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Mitochondrial diseases are a broad, genetically heterogeneous class of
metabolic disorders characterized by deficits in oxidative phosphorylation
(OXPHOS). Primary mitochondrial disease (PMD) defines pathologies
resulting from mutation of mitochondrial DNA (mtDNA) or nuclear genes
affecting either mtDNA expression or the biogenesis and function of the
respiratory chain. Secondary mitochondrial disease (SMD) arises due to
mutation of nuclear-encoded genes independent of, or indirectly influencing
OXPHOS assembly and operation. Despite instances of novel SMD increas-
ing year-on-year, PMD is much more widely discussed in the literature.
Indeed, since the implementation of next generation sequencing (NGS) tech-
niques in 2010, many novel mitochondrial disease genes have been
identified, approximately half of which are linked to SMD. This review
will consolidate existing knowledge of SMDs and outline discrete categories
within which to better understand the diversity of SMD phenotypes. By pro-
viding context to the biochemical and molecular pathways perturbed in
SMD, we hope to further demonstrate the intricacies of SMD pathologies
outside of their indirect contribution to mitochondrial energy generation.

1. Introduction
Modern-day mitochondria arose from an ancient symbiotic union between a
primitive eukaryotic precursor cell and an α-proteobacterium [1]. Accordingly,
mitochondria possess a double membrane architecture and are divided into
four sub-compartments: the outer membrane (OM), intermembrane space
(IMS), inner membrane (IM) and the matrix. Across billions of years of coevolu-
tion, endosymbiotic gene transfer has significantly depleted the size of the
existing mitochondrial genome, and only a fraction of mitochondrial proteins
are believed to have proteobacterial origin [2]. An extensive amount of proteomic
rewiring has occurred to accommodate the energetic andmetabolic requirements
of modern eukaryotic organisms. As it exists today, the human mitochondrial
genome (mtDNA) encodes only 13 proteins, 22 transfer RNAs and 2 mitochon-
drial ribosomal RNAs [3]. All mtDNA-encoded proteins are core components of
oxidative phosphorylation (OXPHOS) Complexes I, III, IV or V. Complexes I, III
and IV work to establish an electrochemical gradient across the IM, which fuels
ATP generation through the F1F0 ATP synthase (Complex V), drives import and
sorting of nuclear-encoded mitochondrial proteins, and powers metabolite
exchange across inner membrane-embedded carrier proteins [3].

Inaddition tohavingapivotal role in energygeneration,mitochondria are criti-
cal in numerous cellular processes, including amino acid metabolism, iron-sulfur
cluster biogenesis, intrinsic cell death and intraorganellar signalling [4]. Conse-
quently, mitochondrial dysfunction often propagates and/or underlies many
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disease states, including cancer, neurodegenerative disease and
diabetes [5–9], aswell as theprocessofageing [10,11].Mitochon-
drial dysfunction also results inmitochondrial diseases, a group
of heterogenous, often rare metabolic disorders characterized
by defective cellular energy generation. Of the estimated 1136
total mtDNA and nuclear DNA (nDNA) encoded mitochon-
drial genes [12], over 330 have been linked to mitochondrial
disease onset [13–16]. Mitochondrial diseases can be categor-
ized into two broad categories: primary mitochondrial disease
(PMD) and secondary mitochondrial disease (SMD). PMDs
arise from inherited variants in mtDNA genes or nuclear
genes that are directly linked to OXPHOS function [13]. Cur-
rently, pathogenic variants linked to PMD have been
identified in 36 of the 37 mtDNA genes and over 150 nDNA-
encoded genes [14,17]. Some of these genes encode OXPHOS
subunits themselves, while others have supportive roles as
assembly factors, cofactors or electron carriers [13]. In addition,
genes responsible for mtDNA maintenance, mtRNA
expression/translation and biogenesis of the mitoribosome
can also be classified as PMDs [13]. SMD defines disease
states in which the causative mutation indirectly impairs
OXPHOS function via other crucial mitochondrial pathways
[13,17]. This can include perturbations in protein biogenesis
pathways, mitochondrial morphology, lipid biogenesis and
the TCA cycle, among others [13]. Although individual mito-
chondrial diseases are rare, mitochondrial diseases overall are
prevalent and represent the most common class of inborn
errors of metabolism, with an estimated minimum birth preva-
lence of 1/5000 [18,19]. Despite marked improvements in the
diagnosis of mitochondrial disease, development of effective
treatments has lagged significantly. This in part is due to
challenges imposed by the diversity of the observed symptoms,
but also a lack of information on the molecular mechanisms
underscoring individual disease states.

PMDs have been extensively reviewed in the literature
[13,14,20–24]. In this review, we will explore the biology
underscoring mitochondrial dysfunction in SMD. We will
emphasize the growing significance of SMD in diagnostic set-
tings and how expanding our knowledge of fundamental
mitochondrial biology is crucial to driving understanding
of disease pathomechanisms.
2. Secondary mitochondrial disease and
associated genes

Prior to the advent of next-generation sequencing (NGS) tech-
nologies in 2010, identification of novel disease-causing
mutations was reliant upon candidate gene sequencing and
linkage studies [13]. These techniques enabled the successful
identification of 32 mtDNA genes and 94 nuclear-encoded
genes associated with mitochondrial disease over 22 years, the
majority associated with PMD [13]. Since the implementation
of NGS, over 150 additional genes linked to mitochondrial dis-
ease have been identified, greatly exceeding the output of earlier
techniques in roughly half the time [14,24,25]. The proportion of
genes associated with SMD has steadily increased since the
introduction of NGS techniques [13], demonstrating the diver-
sity of mitochondrial functions critical to cellular homeostasis
and viability. Such functions include metabolic regulation,
mitochondrial homeostasis, protein quality control and matu-
ration, and broader mitochondrial morphology, among others.
The list of SMD genes in figure 1 indirectly impact OXPHOS
and probably involve additional cellular/mitochondrial func-
tions. These genes have been compiled with some stringency
from available literature [13,20], and include several additional
recently described novel disease genes. It is important to
highlight that numerous additional disease genes with links
to mitochondrial dysfunction have been flagged [20] but are
not included here, as their impact on OXPHOS or role in
mitochondrial function is less clear.

This is an expansive topic with many diseases, hence for
the purpose of this review, we will broadly classify mitochon-
drial functions linked to SMD into three (overlapping)
categories shown in figure 1.

1. Molecular pathways related to protein biogenesis, including
protein import/processing, protein quality control and
Fe-S cluster biogenesis.

2. Metabolic pathways including metabolite transport, metab-
olism of toxic compounds (ROS), enzyme cofactors, TCA
cycle and lipid homeostasis.

3. Organellar pathways linked to mitochondrial health,
including mitochondrial dynamics and cell death.

A subset of genes with currently unclear biological
functions is included in figure 1. For these genes, although
a pathogenic correlation is recognized, appropriate classifi-
cation as SMD or PMD cannot yet be assigned. Conversely,
while some genes are clearly imperative to mitochondrial
metabolism and health and have been flagged as mitochon-
drial disease genes in other reviews [15,20], they have been
excluded here on the basis of a strict requirement for demon-
strable OXPHOS defect. It is beyond the scope of this review
to cover each gene linked to SMD. Our descriptions below
will cover key pathways and genes to provide an overview
of the myriad of ways in which dysfunctional mitochondria
can intersect and impinge on OXPHOS function, and lead
to diverse disease pathologies.

3. Molecular pathways related to protein
biogenesis

Mitochondrial protein biogenesis refers to the processes that
permit inter- or intra-organellar protein synthesis (mitochon-
drial or cytosolic ribosomes, respectively), followed by the
coordinated action of translocases, proteases, chaperones and
assembly factors to mediate the correct compartmentalization
of newly synthesized proteins. Due to the dual organellar
location of genes encoding subunits comprisingOXPHOS com-
plexes, protein biogenesis pathways are essential in the
establishment of a functional OXPHOS system. Perturbations
to systems involved in mtDNA transcription, translation and
maintenance contribute to the onset of PMD, as their loss
solely impedesOXPHOSbiogenesis.Conversely,mitochondrial
import, proteinhomeostasis andotherpost-translational actions
support broadermitochondrial function, loss ofwhich results in
SMD.Accordingly, the list of SMDs linked to protein biogenesis
dysfunction has steadily grown over the last decade (figure 1).

3.1. Protein import/processing
The unique double membrane architecture of mitochondria
necessitates the presence of targeting signals, delivering
nuclear-encoded precursors to one of five major translo-
cases/import pathways [26]. Figure 2a illustrates these
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Figure 1. Categorical organization of mitochondrial genes associated with secondary mitochondrial disease (SMD). Genes with deleterious mutations impacting
mitochondrial functions secondary to OXPHOS have been broadly classified into three main categories: (1) Molecular pathways related to protein biogenesis, includ-
ing protein import, protein quality control and Fe-S cluster biogenesis (indicated in blue); (2) Metabolic pathways involving metabolite transport, metabolism of
toxic compounds, enzymatic cofactors, TCA cycle metabolism and lipid homeostasis (indicated in green); and (3) Organellar pathways linked to mitochondrial health,
including mitochondrial morphology and apoptosis (indicated in red). Genes linked to SMD with currently unclear functions are listed in the Unclear category
(indicated in grey). OMM, outer mitochondrial membrane; IMS, intermembrane space; IMM, inner mitochondrial membrane.
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translocases and highlights subunits with a known connection
to SMD. Most SMDs in this category are associated with the
two Translocases of the Inner Mitochondrial Membrane,
the TIMM22 and TIMM23 complexes, which are responsible
for the delivery of the majority of the matrix and inner mem-
brane proteome [27]. Pathogenic variants within the
translocase of the outer mitochondrial membrane (TOMM)
complex have only recently been reported in the receptor
protein TOMM70 [28,29]. Three patients have been identified
so far, presenting with dystonia, hyper-reflexia, ataxia, lactic
acidosis, anaemia and mild developmental delay [28,29].

TIMM22 functions to insert multi-spanning inner mem-
brane proteins, which include mitochondrial solute carriers
(SLC25 family), the largest family of carrier proteins respon-
sible for the transport of nucleotides, amino acids and
inorganic compounds across the inner membrane [30–32].
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Figure 2. (Opposite.) Overview of protein biogenesis pathways linked to secondary mitochondrial disease. (a) Schematic depicting mitochondrial import pathways
and genes associated with SMD. The majority of nuclear-encoded mitochondrial precursor proteins are targeted to mitochondria and imported via the translocase of
the outer mitochondrial membrane (TOMM) complex. From here, precursor import pathways diverge to one of four key routes: (1) β-barrel insertion and assembly
into the outer membrane via the sorting and assembly machinery (SAM); (2) cysteine-rich precursors of the intermembrane space are oxidized by CHCHD4 (MIA40)
at the mitochondrial intermembrane space and assembly complex (MIA); (3) the N-terminal pre-sequence pathway via the translocase of the inner mitochondrial
membrane 23 (TIMM23) complex, for import into the mitochondrial matrix, or lateral insertion of proteins into the inner membrane; and (4) the carrier pathway,
where proteins with multi-spanning transmembrane domains are chaperoned by members of the small TIM family and delivered to the TIMM22 complex for lateral
insertion into the inner membrane. The OXA1L insertase is responsible for the biogenesis of a number of inner membrane proteins, including components of the
respiratory chain encoded by the mitochondrial genome. (b) Protein quality control systems within the mitochondrial intermembrane space and matrix. Within the
IMS, the i-AAA protease (YME1L1 hexamer) and CLPB disaggregase clear misfolded and aggregated proteins, respectively. In the matrix, the HSP60/10 chaperone
complex (HSPD1/HSPE1, respectively) facilitates protein folding while the m-AAA (AFG3L2/SPG7 hetero-hexamer or AFG3L2 homo-hexamer), CLPXP (CLPP and CLPX
oligomer), and LONP1 proteases cooperate to degrade misfolded protein precursors. (c) Fe-S cluster biogenesis occurs through three major steps 1) [2Fe-2S] bio-
synthesis: NFS1, in complex with LYRM4, catalyses the release of sulfane (-SSH) from cysteine. FXN likely chaperones imported iron to the ISCU scaffold. FDX2 and
FDXR reduce sulfane to sulfide and finalize [2Fe-2S] assembly at ISCU. 2) [2Fe-2S] trafficking: chaperone HSPA9 reacts with and detaches [2Fe-2S] from the ISCU.
GLRX5 binds to and transfers the mature [2Fe-2S] cluster to apoproteins or shuttles the cluster for export. 3) [4Fe-4S] biosynthesis: IBA57, ISCA1 and ISCA2 facilitate
the maturation of [4Fe-4S] clusters and can either deliver them to apoproteins directly or pass clusters on to other proteins (such as NFU1 or BOLA3) to target more
specific downstream [4Fe-4S]-containing proteins. Gene names are boxed, and associated diseases are listed below or indicated here: (a) AGK (Sengers syndrome
(MIM #212350) and CTRCT38 (MIM #614691)); AIFM1 (COXPD6 (MIM #300816), CMTX4 (MIM #310490), DFNX5 (MIM #300614) and SEMDHL (MIM #300232));
DNACJ19 (MGCA5 (MIM #610198)); GFER (MPMCD (MIM #613076)); MIPEP (COXPD31 (MIM #617228)); OXA1L (-); PAM16 (SMDMDM (MIM #613320));
PITRM1 (SCAR30 (MIM #619405)); PMPCA (SCAR2 (MIM #213200)); PMPCB (MMDS6 (MIM #617954)); TIMM22 (COXPD43 (MIM #618851)); TIMM50 (MGCA9
(MIM #617698)); TIMM8A (MTS (MIM #304700)); TOMM70 (-). (b) AFG3L2 (SPAX5 (MIM #614487)), OPA12 (MIM #618977) and SCA28 (MIM #610246));
CLPB (MGCA7A (MIM #619835), MGCA7B (MIM #616271) and SCN9 (MIM #619813)); CLPP (PRLTS3 (MIM #614129)); HSPA9 (SIDBA4 (MIM #182170) and
EVPLS (MIM #616854)); HSPD1 (HLD4 (MIM #612233) and SPG13 (MIM #605280)); LONP1 (CODAS syndrome (MIM #600373)); SPG7 (SPG7 (MIM #607259));
YME1L1 (OPA11 (MIM #617302)). (c) ABCB7 (ASAT (MIM #301310)); BOLA3 (MMDS2 (MIM #614299)); FDX2 (MEOAL (MIM #251900)); FDXR (ANOA (MIM
#617717)); FXN (FRDA (MIM #229300)); GLRX5 (SIDBA3 (MIM #616860) and SPAHGC (MIM #616859)); IBA57 (SPG74 (MIM# 616451) and MMDS3 (MIM
#615330)); ISCA1 (MMDS5 (MIM #617613)); ISCA2 (MMDS4 (MIM #616370)); ISCU (HML (MIM #255125)); LYRM4 (COXPD19 (MIM #615595)), NFS1
(COXPD52 (MIM #619386)); NFU1 (MIM #MMDS1 (605711)).
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The best characterized member of this family is the ADP/
ATP translocase (ANT1-4 or SLC25A4-6 and SLC25A31 in
humans) [33,34]. Two subunits of the TIMM22 complex are
currently connected to mitochondrial disease: the pore sub-
unit TIMM22, and the receptor subunit AGK (acylglycerol
kinase) [35,36]. TIMM22 mutation is rare, with only a single
patient reported, carrying p.(Tyr25Ter) and p.(Val33Leu)
pathogenic variants [35]. The patient presented with autoso-
mal recessive combined OXPHOS deficiency 43 (COXPD34,
MIM #617872), characterized by intrauterine growth retar-
dation, hypotonia, feeding difficulties, gastroesophageal
reflux, delayed myelination of white matter and increased
plasma lactate and creatine levels [35]. Activities of
OXPHOS Complexes I, III and IV were reduced, likely due
to impaired carrier protein import and metabolite imbalance
[35]. The mild respiratory deficit observed in this lone
COXPD34 patient may be partially explained by perturbed
import of Complex I accessory subunits with multiple trans-
membrane domains, such as NDUFA11, NDUFC2 [37,38]
and SFXN4, a novel Complex I assembly factor [39] and
newly identified TIMM22 substrate [40]. AGK mutations
cause Sengers syndrome (MIM #212350), a rare, autosomal
recessive mitochondrial disorder associated with congenital
cataracts, hypertrophic cardiomyopathy, lactic acidosis and
skeletal myopathy [41,42] Loss of AGK perturbs TIMM22
complex stability, disrupting carrier protein import and dam-
pening the rate of mitochondrial respiration and metabolic
flux through the TCA cycle [43,44]. One-carbon metabolism
is altered in Sengers syndrome patient cells [43,45], owing
to the perturbed biogenesis of the novel TIMM22 complex
substrates, SFXN1, SFXN2 and SFXN3 [40,46]. It is believed
that defects in lipid metabolism and/or mitochondrial carrier
import due to the absence of functional AGK contribute to
Sengers syndrome pathogenesis.
The TIMM23 complex facilitates the import of N-terminal
presequence-containing precursors into the matrix and inner
membrane [26,47]. The TIMM23 core complex (TIMM23,
TIMM50, TIMM17A/B and TIMM44) can associate with
either the matrix-localized presequence associated motor
(PAM) to drive protein import into the matrix in an ATP-
dependent manner (TIMM23MOTOR) [47], or ROMO1 and
TIMM21 to mediate lateral insertion of precursors into the
inner membrane (TIMM23SORT) [47]. No pathological
variants of TIMM23 and TIMM17A/B have yet been
described, but this is not surprising as mouse models
carrying heterozygous Timm23 mutations present with
neurological phenotypes and a reduced lifespan, and com-
plete deletion of the gene is embryonically lethal [48]. The
PAM module comprises the ATPase HSPA9 and associated
regulatory co-chaperone DNACJ19, a modulator of HSPA9
ATP hydrolysis activity and precursor shuttling [47,49].
Additional co-chaperones include GRPEL1, PAM16
(MAGMAS), DNAJC19 and DNAJC15 [47]. Dnajc15-null
mice have no obvious phenotype [50], but mutations in
DNAJC19 are associated with dilated cardiomyopathy with
ataxia syndrome (DMCA, or MGCA5 (3-methylglutaconic
aciduria type V), MIM #610198) [51]. DMCA patients present
with severe, early onset dilated cardiomyopathy (DCM),
growth failure, mild cerebellar ataxia and notably, exacerbated
urinary excretion of 3-methyglutaconic acid (3-MGA) [51].
Whilemild elevation of 3-MGA (20–40 mmol mol−1 creatinine)
in urine is frequently observed among disorders impacting
OXPHOS [52], extremely elevated levels of 3-MGA (40-greater
than 1000 mmol mol−1 creatinine) are consistent with a
limited set of disorders entitled ‘3-methyglutaconic acidurias’
(3-MGA-urias) [53]. DMCA itself is classified as a ‘secon-
dary 3-MGA-uria’, as this defect arises via an unknown
mechanism that is unrelated to the primary metabolic disorder
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3-methylglutaconyl-CoA hydratase (AUH) deficiency
(MGCA1, MIM #250950) [53].

TIMM50 is a core subunit of the TIMM23 translocase,
receiving presequence-containing precursors from the outer
membrane TOM complex and directing their passage through
the TIMM23 channel [54]. Patients presenting with pathogenic
mutations in TIMM50 are rare, but common symptoms include
severe intellectual disabilities, epileptic spasms, microcephaly,
moderate elevation of plasma lactate levels, variable mito-
chondrial Complex V deficiency and 3-MGA-uria (MGCA9,
MIM #617698) [55–57]. Isolated Complex V deficiency is a con-
founding phenotype, considering that efficient function of the
TIMM23 complex is necessary for import of a range of precur-
sors, including multiple OXPHOS components [58]. Further
detailed study of TIMM50 function and other members of
the human mitochondrial import machinery will provide cru-
cial insight into diseases of protein import, alongside the
prevalence of secondary 3-MGA-uria acrossmitochondrial dis-
orders. While not a constitutive member of the TIMM23
complex itself, the OXA1L general insertase facilitates the inte-
gration of multiple inner membrane resident and OXPHOS
components from the matrix into the inner membrane and
has recently been linked to a severe form of combined respirat-
ory chain deficiency with mitochondrial encephalopathy [59].

TIMM8A, together with TIMM8B and TIMM13, are inter-
membrane space chaperones with a broadly appreciated role
in mitochondrial import and biogenesis, receiving nascent pre-
cursor proteins from the TOMM complex and shuttling them
either to the inner membrane TIMM22 translocase or the
outer membrane via the dedicated sorting and assembly
machinery (SAM) β-barrel insertase [60–62]. Loss of function
mutations in TIMM8A manifest in the X-linked autosomal
recessive neurodegenerative disorder Mohr-Tranebjærg syn-
drome (MTS, MIM #304700) [63,64], characterized by early
onset progressive sensorineural deafness, progressive dysto-
nia, cortical blindness and dysphagia. The mode of MTS
pathogenesis was initially believed to be a defect in TIMM23
complex assembly, due to impaired import of TIMM23 protein
via TIMM8A [60,61]. However, an alternative role for TIMM8A
in Complex IV biogenesis within the neuronal SH-SY5Y cell
type has recently been reported [65]. The neuronal SH-SY5Y
TIMM8A-deficient model also demonstrates increased apopto-
tic sensitivity due to elevated levels of reactive oxygen species,
and a concurrent defect in oxidative phosphorylation [65].
This novel, cell-type specific role for the TIMM8A chaperone
challenges current understanding of MTS pathomechanisms
and necessitates some leniency in primary and secondary dis-
ease classifications as our understanding of mitochondrial
biology expands.

Further reading on mitochondrial protein import/processing
can be found in [58,62,66,67].

3.2. Protein quality control
The dynamic nature of mitochondria and their heightened
susceptibility to oxidative damage via OXPHOS [68,69]
creates a volatile environment for protein folding and matu-
ration. Intraorganellar chaperones and proteases provide a
first line of defence in protein quality control (QC), surveying
the protein folding environment and mediating the removal
of damaged or potentially toxic compounds [8]. Key
members of this pathway are highlighted in figure 2b and
include: CLPB, an intermembrane space disaggregase [70];
the matrix-localized, ATP-dependant proteases LONP1 and
CLPP (together with CLPX), which mediate the proteolytic
degradation of misfolded protein substrates [69]; chaperones
of the Hsp60 family [71]; and ATP-dependent inner membrane
localized proteases, i-AAA and m-AAA, with proteolytic
domains in the intermembrane space and matrix, respectively.
Effective mitochondrial proteostasis is therefore largely depen-
dent on the action of AAA+ domain-containing proteins
(ATPases associatedwith diverse cellular activities) [72]. Failure
of these QC systems can result in extensive oxidative protein
damage, aggregate accumulation and mitochondrial network
fragmentation [8], and can manifest in a range of novel
mitochondrial pathologies as outlined herein.

Them-AAAprotease exists either as anAFG3L2 homo-hex-
amer, or as a hetero-hexamer in conjunction with paraplegin,
encoded by the SPG7 gene [73]. m-AAA activity is critical in
the biogenesis of OXPHOS complexes [74] and mitochondrial
ribosomes [75], and for OMA1maturation, a regulator of mito-
chondrial dynamics [76]. Both AFG3L2 and paraplegin contain
AAA-ATPase domains and zinc-dependent metalloprotease
domains [77]. Loss of function mutations in SPG7 contribute
to hereditary spastic paraplegia type 7 (SPG7, MIM #607259),
characterized by adult-onset progressive weakness and spasti-
city of extremities due to degeneration of corticospinal axons
[78,79]. The mode of inheritance of SPG7 is complex—while
autosomal dominant cases of SPG7 have been described
[80,81], autosomal recessive inheritance is alsowidely reported
[82]. The recent identification of a deep intronic variant along-
side a previously identified missense mutation within SPG7
[83] has raised conjecture over the true inheritance pattern of
SPG7. Digenic inheritance is another possibility, and it is rec-
ommended that patients carrying heterozygous mutations in
SPG7 should also be screened for pathogenic variants in
known paraplegin interactor AFG3L2 as well as genetically
associated variants in CACNA1A and MORC2 [84].

Missense mutations of AFG3L2 can occur in either domain,
severely impeding the proteolytic capacity of m-AAA, leading
to Complex IV deficiency and impaired cellular respiration
[85]. Heterozygous mutations of AFG3L2 contribute to autoso-
mal dominant hereditary spinocerebellar ataxia type 28
(SCA28, MIM #610246) [85] and optic atrophy-12 (OPA12,
MIM #604581) [86]. Homozygous mutations of AFG3L2
are also implicated in autosomal recessive spastic ataxia-5
(SPAX5, MIM #614487) [87]. AFG3L2 mutations associated
with SCA28 and SPAX5 frequently occur in themetalloprotease
domain, whereas mutations linked to OPA12 exclusively affect
the AAA-domain [86]. SCA28 is characterized by late-onset
cerebellarataxia, dysarthria andptosis [85,87]. Selectiveupregu-
lation ofAFG3L2 in Purkinje cells of SCA28 patients, alongwith
an exclusive neuronal biochemical phenotype, suggests that
AFG3L2 might have a specific, neuro-protective role within
thehumancerebellum, aligningwith theproposedmodel of cer-
ebellar degeneration within SCA28 patients [85]. The SPAX5
phenotype shares cerebellar ataxia and ptosis as similarities
with SCA28 [85,87], along with additional traits such as early
onset spasticity, oculomotor apraxia, dystonia and progressive
myoclonic epilepsy [87]. While OPA12 patients predominantly
present with optic atrophy, a small subset can experience
additional neurologic involvement, including mild intellectual
disabilities, ataxia and dystonia [86].

YME1L1 (i-AAA) has its proteolytic domain orientated
towards the intermembrane space. Both i-AAA and m-AAA
regulate mitochondrial cristae morphology by way of OPA1
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processing in conjunction with OMA1 [76,88]. OPA1 is linked
to mitochondrial morphology and will be described further
in §5.1 (’Mitochondrial morphology’). Patients carrying
mutations in YME1L1 present with optic atrophy-11
(OPA11, MIM #617302), characterized by intellectual disabil-
ities, muscular degradation and optic nerve atrophy,
associated with abnormal OPA1 processing and mitochon-
drial fragmentation [88].

Under intense cellular stressors, nascent proteins can
quickly misfold and accumulate as toxic aggregates, over-
whelming these conventional proteases [89]. Human CLPB
is a mitochondrial AAA+ domain-containing protein with
demonstrable disaggregase activity and intermembrane
space localization [70,90]. In the presence of substrate,
CLPB oligomerizes into a large (approx. 800 kDa) dodeca-
meric species, comprising two CLPB hexamers interacting
via highly versatile ankyrin repeat (ANK) domains [91].
Autosomal recessive mutations within CLPB cause 3-methyl-
glutaconic aciduria, type 7B (MGCA7B, MIM #616271) [92],
though autosomal dominant, de novo missense mutations
have also been described (MGCA7A, MIM #619835) [93].
Both forms display similar phenotypic outcomes, including
progressive encephalopathy, impaired psychomotor develop-
ment, intellectual disabilities, bilateral cataracts, congenital
neutropenia and are specifically characterized via the
3-MGA-uria biomarker [92,93]. More recently, heterozygous
missense mutations within the nucleotide-binding domain
(NBD) of CLPB have been reported to contribute to autoso-
mal dominant severe congenital neutropenia 9 (SCN9 MIM
#619813) [94]. These patients predominantly present with
early onset neutropenia and recurrent infections and can
occasionally develop cataracts or minimal neurologic involve-
ment. However, SCN9 is distinct from MGCA7A/B in that
these SCN9 patients do not have 3-MGA-uria [94]. It is not
yet known why certain mutations throughout the ANK or
NBD of CLPB give rise to such clinical heterogeneity.

Further reading on mitochondrial quality control can be found
in [8,68,69]

3.3. Fe-S cluster biogenesis
Mitochondria are thought to be essential for the generation of
all Fe-S-containing proteins in the cell [95]. Fe-S clusters are
highly versatile, facilitating electron transfer, catalysis, signal-
ling and protein–protein interactions [96]. Suspected to have
supported the earliest metabolic reactions giving rise to com-
plex life [97], these ancient, critical cofactors have a diverse
functional repertoire within the cell: coordinating DNA
repair, the citric acid cycle, and comprising components of
OXPHOS subunits [98,99]. Together with haem synthesis,
mitochondrial Fe-S biogenesis also helps regulate total cellu-
lar levels of iron and sulfide, preventing the accumulation
of cytotoxic Fe-S cluster constituents [100]. Hence, it is not
surprising that perturbation to Fe-S cluster biogenesis is
implicated in SMD [99,101].

Figure 2c illustrates the Fe-S cluster machinery in mito-
chondria and components of the process that have been
linked to SMD. Mutations of core proteins in step one of Fe-
S biogenesis (LYRM4, FXN, ISCU and HSPA9) are typically
more common and have broader biochemical consequence,
as these factors are essential in the generation of all cellular
Fe-S clusters [98,102]. Mutation of proteins involved in step
three (NFU1, BOLA3, IBA57, ISCA2 and ISCA1) disrupt
[2Fe-2S] trafficking and [4Fe-4S] biogenesis and shuttling, per-
turbing synthesis of downstream apoproteins with key
mitochondrial functions, such as lipoic acid synthase (LIAS;
see §4.4, ’Enzyme cofactors’) [98,103]. This can result in the
onset of multiple mitochondrial dysfunction syndrome types
1–5, respectively (MMDS1-5, MIM #605711, MIM #614299,
MIM #615330, MIM #616370 and MIM #617613), a class of
severe yet heterogeneous neurodegenerative disorders shar-
ing symptoms of early onset leukoencephalopathy and
elevated levels of glycine, lactate and pyruvate within the
blood, urine or cerebrospinal fluid [103].

Friedreich ataxia (FRDA, MIM #229300) is considered the
most common Fe-S disorder, with a prevalence of 1 : 20 000–
1 : 50 000 [98]. It is an autosomal recessive disorder, caused
by mutation of frataxin (FXN) [104], a matrix protein associ-
ated with the inner membrane [105]. Fxn knockout in mice is
embryonic lethal [106], and the yeast FXN homologue, YFH1,
modulates mitochondrial iron efflux [107]. Frataxin contains a
conserved iron binding site [108], and is suspected to act as
an allosteric activator together with NFS1, LYRM4 and
ISCU [109], shuttling iron to the site of [2Fe-2S] synthesis.
In FRDA patients, Fe-S assembly is stalled and mitochondria
become overloaded with iron [105]. Respiratory chain mal-
function in FRDA patients leads to an accumulation of
H2O2, which oxidizes ferrous iron to yield hydroxyl free rad-
icals (•OH) through the Fenton reaction [110]. FRDA patients
become hypersensitive to oxidative stress, resulting in
mtDNA damage and the onset of FRDA pathologies such
as ataxia, diabetes mellitus, visual loss, deafness and cardio-
myopathy [111]. A number of treatment options are being
explored for FRDA patients, with some attempting to restore
basal levels of frataxin by blocking its ubiquitination and
degradation [112], while others are aimed at negating the sec-
ondary effects of frataxin deficiency, such as iron chelators
and antioxidants [113].

Further reading on mitochondrial Fe-S cluster biogenesis can
be found in [98,101–103].
4. Molecular and organellar pathways
linked to metabolism

Bidirectional metabolite exchange between mitochondria and
the cytosol facilitates energy generation, nucleotide biosyn-
thesis, calcium storage and lipid homeostasis, among other
events. Aberrant activity of mitochondrial proteins either
directly or indirectly involved in supporting mitochondrial
and cellular metabolism constitute a significant proportion of
all SMD’s, each with equitably heterogeneous pathologies.

4.1. TCA cycle and metabolism
The product of glycolysis, pyruvate, can be metabolized in a
non-oxidative (anaerobic) or oxidative-dependent (aerobic)
manner. Under anaerobic conditions, pyruvate can be con-
verted to lactate to generate two ATP for one NADH2, a
comparatively inefficient pathway against that of aerobic
metabolism [114]. In an oxygen-rich environment, pyruvate
feeds into the TCA cycle and in a reaction mediated by the
pyruvate dehydrogenase complex (PDHC), two pyruvate mol-
ecules are converted into two acetyl-CoA (that enter the TCA
cycle), and two NADH2 (that are consumed in OXPHOS)
[114]. Hence, PDHC operates as a vital link between glycolysis
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Figure 3. TCA and lipid metabolic pathways compromised in secondary mitochondrial disease. (a) At the core of the PDHC complex is dihydrolipoyl transacetylase
(DLAT; E2). The E2 core is anchored to dihydrolipoamide dehydrogenase (DLD; E3) via PDHX. Pyruvate dehydrogenase a/β heterotetrametric subunits (PDHA1/PDHB;
E1), associate with E2. The PDHC catalyses the production of acetyl-CoA from pyruvate in a three-step process: (1) E1, in conjunction with thiamine pyrophosphate
(TPP) cofactor, catalyses the decarboxylation of pyruvate, releasing CO2 and forming a hydroxyethyl-TPP intermediate. (2) E2 transfers the hydroxyethyl group from
TPP to an oxidized lipoamide cofactor, releasing an acetyl group which is then transferred to coenzyme A (CoA-SH) to form acetyl-CoA and a reduced dihydro-
lipoamide-E2 core. (3) E3 then oxidizes the lipoyl group of dihydrolipoamide-E2 to form lipoamide-E2 and NADH. Activity of the PDHC can be tightly modulated by
associated kinases and phosphatases; phosphorylation of E1 by pyruvate dehydrogenase kinase 3 (PDK3) inactivates PDC, and dephosphorylation of E1 by pyruvate
dehydrogenase phosphatase 1 (PDP1) reactivates PDC. (b)Mitochondria-associated membranes (MAMs) are direct points of contact between mitochondria and endo-
plasmic reticulum (ER). MAMs support phospholipid exchange between the ER and mitochondria, with links to SERAC1 in this process. In addition, MAMs serve as
complex signalling platforms, as selective enrichment of proteins at these intraorganellar contact points enables robust coordination of intracellular events, such as
apoptosis, autophagy and calcium homeostasis. ER-mitochondrial contacts also regulate mitochondrial dynamics, recruiting proteins such as MFF and MFN2 to
coordinate mitochondrial fission and fusion, respectively. Proteins such as TAFAZZIN and CRLS1 coordinate cardiolipin remodelling at the inner membrane to preserve
correct lipid composition. ATAD3A is proposed to tether mitochondrial membranes at MAM sites and is therefore broadly implicated in the retention of mitochondrial
network structure and cholesterol homeostasis, in addition to mtDNA nucleoid regulation. Gene names are boxed, and associated diseases are listed below or indicated
here: (a) DLAT (PDHDD (MIM #245348)); DLD (DLDD (MIM #246900)); PDHA1 (PDHAD (MIM #312170)); PDHB (PDHBD (MIM #614111)); PDHX (PDHXD (MIM
#245349)); PDK3 (CMTX6 (MIM #300905)); PDP1 (PDHPD (MIM #608782)). (b) ATAD3A (HAYOS (MIM #617183) and PHRINL (MIM #618810)); CRLS1 (-); MFN2
(CMT2A2A (MIM #609260), CMTA2A2B (MIM #617087) and HMSN6A (MIM #601152)); SERAC1 (MEGDEL (MIM #614739)); TAFAZZIN (BTHS (MIM #302060)).
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and aerobic respiration. Figure 3a depicts the human PDHC,
a multienzyme complex that comprises a large dihydrolipoyl
transacetylase (DLAT) (E2) core, anchored to dihydro-
lipoamide dehydrogenase (DLD) (E3) units via pyruvate
dehydrogenase protein component X (PDHX) [115,116].
Associated aremultiple pyruvate dehydrogenase α/β heterote-
trametric (α2β2) subunits (PDH-α/PDH-β) which constitute the
E1 component and catalyse the rate-limiting conversion of pyr-
uvate into acetyl-CoA. Transiently associatedwith the complex
are PDHC regulatory subunits pyruvate dehydrogenase kinase
(PDK) and pyruvate dehydrogenase phosphatase (PDP)
[115,116]. PDK inactivates the complex via phosphorylation
of PDH-α, which can be reversed by PDP activity. Of the
four PDK isoforms (PDK1-4), PDK3 has the greatest binding
affinity, and hence activity [117]. Mg2+ binding is essential for
the activity of both PDP1 and PDP2 isoforms, though PDP1
is functional at much lower Mg2+ concentrations [118]. As
each subunit of the PDHC is crucial for structural integrity or
overall catalytic activity, mutation of any PDHC component
can significantly alter glucose metabolism, oxidative phos-
phorylation efficiency and cellular viability. Described broadly
as ‘PDHC deficiency’, such mutations result in a variety of het-
erogeneous phenotypes, which include developmental delay,
neurological degeneration, peripheral neuropathy, seizures,
ataxia and fatal infantile lactic acidosis [119,120]. Most instances
of PDHC deficiency arise due to mutation of the X-linked
PDHA1 gene (encoding PDH-α), resulting in pyruvate dehydro-
genase E1-alpha deficiency (PDHAD, MIM #312170) [119],
though disease causing mutations in PDHB, DLAT, DLD,
PDHX, PDP1 and PDK3 have been described at a
considerably lower frequency [118,120–124].

Further reading concerning mitochondrial TCA cycle
metabolism can be found in [125].

4.2. Metabolite transport
While the outer membrane is permeable to smaller solutes,
the mitochondrial inner membrane is largely impermeable,
and the passage of hydrophilic metabolites, nucleotides and
other compounds requires mitochondrial carrier proteins
(described in §3.1, ’Protein import/processing’) [126]. The
electrochemical gradient, established by the mitochondrial
respiratory chain, provides the driving force required by
carrier proteins to mediate the directional transport of sub-
strates either with or against the concentration gradient
[126]. In humans, over 65 carrier proteins [127] are respon-
sible for the maintenance of sufficient metabolite flux across
the inner membrane to fuel metabolism. Of these 65 carriers,
15 are linked to mitochondrial disease to date (figure 1,
metabolite transport) [13]. Pathogenic mutations across the
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majority of these carriers typically impact OXPHOS and
energy generation among tissues where the respective carrier
protein or isoform is expressed.

The phosphate carrier (PiC or SLC25A3) transports inor-
ganic phosphate across the inner membrane into the matrix
and is an essential component of OXPHOS and ATP gener-
ation [128,129]. In humans, mutually exclusive alternative
splicing of exon 3 of SLC25A3 results in two tissue-specific
isoforms: PiC-A and PiC-B [129,130]. PiC-A containing
exon 3A is predominantly expressed in heart and skeletal
muscle, whereas PiC-B containing exon 3B is ubiquitously
expressed [129]. Pathogenic mutations in SLC25A3 are rare,
and 6 of the 7 described patients had homozygous mutations
impacting exon 3A directly [129,131,132]. Patients with
mitochondrial phosphate carrier deficiency (MPCD, MIM
#610773) consistently displayed prenatal or neonatal hyper-
trophic cardiomyopathy, skeletal myopathy and elevated
lactate levels [129,132]. One patient reported to carry com-
pound heterozygous variants impacting exons 4 and 6
did not exhibit clinical myopathy or lactic acidosis [131].
This discrepancy is likely a consequence of the tissue specific
expression of PiC-A, and the importance of exon 3A
specifically in the phosphate shuttling mechanism.

Mitochondria are intimately involved in cellular calcium
flux, a key signalling pathway, facilitating dynamic calcium
storage, calcium signalling propagation throughout cells,
and influencing total cellular calcium uptake [133]. Mitochon-
drial calcium uptake is an electrogenic process mediated via
the mitochondrial calcium uniporter (MCU), a pore-forming
transmembrane protein positioned in the inner membrane
[134,135], though not a formal carrier member or known
substrate of TIMM22 [136,137]. Associated with the MCU
are two calcium-binding heterodimers, MICU1 and MICU2,
which are suggested to serve as positive and negative
regulators of calcium flux through the MCU, respectively
[134,138,139]. At low [Ca2+], the strong inhibitory effect of
MICU2 keeps MCU closed. With increasing [Ca2+], MICU1-
2 heterodimers undergo a conformational change which
dampens MICU2 inhibition and promotes MICU1-mediated
enhancement of Ca2+ flux through MCU [139]. While no
pathogenic variants in MCU itself have been described,
impaired mitochondrial calcium signalling has devastating
effects on patients with MICU mutations. Individuals carry-
ing MICU1 mutations present with proximal myopathy,
axonal peripheral neuropathy, varied involuntary movement
and severe learning difficulties (myopathy with extrapyrami-
dal signs, MPXPS #615673) [140]. Interestingly, mutations in
MICU2 manifest as acute encephalopathy and associated
cognitive impairment, but myopathy is absent – though
these mutations are less frequently observed than those in
MICU1 [141].

Further reading concerning mitochondrial carrier proteins and
calcium homeostasis can be found in [31,126,142,143].

4.3. Metabolism of toxic compounds
As integral metabolic hubs of the cell, mitochondria are
uniquely vulnerable to toxic by-product and metabolite
accumulation. Consequently, an array of specialized protein
systems exists to prevent deleterious accumulation of harmful
compounds in the organelle. For example, sulfur dioxygenase
protein ETHE1 mediates the catabolic conversion of hydrogen
sulfide to sulfite [144]. Mutation of ETHE1 prevents efficient
clearance of hydrogen sulfide from tissues, indirectly
impairing mitochondrial respiration and manifesting as ethyl-
malonic encephalopathy (EE, MIM #602473) [145,146].
Another example is the toxic metabolite NAD(P)HX, which
can accumulate via spontaneous hydration of NAD(P)H
under stress conditions, or enzymatic action of glyceraldehyde
3-phoshate (GAPDH) [147]. Damaged NAD(P)HX cannot
act as an election carrier and will strongly inhibit cellular
dehydrogenases and OXPHOS efficiency [147]. The dehydra-
tase, NAXD, can only convert S-NAD(P)HX back to usable
NAD(P)H, and so R-NAD(P)HX must first be converted
into S-epimers by a dedicated epimerase, NAXE [148]. Loss
of function mutations in NAXE disturb S-NAD(P)HX conver-
sion, resulting in irreparable metabolite accumulation and the
development of an early onset progressive neurometabolic
encephalopathy, with brain edema and leukoencephalopathy
(PEBEL1, MIM #617186) [149]. Pathogenic variants in
NAXD have only recently been described [150,151], and phe-
notypic outcomes are similar to NAXE mutations (PEBEL2,
MIM #618321).

Almost all intracellular reactive oxygen species (ROS) are
derived from hazardous superoxides generated as by-products
of oxygen consumption at the mitochondrial respiratory chain
[152]. At low concentrations, ROS is an important signalling
molecule and can stimulate transcriptional upregulation of
scavenger enzymes such as glutathione peroxidase and
thioredoxin [153]. Under conditions of stress, excessive ROS
production by the respiratory chain can cause extensive oxi-
dative damage if left unchecked [152]. Mutations in genes
linked to both PMD and SMD can contribute to exacerbated
ROS production and consequent oxidative stress via a direct
or indirect impact on OXPHOS integrity. In mitochondria,
either spontaneously or with the help of the manganese super-
oxide dismutase (MnSOD), superoxides are converted into
H2O2, which can passively diffuse into other cellular compart-
ments [154]. Fittingly, H2O2 production in mitochondria
is tightly regulated by detoxifying agents, including the
glutathione and thioredoxin enzymatic systems [152,155].
Within the mitochondrial matrix, these systems function in
parallel to detoxify H2O2 into water, retaining a reducing
environment and protecting against cellular degeneration
and apoptotic induction.

The mitochondrial thioredoxin system is composed
of nuclear-encoded peroxiredoxin 3 & 5 (PRDX3 & 5), thiore-
doxin 2 (TXN2) and thioredoxin reductase 2 (TXNRD2).
PRDX3/5 uses TXN2 as an electron donor in the reduction of
H2O2 into water. Oxidized TXN2 is then reduced by
TXNRD2 in the presence of NADPH, resetting the system
[155–157]. Together, these proteins operate to efficiently elimin-
ate H2O2 from the mitochondrial environment and maintain
organelle health. Mitochondrial TXN2 is ubiquitously
expressed, yet highest levels of expression are observed in the
brain [158]. Interestingly, while Txn2 deficiency is embryonic-
lethal in mice [156], human patients with loss-of-function
mutations in TXN2 survive to term and beyond [155], which
may be explained by partial redundancy between the gluta-
thione and thioredoxin detoxifying systems. Despite this,
TXN2-deficiency manifests as an infantile-onset neurodegen-
erative disorder, characterized by cerebellar and optic
atrophy, epilepsy, dystonia and peripheral neuropathy
(COXPD29, MIM #616811) [155]. Such severe phenotypic
expression in the absence of TXN2 clearly demonstrates the
importance of efficient ROS clearance from mitochondria,
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specifically in the development and preservation of mature
neuronal networks.

Further reading concerning mitochondrial ROS can be found
in [152,159,160].

4.4. Enzyme cofactors
Perturbation to enzyme cofactor synthesis can also contribute
to the onset of SMD. FLAD1 encodes FAD synthase, an
enzyme responsible for flavin mononucleotide (FMN) adeny-
lation, generating flavin adenine dinucleotide (FAD), a
critical cofactor to many mitochondrial dehydrogenases, such
as the α-ketoglutarate (α-KGDH) and pyruvate (PDHC) dehy-
drogenase complexes [161]. FLAD1 mutation results in an
autosomal recessive lipid storage myopathy characterized by
extreme heterogeneity in severity (LSMFLAD, MIM #255100)
[161,162]. Lipoic acid is another essential cofactor of α-KGDH
and PDHC, in addition to the branched chain keto acid dehy-
drogenase (BCKDH) and the glycine cleavage system (GCS)
[163]. Loss of lipoic acid synthase (LIAS) contributes to
PDHC lipoic acid synthetase deficiency (PDHLD, MIM
#614462), characterized by lactic acidosis, hyperglycaemia,
delayed psychomotor development and seizures [163,164].
Similarly, loss of the lipoyl-transferases LIPT1 and LIPT2
impairs the attachment of lipoic acid to downstream dehydro-
genases, resulting in equitable pathologic outcomes to PDHLD
in lipoyl-transferase 1 and 2 deficiency (LIPT1D,MIM#616299)
(LIPT2D,MIM #617668) [165]. Thiamine pyrophosphokinase 1
(TPK1) catalyses the conversion of thiamine to thiamine
pyrophosphate (TPP), which is also an essential cofactor to
α-KGDH, PDHC and BCKDH complexes [166,167]. Loss of
functional TPK1 results in thiamine metabolism dysfunction
syndrome 5 (THMD5, MIM #614458) an autosomal recessive
episodic encephalopathy, which usually spares cognitive
function [166,167].

Pantothenate kinase (PANK), phosphopantothenoylcys-
tine synthetase (PPCS) and CoA synthase (COASY) are
three enzymes involved in coenzyme A (CoA) cofactor syn-
thesis [168]. Coenzyme A is an essential cofactor which
participates in a diverse range of cellular processes, including
the citric acid cycle, fatty acid metabolism and amino acid
synthesis, among others [168,169]. PANK catalyses the first
committed step in the biosynthesis of CoA, converting pan-
tothenate (Vitamin B5) to 4’-phosphopantothenate [168,170],
which is an essential prosthetic group across many biosyn-
thetic reactions [171]. This is a key rate limiting step in CoA
biosynthesis, and positions PANK as a critical regulator of
intracellular CoA concentration [171]. PPCS catalyses the
second step in CoA synthesis, converting 40-phosphopan-
tothenate to phosphopantothenoylcystine [172]. COASY is a
bifunctional enzyme that synthesizes the final two steps of
CoA biosynthesis; converting 40-phosphopantetheine into
dephospho-CoA, and then into CoA [173]. These final two
steps are mediated by the phosphoribosyl pyrophosphate ami-
dotransferase (PPAT) and dephospho-CoA kinase (DPCK)
domains of COASY respectively [174], and mutation of either
domain is highly pathogenic [175]. Loss of function mutations
in either PANK orCOASY gives rise to disorderswhich fall into
a group categorized broadly as neurodegeneration with brain
iron accumulation (NBIA) [176]. Diseases classified under
NBIA share common phenotypes, such as progressive degra-
dation of the nervous system and substantial iron
accumulation within the brain [177,178]. Broader symptoms
of these disorders include hypo-and/or hyperkinetic move-
ment disorder, coupled with any of central/peripheral
nervous system, cognitive and neuropsychiatric abnormalities
[178]. By contrast, PPCS deficiency manifests as dilated cardio-
myopathy of variable severity (CMD2C, MIM #618189), with
no NBIA-related phenotypes [172]. It is not yet understood
how disruption to sequential steps in CoA-synthesis can lead
to such variable pathologic outcomes.

Of the four PANK isoforms in humans, only one, PANK2,
localizes to mitochondria [170]. Mutation of PANK2 leads to
the onset of pantothenate kinase-associated neurodegeneration
(PKAN, MIM #234200). In early onset PKAN, disease pro-
gression is rapid, with symptoms of dystonia, spasticity,
intellectual disability, high globus pallidus iron content, optic
atrophy and pigmentary retinopathy [176,179]. Late-onset
PKAN progresses more slowly, with significantly different
symptoms including obsessive-compulsive behaviour, schizo-
phrenia and depression [176]. CoA deficiency resulting in
oxidative stress may partly explain the highly specific pheno-
types of early onset PKAN, as in other mitochondrial
diseases. Mutation of COASY (encoding CoA synthase)
contributes to the onset of COASY protein-associated neurode-
generation (CoPAN,MIM #615643), a rare autosomal recessive
NBIA [180]. CoA synthase is localized to the mitochondrial
matrix [180] and CoPAN causing mutations have been
identified in both the ubiquitously expressed COASY alpha
isoform and the brain specific beta isoform [174]. The
COASY protein is critical to two CoA biosynthesis pathways:
de novo CoA biosynthesis from pantothenate and CoA gener-
ation from externally acquired 40-phosphopantetheine [181].
Given that functional COASY is absent in CoPAN, both of
these CoA synthesis pathways fail, resulting in non-viability.
Most CoPAN patients die within a few weeks of birth [175],
and it is assumed that maternal CoA supports the foetus
through gestation via an unidentified cell membrane CoA
transporter [174]. External CoA can effectively reverse a
coasy-null phenotype in zebrafish [182], but more work is
needed to develop feasible treatment and accessible delivery
options for CoPAN patients.

Further reading concerning NBIA and mitochondrial enzyme
cofactors can be found in [183,184]

4.5. Lipid modification and homeostasis
Mitochondria are key sites for lipid homeostasis and defects in
these pathways are linked to SMD (figure 3b). The mito-
chondrial inner membrane has a unique membrane lipid
composition with cardiolipin (CL) and phosphatidylethanola-
mine (PE) compromising approximately 50% of total inner
membrane phospholipid mass [185]. The cone-shaped top-
ology of CL and PE is essential in the formation of curved
membranes and supporting architecture of cristae [185],
which are the predominant site of OXPHOS organization
and operation [186]. CL also directly interacts with OXPHOS
components and is known to be required for Complex III and
IV stability, as well as promoting the formation of III2 + IV1-2

OXPHOS supercomplexes [187,188]. De novo synthesis of CL
occurs at the inner membrane [189], and nascent CL is further
matured in remodelling events via acyltransferases such as
tafazzin [190]. Pathogenic mutation of TAFAZZIN results in
Barth syndrome (BTHS, MIM #302060), an X-linked autosomal
recessive disorder characterized by cardiomyopathy, skeletal
myopathy, growth retardation, neutropenia and 3-MGA-uria
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[191,192]. In BTHS, lack of functional TAFAZZIN results in
the accumulation of immature CL remodelling intermediates,
compromising supercomplex stability, impeding OXPHOS
efficiency and increasing ROS generation [193,194]. Pathogenic
variants inCRLS1were also recently shown to cause a defect in
cardiolipin synthesis with altered acyl-chain composition,
resulting in multisystem disease [195]. Therefore, the mainten-
ance of proper inner membrane lipid composition is intimately
linked to optimal OXPHOS functionality.

The endoplasmic reticulum (ER) is the major site of phos-
pholipid, triacylglycerol and sterol biosynthesis within the cell
[196]. Organelles source lipids from the ER through vesicle
exchange, carrier proteins or in the case of mitochondria,
via specific contact sites termed mitochondria-associated
membranes (MAMs) [196]. MAMs also serve as intracellular
signalling platforms, recruiting a specialized and specific
proteome to facilitate their operation [197]. The mammalian
ER–mitochondrion interface is markedly enriched at MAMs
with proteins such as MFN2, FIS1, PINK1 and VDAC1, illus-
trating the necessity of ER–mitochondrial contacts in
regulating mitochondrial dynamics, apoptosis, autophagy
and calcium homeostasis, respectively [197,198]. Defects in
MAM components have been attributed to a wide variety of
neurodegenerative and metabolic diseases. SERAC1 has pre-
viously been linked to phospholipid exchange between ER
and mitochondrial membranes, reportedly supporting mito-
chondrial function and cholesterol trafficking [199,200]. More
recently, SERAC1 has been implicated in one-carbon metab-
olism, cooperating with the inner membrane transporter
SFXN1 to mediate serine transport into mitochondria [201].
Loss of function mutations in SERAC1 contribute to 3-MGA-
uria with psychomotor regression, encephalopathy, deafness
and hepatopathy (MEGDEL, MIM #614739) [199,200].

Another SMDdisease genewith links tomitochondrial lipid
andmembrane homeostasis isATAD3A, encoding a eukaryotic,
ubiquitously expressed AAA-ATPase domain containing
protein of theATAD3 family. Contrary tomost species, primates
contain three ATAD3 paralogues positioned in tandem
(ATAD3A, ATAD3B andATAD3C), which share extensive hom-
ology making them prone to frequent non-allelic homologous
recombination (NAHR) events [202–205]. ATAD3C is likely to
be non-functional, and ATAD3B is expressed at relatively low
levels, except in embryonic cells, and the brain, heart and pitu-
itary gland of adults [202,206]. While the precise molecular
function is unknown, ATAD3 is positioned within and pro-
posed to tether the mitochondrial inner membrane to the
outer membrane at MAM sites [207,208]. Because of this posi-
tioning, ATAD3A has been suggested as a critical regulator of
mitochondrial dynamics and innermembrane structure, choles-
terol channelling, and mtDNA-containing nucleoids [209,210].
Pathogenic ATAD3 variants display an array of recessive and
dominant inheritance patterns, both inherited and de novo,
along with recurrent deletions and duplications arising from
NAHR; hence, they are among the most common causes of
SMD in children [204]. The resulting phenotypes range from
milder neurodevelopmental disorders (Harel-Yoon syndrome,
MIM #617183) to severe neonatal lethal presentations linked
to either biallelic deletions (MIM #618810) or de novo dupli-
cations (MIM #618815), typically featuring pontocerebellar
hypoplasia or cardiomyopathy, respectively. Intriguingly,
patients with ATAD3A duplications show severe Complex I
deficiency in heart and variable OXPHOS changes in other tis-
sues, although it is unclear if this is a primary or secondary
consequence of ATAD3 dysfunction [204]. Likewise, the tissue
specificity and genotype-phenotype links to ATAD3 variants
are not well understood.

Further reading concerning mitochondrial lipid modification/
homeostasis can be found in [196,211,212].
5. Organellar pathways linked to
mitochondrial health

As discussed in §3.2 (’Protein quality control’), the mito-
chondrion tempers volatile insults to proteostasis via the
recruitment of designated chaperones and proteases. Mito-
chondria have multiple levels of protein quality control
beyond these molecular systems to maintain homeostasis. If
part of amitochondrial network becomes irreparably damaged
it can be cleared on a macro scale via coordinated fission
and mitophagy events. Targeted elimination of terminally
damaged mitochondrial units allows the cell to evade apopto-
tic cell death, which is also coordinated within mitochondria.
As mitochondrial dynamics, mitophagy and coordination of
intrinsic cell death are integral to correct cellular functionality, a
number of SMD’s linked to greater mitochondrial homeostasis
have been extensively documented.
5.1. Mitochondrial morphology
Mitochondrial morphology is mediated by a balance of
opposing fission and fusion events at both the inner- and
outer-mitochondrial membranes [213]. Cellular bioenergetics
is dependent on the modular nature of mitochondrial units,
with fusion events enabling the exchange of contents,
membrane potential and mtDNA [214]. Conversely, fission
events are imperative during mitosis, ensuring equal distri-
bution of mitochondria among both daughter cells [215].
Mitochondrial fission is also intimately linked to mitophagy,
enabling the selective clearance of damaged mitochondria, an
extreme form of quality control secondary to apoptosis [216].
Both fission and fusion are facilitated by dynamin family
GTPases, including DRP1, MFN2 and OPA1. The mitochon-
drial contact site and cristae organizing system (MICOS) is
a large IM structure that is crucial for the formation of cristae
junctions and maintenance of cristae morphology [217].
Perturbation to these delicate systems severely impedes the
functional capacity of mitochondria, and significantly
reduces the viability of the affected organism figure 4.

DRP1 exists in both cytosolic and mitochondrial pools,
with the latter forming punctate clusters along mitochondrial
tubules and mediating mitochondrial scission [218]. ER-mito-
chondria contacts facilitate tubule constriction, and act as a
platform onto which DRP1-receptor proteins such as FIS1
and MFF can be recruited [219]. DRP1 activity can be actively
regulated by phosphorylation, linking mitochondrial fission
to a range of diverse cellular events, such as calcium storage
regulation and mitosis [220,221]. Knockout of Drp1 is
embryonic lethal in mice, and targeted ablation in mouse
brain results in significant developmental defects [222]. In
humans, DRP1 mutation is typically lethal in the first few
weeks of life, where patients present with neonatal encepha-
lopathy, microcephaly, demyelination of brain matter, optic
atrophy, epilepsy and global developmental delay (EMPF1,
MIM #614388) [223,224]. In some cases, disease onset can
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be delayed into early childhood, but the course of disease
remains severe [225].

The mitofusins, MFN1 and MFN2, are mediators of outer
membrane fusion [226]. In the absence of either homologue,
the mitochondrial network becomes extensively fragmented
and mitochondrial fusion is significantly reduced, though
not completely abolished [227]. Adjacent mitochondria
require the homotypic or heterotypic interaction between
MFN1 and/or MFN2 on opposing membranes to facilitate
fusion events [228]. MFN2 mutation is widely recognized as
the most prevalent cause of Charcot-Marie-Tooth disease 2
(CMT2) with autosomal dominant inheritance, accounting
for roughly 20% of diagnosed patients [229]. Clinical
symptoms (CMT2A2A, MIM #609260) typically present in
infancy or early childhood and consist of muscle atrophy, sen-
sory loss, atypical gait and eventual immobility [230]. Most
CMT neuropathies demonstrate evidence of neuronal
demyelination, though a smaller population, including
CMT2A are classified as primary axonal disorders [229].

At the inner mitochondrial membrane, fusion and cristae
morphogenesis are regulated by OPA1 processing. Popu-
lations of long form (L-OPA1) and short form (S-OPA1) tip
the balance toward mitochondrial fusion and fission, respect-
ively. Regulatory processing of L-OPA1 by inner membrane
proteases OMA1 and YME1L1 results in an equilibrium
between L-OPA1 and S-OPA1, maintaining a healthy mito-
chondrial network [231]. This balance is acutely sensitive to
cellular stressors, such as changes in inner membrane
polarity. For example, deliberate dissipation of the membrane
potential upon addition of protonophores [232] can trigger
OMA1-dependent OPA1 processing and subsequent mito-
chondrial network fragmentation. In humans, heterozygous
mutation of OPA1 accounts for approximately 60% of all
autosomal dominant optic atrophy (DOA) cases, which
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have an estimated minimum prevalence of 1 in 25 000 [233].
OPA1-mutant DOA (OPA1, MIM #165500) is primarily
characterized by early onset retinal ganglion cell degener-
ation and up to 20% of patients will also present with
additional symptoms (DOA+), including deafness, ataxia,
peripheral neuropathy and a worsened visual prognosis in
comparison to pure DOA [234]. The existence of differing
pathologies may partly be explained by genotype-phenotype
correlation, in which OPA1 GTPase domain mutations are
most frequently associated with DOA+, while mutation of
the dynamin domain is more strongly associated with a
pure DOA presentation [234].

Further reading concerning mitochondrial morphology can be
found in [215–217,235,236].

5.2. Apoptosis
Mitochondria mediate intrinsic cell death that can be inhibited
or exacerbated by specific Bcl-2 family proteins, such as BAK
and BAX, which oligomerize to form pores in the mitochon-
drial outer membrane and allow the efflux of pro-apoptotic
cytochrome c into the cytosol [237]. SMAC and HTRA2
proteases can also be released from the intermembrane space,
interacting with and inhibiting the inhibitor of apoptosis
(IAP), XIAP [238]. HTRA2 may also have anti-apoptotic
capacity, in conjunction with HAX1, mediating BAX inhibition
following it’s activation by the inner membrane rhomboid pro-
tease, PARL [239]. Htra2 knock-out mice die approximately
onemonth after birth, and display neurological and behaviour-
al abnormalities, lack of coordination, decreased mobility,
tremor, selective loss of striatal neurons, as well as decreased
heart and spleen mass, and abnormal mitochondrial mor-
phology [240]. Patients lacking functional HTRA2 present
with more severe phenotypes and are born with extensive
encephalopathy, acquire no developmental milestones and
die soon after birth (MGCA8, MIM #617248) [241]. In addition,
patients may exhibit 3-MGA-uria, and/or neutropenia,
which were suggested to be a consequence of abnormal cristae
architecture within cultured patient muscle cells [241]. Further,
patient cells devoid of HTRA2 are more susceptible to
apoptotic induction [241], which implies an anti-apoptotic
role for HTRA2 under normal physiological conditions.
Clarifying the breadth of HTRA2 functionality outside of
apoptosis will be imperative in understanding the phenotypic
basis of patient conditions.

Apoptosis inducing factor (AIF, AIFM1) is an apoptogenic,
mitochondrial intermembrane space protein with dual func-
tionality. Under physiological conditions, AIFM1 functions
as an integral component of respiratory chain complex biogen-
esis, tethered to the inner membrane and operating upstream
of the MIA machinery, mediating CHCHD4 (human Mia40)
import (figure 2a) [242]. During apoptotic induction, the mito-
chondrial outermembrane is permeabilized,membrane bound
AIFM1 is cleaved and soluble AIFM1 is released from the inter-
membrane space into the cytosol. Here, AIFM1 promotes
apoptosis by interactingwith EIF3G (subunit of eIF3) and inhi-
biting de novo protein synthesis, or via caspase-7 activation and
subsequent degradation of EIF3G [243]. AIFM1 mutation can
contribute to several primary X-linked pathologies, two of
which include: (i) combined oxidative phosphorylation
deficiency 6 (COXPD6, MIM #300816) [244] and (ii) Cowchock
syndrome (CMTX4, MIM #310490) [245]. COXPD6 is a
neurodegenerative disease characterized by OXPHOS-related
encephalopathy, psychomotor delay, hypotonia, muscle atro-
phy and early death. Causative mutations in AIFM1 in
COXPD6 impede CHCHD4 interaction, resulting in severely
reduced OXPHOS complex activities and enhanced nuclear
DNA binding in the soluble form [244,246]. Conversely,
CMTX4 is a less-severe neuromuscular disorder characterized
by progressive axonal neuropathy, distal sensory impairment,
cognitive impairment and deafness. As AIFM1 is an FAD-
dependent flavoprotein, treatment with riboflavin has been
shown to ameliorate some COXPD6 patient symptoms and
return OXPHOS complex activity to basal levels in patient
fibroblasts [244]. Ultimately, further research will be required
to fully understand the basal function of human AIFM1,
and to comprehend the apparent genotype–phenotype
association between these aberrant mutations.

Further reading on intrinsic apoptosis can be found in
[238,247]
6. Conclusion
Over the past decade, NGS has facilitated the identification
of putative disease-causing mutations in hundreds of
nuclear-encoded mitochondrial genes. This technology, in
conjunction with clinical examination, diagnostic pathways
and accredited disease scoring systems, is enabling the
rapid delivery of accurate prognoses and earlier application
of effective treatment plans [14,17]. However, existing mito-
chondrial disease therapies are largely supportive and
preventive approaches [248], with treatments typically
focused on countering disease-specific symptoms and enhan-
cing mitochondrial function. Examples of such therapies
include regular exercise regimes prescribed to patients
with hypotonia and motor delays, ubiquinone (Coenzyme
Q10), thiamine (vitamin B1) and riboflavin (vitamin B2)
supplementation to enhance OXPHOS functionality, and
antioxidant administration to dampen excessive ROS
generation, among others [249].

Genetic therapies are being developed, in particular
for PMD, including mutant mtDNA elimination via mitoTA-
LENs [250] or zinc finger nucleases [251], that specifically
target heteroplasmic mitochondrial diseases, stabilizing
wild-type mtDNA levels and thereby reversing pathogenic
phenotypes. As the proportion of pathogenic gene variants
associatedwith SMD increases, it is evident that mitochondrial
dysfunction can be attributed to a number of defective mito-
chondrial processes beyond OXPHOS. Given the clinical
heterogeneity of mitochondrial diseases, a universal treatment
scheme is highly unlikely. The advancement of effective treat-
ment strategies against both PMD and SMD requires a deep
understanding of mechanisms underscoring mitochondrial
dysfunction in individual diseases. This personalized
approach to mitochondrial disease can then drive targeted
therapeutic intervention.
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