘o’ to
distinguish the noisy observed data from the model pre-
dictions. The model predictions are denoted by
yiðr, K, Cð0Þ, TÞ ¼ Cðti j r, K, Cð0Þ, TÞ. We collect the (noisy)
data into a vector denoted by yo1 : I. Similarly the process
model solution is denoted by y1:I(r, K, C(0), T ) for the vector
of grid point values and by y(r, K, C(0), T ) for the full model
trajectoryover the time interval of interest.We estimate the pro-
cessmodel parameter vector (r,K,C(0), T ) by assuming that the
observed data are noisy versions of the model solutions
of the form yoi j r, K, Cð0Þ, T, s2 � N ðyiðr, K, Cð0Þ, TÞ, s2Þ.
This meanswe assume that the observation errors are indepen-
dent, identically distributed, additive and normally distributed
with zero mean and constant variance σ2. Different error
models could be used within our likelihood-based framework
if that data suggested that the normal error model was inap-
propriate [26]. Here, the constant variance will be estimated
along with the process model parameters.
4. Parameter estimation
We hence combine both the process model parameter vector
(r, K, C(0), T ) and the observation parameter σ2 into an over-
all vector parameter θ = (r, K, C(0), T, σ2). We can then
consider scalar or vector sub-parameters as interest par-
ameters defined as functions of the full vector parameter,
e.g. σ2 = σ2(θ), where we use the same symbol for the function
and its value. The process model solution is itself an interest
parameter in this sense and does not depend on the variance,
i.e. yi(θ) = yi(r, K, C(0), T, σ

2) = yi(r, K, C(0), T ). Putting these
elements together, we hence write our model for the data
given the full parameter compactly as follows:

yoi j u � N ðyiðuÞ, s2ðuÞÞ: ð4:1Þ
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Taking a likelihood-based approach to parameter inference
and uncertainty quantification, given a time series of obser-
vations together with our assumptions about the process and
noise models, the log-likelihood function is given as follows:

‘ðu j yo1 : IÞ ¼
XI

i¼1

log [f(yoi ; yiðuÞ, s2ðuÞ)], ð4:2Þ

where ϕ(x; μ, σ2) denotes a Gaussian probability density func-
tion with mean μ and variance σ2. Maximum likelihood
estimation (MLE) provides an estimate of θ that gives the best
match (in the sense of highest likelihood) to the data. The
MLE is given by

û ¼ sup
u

[‘ðu j yo1 : IÞ], ð4:3Þ

subject to bound constraints. The procedure for estimating û

involves numerical maximization of the log-likelihood, which
can be achieved using many different algorithms. In this
work, we find that a local optimization routine from the
open-source NLopt optimization package in Julia performs
well [38]. In particular, we use the Nelder–Mead optimization
routine within the NLopt with the default stopping criteria.
60
5. Practical identifiability analysis and profile
predictions

We use a profile likelihood-based approach to explore practical
identifiability by working with a normalized log-likelihood
function

‘̂ðu j yo1 : IÞ ¼ ‘ðu j yo1 : IÞ � sup
u

‘ðu j yo1 : IÞ, ð5:1Þ

which we consider as a function of θ for a fixed set of data yo1 : I .
Note that normalizing the log-likelihood means that we have
‘̂ðû j yo1 : IÞ ¼ 0.
5.1. Profile likelihood for interest parameters
Assuming the full parameter θ can be partitioned into an
interest parameter ψ and nuisance parameter λ, where one
or both of these may be vector valued in general, we write
θ = (ψ, λ). More generally we can consider an interest par-
ameter as any well-defined function of the full parameter,
ψ = ψ(θ), and leave the implied nuisance parameter implicit
(that this always exists in the appropriate sense is implied
by the results in [39]). For a set of data, yo1 : I , the profile log-
likelihood for the interest parameter ψ given a partition (ψ,
λ) is defined as follows [26,40]:

‘̂pðc j yo1 : IÞ ¼ sup
l j c

‘̂ðc, l j yo1 : IÞ, ð5:2Þ

which indicates that λ is optimized out for each fixed value of
ψ. This implicitly defines a function λ*(ψ) of optimal values of
λ for each value of ψ. In the case of an interest parameter
given as a general function of the full parameter, the profile
(or induced) log-likelihood is defined in terms of the
constrained optimization problem [41,42],

‘̂pðc j yo1 : IÞ ¼ sup
u j cðuÞ¼c

‘̂ðu j yo1 : IÞ, ð5:3Þ

in which the ‘nuisance degrees of freedom’ in θ, after fixing ψ,
are optimized out. As a concrete demonstration, consider the
example in §§3.1–3.2, where we had f1(C ) = 0 and f2(C ) = r C
(1−C/K ), and the full parameter vector is θ = (r, K, C(0), T,
σ2). If we wish to profile the change point T, then we have
ψ(θ) = T and λ(θ) = (r, K, C(0), σ2) so that

‘̂pðT ¼ t j yo1 : IÞ ¼ sup
ðr,K,Cð0Þ,T,s2Þ j T¼t

‘̂ðr, K, Cð0Þ, T, s2 j yo1 : IÞ

¼ sup
ðr,K,Cð0Þ,s2Þ j T¼t

‘̂ðr, K, Cð0Þ, T, s2 j yo1 : IÞ:

ð5:4Þ
In all cases, we implement this numerical optimization using
the same Nelder–Mead routine in NLopt that we use to esti-
mate the MLE, û [38]. We define two uniformly spaced
meshes either side of the MLE in the interest parameter:
(i) starting at the MLE to the lower bound of the interest par-
ameter and (ii) starting from the MLE to the upper bound of
the interest parameter. For all results in this work, each mesh
is formed by 40 points resulting in a total of 80 mesh points
for each profile. For each mesh point to run the numerical
optimization, we provide a starting estimate of the par-
ameters. For the first mesh point closest to the MLE, we
set the starting estimate of r, K, C(0) and σ2 equal to their
respective values in the MLE. We then seek the values of r,
K, C(0) and σ2 that maximize ‘̂ðr, K, Cð0Þ, T, s2 j yo1 : IÞ. For
the second mesh point closest to the MLE, we use the esti-
mate from the previous point as the starting estimate. For
the starting estimate for all other mesh points, we make a
linear approximation using estimates at the previous two
mesh points. The linear approximation holds provided the
estimate remains within bounds. If it does not hold, we set
the first guess as the previous estimate provided it remains
within bounds and as the MLE otherwise. With these pro-
files, log-likelihood-based confidence intervals can be
defined from the profile log-likelihood by an asymptotic
approximation in terms of the chi-squared distribution
that holds for sufficiently regular problems [26]. For
example, 95%, 99% and 99.9% confidence intervals for a uni-
variate (scalar) interest parameter correspond to a threshold
profile log-likelihood value of −1.92, −3.32 and −5.41,
respectively [43].
5.2. Predictive profile likelihood and parameter-wise
profile predictions

Profile likelihoods for predictive quantities that are a (deter-
ministic) function of the full parameter θ are defined in the
same way as for any other function of the full parameter,
as described in §5.1. For example, the full process model
trajectory, y(θ), has an associated profile likelihood

‘̂pðyðuÞ ¼ y j yo1 : IÞ ¼ sup
u j yðuÞ¼y

‘̂ðu j yo1 : IÞ, ð5:5Þ

i.e. the profile likelihood value for a prediction is equal to
the maximum likelihood value across parameters consistent
with that prediction. Here, we give the profile prediction
for the full (infinite-dimensional) model trajectory, which
here is more straightforward in principle than general func-
tional estimation problems as the variation is driven by a
finite-dimensional parameter vector (and the constraint
defined by the differential equation). However, this constraint
may be more difficult to enforce in practice than the solution
at a single time, and the literature typically focuses on a
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single-time prediction [27,44]. In the special case that y(θ) is a
one-to-one function, the aforementioned reduces to

‘̂pðyðuÞ j yo1 : IÞ ¼ ‘̂ðu j yo1 : IÞ, ð5:6Þ

since the constraint y(θ) is uniquely invertible for θ. That is,
profiling preserves the usual parametrization invariance of
the likelihood function under one-to-one transformations
[41,42]. However, profile predictions are still well defined
even without a one-to-one relationship between the par-
ameters and model solution (i.e. in the absence of structural
identifiability) [27] (see also [44,45]).

Here, we are also interested in some measure of the depen-
dence of predictions on given target (interest) parameters.
However, given a partition θ = (ψ, λ) and a function q(θ) of
the full parameter, there is not in general a well-defined mean-
ing of q(ψ), unless q is independent of λ. A natural approach
then to exploring the dependence of a predictive function
q(ψ, λ) of the full parameter on an interest parameter ψ is to con-
sider its value along the corresponding profile curve, i.e.
q(ψ, λ*(ψ)), where λ*(ψ) is the optimal value of the nuisance
parameter for a given value of the interest parameter. We call
these parameter-wise profile predictions, in contrast to the more
standard predictive profile likelihood [27]. In the simple
case where q is independent of λ (or if λ is known) and is 1–1
in ψ, then this amounts to a re-parametrization of the ψ profile
likelihood. Hence, in this case, confidence intervals for ψ
are directly transformed into confidence intervals for q (by
transformation invariance of likelihood functions). The 1–1
requirement can be relaxed in the same way as for standard
interest parameters but, inmore complex caseswith non-trivial
dependence on the nuisance parameters, the transformation of
confidence intervals for ψ into confidence intervals for the pre-
dictive quantity of interest will only be approximate and the
precise statistical properties of these approximate prediction
intervals are more difficult to establish (though can always
be evaluated by simulation). In particular, if the predictive
quantity of interest has weak or no dependence on the
interest parameter being profiled and non-trivial dependence
on the nuisance parameters, the associated predictive interval
would be expected to have poor coverage. However, we can
still use these parameter-wise intervals as an intuitive model
diagnostic tool revealing the influence of an interest parameter
on predictions. In contrast, a standard predictive profile cannot
reveal the individual influence of particular parameters.
With these caveats in mind, we define the associated profile
likelihood for q(ψ, λ*(ψ)) analogously to standard profile likeli-
hood for an interest parameter, now starting from the profile
likelihood for ψ,

‘̂pðqðc, l�ðcÞÞ ¼ q j yo1 : IÞ ¼ sup
c j qðc,l�ðcÞÞ¼q

‘̂pðc j yo1 : IÞ: ð5:7Þ

As with the standard profile likelihood, this definition
preserves parametrization invariance under 1–1 transform-
ations, i.e. if q(ψ, λ*(ψ)) is 1–1 in ψ, then

‘̂pðqðc, l�ðcÞÞ j yo1 : IÞ ¼ ‘̂pðc j yo1 : IÞ: ð5:8Þ

In addition to parameter-wise intervals, given a collection
of individual intervals for the same quantity but based on
different interest parameters, more conservative confidence
intervals (relative to the individual intervals) for the predic-
tions can be constructed by taking the union over all
intervals. For example, given two intervals (or sets)
IT
q ¼ ½LTq , UT

q � and I r
q ¼ ½Lrq, Ur

q� for a quantity q based on the
profiles for T and r, respectively, we can form an interval (or
set) IT,r

q ¼ IT
q < I r

q, which has coverage at least as great as
the individual intervals. In the case where the two intervals
overlap, we have IT,r

q ¼ ½minfLTq , Lrqg, maxfUT
q , U

r
qg�. Again,

the precise coverage properties of these intervals are difficult
to establish, but such union intervals can provide an intuitive
picture of overall variation in the predictive quantity.
6. Results and discussion
Here, we apply the general modelling framework that we pre-
sent in §§3–5 to three case studies across the life sciences. We
discuss a fourth case study, an additional two-dimensional cell
proliferation assay that we perform with a bladder cancer cell
line, in electronic supplementary material, F. These case studies
cover a range of spatial and temporal scales, from microns and
hours to kilometres and years, respectively.

6.1. Coral reef growth after disturbance
Recent modelling studies that examine the regrowth of
coral reefs after some kind of disturbance (e.g. cyclone) have
begun to explore the possibility that the regrowth involves
biphasic growth [6], whereas earlier studies have simply
ignored this possibility [6,17,18]. Here, we explore measure-
ments of the coral cover percentage, CðtÞ ð%Þ, of the reef at
Broomfield Island, Great Barrier Reef, Australia (figure 2a)
[6]. In the first phase of growth, C(t) remains approximately
constant. In the second phase of growth, C(t) is sigmoidal. To
describe the second phase, we take the simplest approach
and use the logistic growth model [18]. Therefore, we set
f1(C) = 0 and f2(C) = r C (1−C/K) in equation (3.1) and seek
estimates of five parameters, θ = (T, C(0), r, K, σ).

Comparing the experimental data with the mathematical
model simulated with the MLE, we observe very good agree-
ment with small residuals that appear to be independent
and identically distributed (figure 2b). In terms of practical iden-
tifiability, the profile likelihood for T is wide, with approximate
99.9% confidence interval 0≤ T≤ 1220 (34% of entire dataset
duration). Our interpretation of this result is that these coral
data are insufficient to obtain aprecise point estimate ofT. There-
fore, while it is unclear from these data whether there is a delay
we have quantified the uncertainty in T. This is useful since
understanding whether the coral reef growth involves a delay
is important for management and intervention strategies [6].
The profile likelihoods for C(0), r, K and σ are relatively narrow
and each well formed around a single central peak, suggesting
that these parameters are practically identifiable (figure 2d–g).
We validate that the framework accurately estimates model par-
ameters by repeating this analysis with synthetic data based on
the coral reef data (electronic supplementary material, B). Redu-
cing the variance of the synthetic data suggests that the model
parameters are structurally identifiable.

To improve our understandingof howeachparameter influ-
ences mathematical modelling predictions, we use parameter-
wise profile predictions. We generate parameter-wise profile
predictions for each of the five parameters and their union. A
great advantage of using parameter-wise profile predictions is
that we can identify the contribution of each of the parameters
to predictions. Firstly, we present the parameter-wise profile
prediction for T (figure 3a) and the difference between the par-
ameter-wise profile prediction for T, IT

q , and the mathematical
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model simulatedwith theMLE, yðûÞ, denoted IT
q � yðûÞ (figure

3b). These results are very insightful since they showhowuncer-
tainty in each parameter affects different aspects of the
predictions made using the model. For example, uncertainty
in T leads to a relatively wide prediction interval at early time,
but has very little impact upon the late-time prediction interval
(figure 3a,b) which is intuitively reasonable since the late-time
behaviour of the model is dictated by K rather than T. Similarly,
we see that uncertainty in C(0) leads to a wide prediction inter-
val at early time, but a smaller prediction interval at late time,
which is also consistent with our understanding that C(0)
plays in this model (figure 3c,d). In contrast, uncertainty in K
leads to a relatively wide prediction interval at late time, as
expected, but a narrow prediction interval at early time
(figure 3g,h). As expected, σ provides zero contribution to the
prediction of the mean due to the form of the error model.
Given these parameter-wise prediction intervals, we can
then take the union of the parameter-wise profile predictions
and understand how it is formed and the contribution of each
parameter (figure 3i,j).

Many early studies of coral reef regrowth often ignore the
possibility of biphasic growth (i.e. fixing T = 0) and do not
allow for the possibility that C(0) can be estimated from the
data (i.e. fixing C(0) equal to the first measurement)
[6,17,18]. To demonstrate the impact of these more standard
choices, we repeat the analysis of this data under these
assumptions (figure 4). The mathematical model simulated
with the MLE is fixed to capture the first data point
(figure 4a), but agreement to the other data points is consider-
ably poorer in comparison with the biphasic model
(figure 2a). Furthermore, the residuals in this case are visually
correlated, with systematic underestimation at early times
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and some overestimation at later times, violating statistical
assumptions that the residuals are independent and identi-
cally distributed [18]. To compare the model where all
parameters are estimated (approach 1) with the model
where we fix T = 0 and set C(0) equal to the first experimental
measurement (approach 2), we use the Akaike information
criteria (AIC) [46]. The AIC is a standard tool for model selec-
tion studies and defined as AIC = �2 supu ‘ðujyo1 : IÞ þ 2k,
where k is the dimensionality of θ [47]. When k is the same
for different models, the AIC is a comparison of the
maximum likelihood estimates, and when k is different, the
model with more parameters is given a larger penalty. The
AIC is smaller for approach 1 (54.5) than approach 2 (69.5),
and this suggests that approach 1 is more appropriate.

The AIC provides a single numerical value to compare
mathematical models. Here, we provide further insights by
comparing the profile likelihoods [18]. Profile likelihoods and
approximate confidence intervals for parameters of the single-
phase model are different to the corresponding profile likeli-
hoods of the biphasic model. Specifically, estimates of r are
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smaller in the single-phase model than the biphasic model
(figures 2e and 4b). Furthermore, the approximate confidence
interval for K is much larger for the single-phasemodel (figures
2f and 4c). Such differences in parameter estimates could have
major impacts on intervention and management strategies.
For example, the single-phase model suggests that it is likely
that coral cover will eventually reach 100% (K ¼ 100%),
whereasK ¼ 100% is a very unlikely prediction from the bipha-
sic model. In electronic supplementary material, C, we explore
approach 3, a single-phasemodel (i.e.T = 0)without fixingC(0).
We find that approach 3 does not capture the first data point,
cannot be used to quantify uncertainty in T, and results in
wider approximate confidence intervals for model parameters
in comparison with approach 1.
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6.2. Two-dimensional cell proliferation assay
Inspecting the time evolution of the normalized cell density,
C(t)∈ [0, 1] (−), in two-dimensional cell proliferation assays,
we observe biphasic population growth (figure 5a). In the
first phase of growth, C(t) remains approximately constant.
In the second phase of growth, C(t) is sigmoidal. As men-
tioned earlier, we take the simplest approach and describe
the second phase using the logistic growth model. Therefore,
we set f1(C ) = 0 and f2(C ) = r C (1−C ) in equation (3.1). We
now seek estimates of four parameters, θ = (T, C(0), r, σ).

Comparing the experimental data with the mathematical
model simulated with the MLE, we observe very good agree-
ment with small visually uncorrelated residuals (figure 5a).
The profile likelihood for T is well-formed around a single
central peak, suggesting that T is practically identifiable to a
99% approximate confidence interval threshold (figure 5b).
However, the approximate 99.9% confidence interval is
wider, 0 < T < 51 (hours), and the MLE is 43 (hours). The pre-
vious analysis of this dataset used visual inspection to
estimate T = 40 (hours). The approach we use here is more
objective and reproducible and consequently more reliable
and accurate than the previous method. Further, our approach
provides an approximate confidence interval rather than a
point estimate. Profile likelihoods for the three other par-
ameters, C(0), r and σ suggest that they are practically
identifiable (figure 5c–e). Parameter-wise profile predictions
reveal the influence of individual model parameters on predic-
tions (figure 6). Similar results are obtained for the fourth case
study, a different cell proliferation assay experiment that
we perform with a bladder cancer cell line and larger initial
density (electronic supplementary material, F).

6.3. Three-dimensional cancer tumour spheroid
experiment

We now consider a growing population of cancer cells in a
three-dimensional tumour spheroid experiment reported in
[5,9]. The overall process of spheroid formation and growth
involves two phases: in phase (i), cells placed in thewellmigrate
and adhere to form a shrinking spheroid; and in phase (ii), the
newly formed spheroid grows as compact solid mass increases
(figures 1b and 7a–e). Over the entire experimental duration
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0 < t < 432 (hours), the spheroid radius,R(t), increases to a long-
time maximum radius, R2 ðmmÞ (electronic supplementary
material, G). Here, to illustrate the early-time biphasic
behaviour, we focus on 0 < t < 120 (hours).

Many models could be chosen to describe and analyse
how R(t) evolves in time. Model selection has been well
studied for the second phase of growth [48,49]; however,
the first phase where the spheroid forms is rarely studied.
Here, we take a minimal approach and assume both phases
can be described by distinct logistic growth models, giving

dRðtÞ
dt

¼
r1RðtÞ 1� RðtÞ

R1

� �
, 0 � t � T,

r2RðtÞ 1� RðtÞ
R2

� �
, t . T,

8<
: ð6:1Þ

where r1 and r2 are the growth rates in the first and second
phase, respectively, andR1 andR2 are the associated limiting
radii in each phase. Overall, we have seven parameters to esti-
mate u ¼ ðT, Rð0Þ, r1, r2, R1, R2, sÞ. Using the logistic
growth model to simulate the growth of cell populations
where the density is less than the long-time carrying capacity
density is extremely common [3,19,48,49]. In contrast, using
logistic growth where the dependent variable is greater
than the long-time carrying capacity, as we do here to
describe the first phase of spheroid formation, is quite unu-
sual [50]. However, we find that this approach provides a
good description of our experimental observations using a
very familiar mathematical model.

Comparing the experimental data with the mathematical
model simulatedwith theMLE,weobserve excellent agreement
(figure 7e). The profile likelihood for T is well formed around a
single centralpeak, suggesting thatT is practically identifiable to
the 99.9%approximate confidence interval threshold (figure 7b).
Profile likelihoods suggest that five of the six other para-
meters, R(0), C(0), r1, r2, R1 and σ, are practically identifiable
(figure 7g–j and l ). The profile likelihood forR2 is well formed
around a single central peak and practically identifiable to a
95% approximate confidence interval threshold (figure 7k).
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However the approximate 99% and 99.9% confidence intervals
are wider, suggesting that the parameter R2 is practically
non-identifiable using this dataset (figure 2b). Increasing the
experimental duration narrows the confidence intervals for r2
and R2, suggesting that they are practically identifiable
with appropriate additional data (electronic supplementary
material, figures S12 and S13). Parameter-wise profile predic-
tions reveal the influence of individual model parameters on
predictions (figure 8). Here, our framework improves on
previous methods that use visual inspection to identify the
start of the second phase of growth for analysis [5,9].
7. Conclusion and outlook
In this study, we present a computationally efficient framework
for diagnosing, understanding and predicting biphasic popu-
lation growth. Our framework involves two key components:
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(i) an efficient method to form approximate confidence intervals
for the change point of the growth dynamics and model par-
ameters and (ii) parameter-wise profile predictions that
systematically reveal the influence of uncertainty for individual
model parameters upon the model predictions. To demonstrate
our framework,we explore real-world case studies across the life
sciences. This work builds on previous studies that focus on
single-phase models to describe biphasic growth, point esti-
mates of biphasic model parameters and specific mathematical
models and applications.

The ability to estimate the change point and model
parameters in combinationwith parameter-wise profile predic-
tions is powerful. For experimental design, parameter-wise
profile predictions can inform when additional measurements
should be taken to improve estimates of individual parameters.
For the cell biology case studies, we provide accurate estimates
of growth rates that can assist decision-making in experiments,
for example when to apply drug treatments [51]. For the coral
reef growth, understandingwhether growth involves a delay is
important for management and intervention strategies [6].
Here, by using our biphasic modelling framework rather
than a single-phase model, one can account for the existence
of a delay phase and quantify the associated uncertainty.
These case studies vary in terms of application and data qual-
ity, from sparse noisy data in coral reef studies to dense data
collected in controlled experimental conditions in cell biology
experiments. For all case studies, the framework provides
accurate parameter estimates and parameter-wise prediction
intervals that lead to valuable insights.

Ourwork introduces parameter-wise prediction intervals in
terms of the intuitive picture of variation in the predictive quan-
tity. An open question from a theoretical point of view is how
union intervals are compared with standard profile predictive
intervals for the same quantity. Because such parameter-wise
(and union of parameter-wise) intervals are based on direct
propagation of parameter uncertainties, these are typically
easier to compute than standard profile prediction intervals
as the latter require enforcing constraints on the model outputs
rather than inputs. On the other hand, standard profile
prediction intervals are more well-established theoretically.

This framework can be extended in many theoretical direc-
tions and to many applications. We take the simplest approach
and use the well-known logistic model to describe population
dynamics. However, the framework is general and well suited
to explore other models, for example Gompertz, generalized
logistic and Richard’s [18,48,49]. Our biphasic modelling fra-
mework can also be applied to the growth of individuals
within a population [20,52] and extended to explore growth
dynamics that exhibit three or more growth phases [53].
Throughout, we assume a normal error model as it is the sim-
plest and most common approach. Exploring different error
models, such as lognormal and exponential, within our likeli-
hood-based framework may be of interest in different
biological contexts. Since we simultaneously estimate par-
ameters from the mathematical model as well as parameters
in the statistical model, our framework is also well suited to
analyse different ecological systems with more noise. Explor-
ing process stochasticity is also of interest [54]. We use a
profile likelihood-based framework rather than a Markov
chain Monte Carlo approach for computational efficiency
[33]. In futurework, one could compare the computational effi-
ciency of the two approaches specifically for biphasic growth
models. One could also explore spatial effects by extending
spatio-temporal single-phase partial-differential equation
growth models [33,55] to spatio-temporal biphasic growth
models. Overall, this work lays the foundation for studies in
biphasic population growth using differential equations, effi-
cient change point and model parameter estimation, and
parameter-wise prediction intervals.
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