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Favouring or thwarting the development of a vascular network is essential
in fields as diverse as oncology, cardiovascular disease or tissue engineering.
As a result, understanding and controlling angiogenesis has become a major
scientific challenge. Mechanical factors play a fundamental role in angiogen-
esis and can potentially be exploited for optimizing the architecture of the
resulting vascular network. Largely focusing on in vitro systems but also
supported by some in vivo evidence, the aim of this Highlight Review is
dual. First, we describe the current knowledge with particular focus on
the effects of fluid and solid mechanical stimuli on the early stages of the
angiogenic process, most notably the destabilization of existing vessels
and the initiation and elongation of new vessels. Second, we explore inherent
difficulties in the field and propose future perspectives on the use of in vitro
and physics-based modelling to overcome these difficulties.
1. Introduction
The vascular system is a multi-scale network of blood vessels perfusing
every organ of the body to ensure tissue oxygenation, nutrient delivery and
waste product removal. The vasculature is generated through the processes of
vasculogenesis and angiogenesis. Vasculogenesis denotes de novo vessel for-
mation by precursor cells or endothelial cells (ECs) distributed within the tissue
matrix [1], whereas angiogenesis refers to the emergence of new microvessels
from pre-existing vessels [2]. Angiogenesis is the principal mechanism for devel-
opmental, regenerative and pathological vessel formation in late embryonic and
postnatal stages. It is also essential in large-scale tissue engineering, enabling
the transport of oxygen and nutrients beyond their diffusive limits [3]. As such,
angiogenesis is an active area of research in a wide range of fields, from funda-
mental understanding of pathological development to the opening of new
avenues in engineered tissue vascularization.

The angiogenic process has often been examined from the perspective of
biology and biochemistry, with emphasis on gene expression, metabolism, signal-
ling pathways and the role of different types of cells such as mural and stem cells
[4–9]. However, in recent years, the need for embedded vascular networks in
tissue engineering has elicited interest in the pursuit of alternative strategies of
angiogenic control. The availability of in vitro systems and computational models
has more recently enabled appreciation of the importance of mechanobiology,
with mechanosensing and mechanotransduction as key players [10–13].

The vascular microenvironment is highly dynamic, subjecting ECs tomechan-
ical forces towhich they are highly responsive [11,14,15]. Indeed, from intracellular
cytoskeletal remodelling to changes in collective behaviour, ECmechanotransduc-
tion events intricately regulate numerous aspects of vascular processes including
angiogenesis [16–19]. Major biophysical cues for angiogenesis can be broadly
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classified as either fluid or solid mechanical, emanating from
the vessel lumen or the surrounding parenchyma. While
cyclic longitudinal and circumferential strain, fluid dynamic
shear stress and pressure result from pulsatile blood flow,
ECs are additionally continuously subjected to transmural
and interstitial flows, and they interact physically with their
basement membrane and with adjacent cells.

Here, based principally on in vitro evidence, we will
highlight how ECs are particularly responsive to mechanical
stimulation. We begin by reviewing the role of mechanical
forces in the early stages of sprouting angiogenesis, namely
vessel destabilization, sprout initiation and elongation. We
then focus on the effects of different fluid and solid mechanical
stimuli on ECs and discuss their involvement in each stage of
angiogenesis. We conclude by addressing some of the chal-
lenges and future perspectives in the field, underscoring the
coupled nature of these stimuli and their multi-scale character.
solid
stiff cells

Figure 1. Fluid mechanical (top half ) and solid mechanical (bottom half )
stimuli during the early stages of angiogenic sprouting. From left to right:
destabilization, initiation and elongation. Cold colours represent fluid
mechanical stimuli: liminal (blue), transmural (green) and interstitial
( purple) flows and pressure; and warm colours, solid mechanical aspects:
two-dimensional and three-dimensional stresses (maroon), cell–cell and
cell–matrix interaction (orange) and cell stiffness (yellow).
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2. Early phases of sprouting angiogenesis
Sprouting angiogenesis is the formation of new blood vessels
or neovessels from a pre-existing vascular network. Angio-
genic sprouting is a very important event, not only in the
development of organs and tissues, but also in pathophysiolo-
gical processes involved in tissue repair, wound healing,
regeneration, fibrosis and cancer [20]. Sprouting begins with
the degradation of the basement membrane and the activation
of ECs that ‘sprout’ out of the original vessel and elongate into
the extracellular matrix (ECM). At a later stage, the sprout
connects with another vessel in a process known as anastomo-
sis [21,22]. The lumen of the sprout is formed in parallel
with elongation and anastomosis [23,24]. Ultimately, the vascu-
lar network architecture is optimized by vessel pruning
[23,25,26]. Although the exact role of mural cells in the angio-
genic process is yet to be fully elucidated, we know that
together with the deposition of a new basement membrane
by ECs, the recruitment of mural cells is necessary for the
stability of the nascent angiogenic vessel [27–29].

The early events of angiogenesis can be subdivided into
three phases: (i) destabilization of the vessel wall, (ii) initiation
of the sprout, and (iii) elongation of the sprout. These phenom-
ena are generally consecutive, although initiation may overlap
with destabilization. In this section, we describe each of these
stages, emphasizing the associated changes in the mechanical
environment of ECs (figure 1).

2.1. Destabilization of the wall of the original vessel
Destabilization refers to the modifications of the vessel wall’s
baseline structure that compromise its integrity and enable
the onset of angiogenesis. Microvessels are composed of the
EC monolayer lining the lumen, the vascular basement mem-
brane (VBM) ensheathing the ECs and sparse mural cells
(pericytes or smooth muscle cells) surrounding the vessel.
Although the cooperation of these three constituents is essen-
tial for vessel stability, we focus here on the destabilization of
the VBM and the endothelial lining. The role of mural cells
was the subject of a separate recent review [30].

The VBM, a thin specialized ECM [31] on which the
endothelium resides [32,33], enables cell anchoring, provides
mechanical strength and regulates the transport of growth
factors by acting as a reservoir of matrix-bound molecules
[29,34]. Destabilization of the VBM occurs through VBM
degradation, which is triggered by ECs through the secretion
of matrix metalloproteinases (MMPs) that cleave VBM
constituent proteins [35].

Destabilization of the endothelial lining is the second facet
of this first phase. Cell–cell junctions and cell–matrix adhe-
sions, which drive the cohesive nature of the endothelium
and control the establishment of the vascular barrier [36,37],
are key in this phase. The importance of cell–cell junctions in
angiogenesis is supported by the fact that vascular endothelial
growth factor (VEGF), a major pro-angiogenic molecule, is
known to disrupt these junctions [38–44]. Monolayer fluidiza-
tion, defined as an increase in cellmotility inside themonolayer
that is favoured by weaker intercellular junctions [45], was
recently highlighted as an early event in angiogenic sprouting
[46]. Moreover, altered cell–cell junctions reduce tissue tension
[47] and lead to differential activation of focal adhesions [48],
which appears to favour cell motility towards the parenchyma
[49]. Finally, alterations in cell–cell junctions and cell–matrix
adhesions are intricately involved in both proliferation
and migration, essential processes of the subsequent phases
of sprouting.

At this stage, a question arises as to the choice of markers or
indicators of endothelial lining destabilization. There is no
single definitive answer to this question, but we consider
increased monolayer permeability as a useful indicator and
thus use it as such in this review. This choice is motivated by
the following two observations: firstly, and in connection with
the previous paragraph, the cell–cell junctions that are altered
during vessel destabilization regulate paracellular transport
andhencewall permeability; secondly,mechanical stimuli influ-
encing angiogenesis in the vasculature (e.g. wall shear stress)
also have amajor impact on the permeability of ECmonolayers.

From a mechanical perspective, the destabilization of
the vascular wall might be expected to lead to increased
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transmural flow (TF) and vessel compliance. Furthermore,
the loss of the VBM exposes the EC monolayer directly to
the underlying matrix, which has a lower protein density
and thus different mechanical properties [34]. In the light of
evidence that substrate stiffness regulates the structure and
function of many cell types, including ECs [50–53], these
alterations in mechanical properties may play a critical role
in the progression of the angiogenic process.

2.2. Sprout initiation
After vessel wall destabilization, a sprout is initiated by the
invasion of the ECM by one or more ‘tip cells’ [54] that are
polarized towards the parenchyma. ECswith a ‘tip cell’ pheno-
type exhibit low proliferation rates, increasedmigration [55,56]
and increased expression of MMPs [35,57]. The Notch signal-
ling pathway, involved in spatial patterning and lateral
inhibition during morphological events, has been considered
as key in sprout initiation: its activation inhibits the tip cell
phenotype in adjacent cells [58,59], thereby controlling the
topology of the network [58,59]. Other signalling pathways
that appear to be centrally involved include vascular endo-
thelial growth factor (VEGF) and its receptors as well as the
Tie receptors and their ligands, the angiopoeitins [60–62]. An
interesting question that remains a matter of debate is the
role of mechanics in determining the location within a blood
vessel where tip cells form. While the direction of interstitial
and TF appears to be critical in determining the circumferential
position at which sprouting occurs, luminal shear and pressure
appear to be more pertinent for determining the axial position
of sprout initiation [63]. Upon loss of the VBM, the tip cells that
had previously been adherent to it become immersed within
the underlying ECM where they can potentially come in
direct physical contact with parenchymal cells. During this
process, tip cells shift from a two-dimensional to a three-
dimensional environment and are subjected to matrices with
different mechanical properties [64] that are in turn modified
by the action of these cells [65]. The means by which tip cells
probe this new environment for biochemical and mechanical
cues constitute an active field of research [66]. It is generally
accepted that they do so through actin-rich filopodia
[55,57,67,68], although lamellipodia or blunt pseudopodia
have been shown to adopt this role in the absence of filopodia
[69,70].

2.3. Sprout elongation
Once the sprout is initiated, it penetrates the parenchyma,
resulting in a cord-like structure, which evolves into a
closed-ended tube [71,72]. Tip cells lead the way and
induce a ‘stalk cell’ phenotype in adjacent ECs to recruit
them as followers in the sprout [55], as opposed to the ‘pha-
lanx cells’, which stay in the original vessel. Interestingly, cell
phenotype can change during elongation with tip and stalk
cells often switching roles [73–76]. While tip cells spearhead-
ing the sprout exhibit an enhanced migratory phenotype
with numerous filopodia [58], stalk cells rely on an increased
proliferation rate to guarantee the continuity of the network
[77,78]. Indeed, angiogenic ECs transition from the phalanx
phenotype, one of the most quiescent cells in the body with
lifespans of hundreds of days [79], to the stalk phenotype
with turnover times on the order of tens of hours [80].
Normal sprout development requires a precise balance
between migration and proliferation. An imbalance between
these two processes may lead to detached tip cells [81] or
to tortuous vessels [82]. The formation of a lumen is concomi-
tant with sprout elongation, with stalk cells of lumenized
sprouts expressing luminal–abluminal polarity [83–85].
Although specialized junction-based mechanisms contribute
to monolayer integrity [86,87], sprouts have been found to
be leaky during elongation [88]. The ensuing increase in
TF promotes lumen formation and elicits a small luminal
flow (LF) when a lumen already exists [89,90], generating
luminal shear stress (LSS) on the cells. Complex flow fields
develop within newly formed lumens with plasma recircula-
tion and pressure oscillations due to circulating cells entering
the sprout [91,92].

Based on the above, we can define key markers for each
sprouting angiogenesis phase that will be used in the rest of
the review as readouts for the effect of each of the mechanical
forces of interest. More specifically, we use MMP activity and
endothelial destabilization as readouts for the destabilization
of the original vessel, tip cell induction and Notch signalling
as indicators of sprout initiation and EC proliferation,
migration and polarization as well as lumen formation as
markers of sprout elongation.
3. Role of fluid mechanics in angiogenic
sprouting

As in atherosclerotic lesion development and aneurysm for-
mation [93], flow-derived forces have been shown to play a
key role in angiogenesis [11]. In a quiescent vascular network,
the combination of luminal, transmural and interstitial flow
(IF) paths ensures the transport of oxygen, nutrients and
waste products beyond diffusive distances [3]. Changes in
these flow paths induced by either developmental or patho-
logical processes can trigger angiogenic responses that
extensively remodel the vascular architecture and hence
in turn alter the flow and transport environment [94–96].
In what follows, we present flow-derived cues and discuss
the role that they have been reported to play in angiogenic
sprouting. This information is summarized in table 1.

3.1. Luminal flow
The LFof viscous blood generates a tangential shear (frictional)
stress on the EC apical surface (wall shear stress; WSS).
Although large variations have been reported [97,98], physio-
logical ranges of WSS in human circulation are 1–6 dyn cm−2

on the venous side and 10–70 dyn cm−2 on the arterial side,
with the highest shear stress levels in the microvasculature
[99,100] (note that in line with convention in this field, shear
stress values in this manuscript are expressed in dyn cm−2;
recall that 1 dyn cm−2 = 0.1 Pa). WSS in a vessel depends on
blood viscosity, flow rate and vessel radius, all of which are
affected by diseases that are associated with altered angiogen-
esis such as obesity and hypertension [101,102]. Moreover,
circulating cells [103,104], curved segments [105], bifurcations,
merging branches [106,107] and pulsatility all affect local
WSS values.

WSS effects on angiogenesis are controversial. In vivo,
sprouting has been correlated with both low [108–110] and
high levels of WSS [111,112]. In vitro, WSS levels ranging
from 3 to 15 dyn cm−2 have been reported to both attenuate
[67,113] and enhance sprouting [114,115]. Moreover, the



Table 1. Summary of the effects of fluid mechanical stimuli on the early stages of angiogenesis. Effects are listed as positive for angiogenesis when increased.
The first column shows the reviewed mechanical cues: LF, luminal flow; TF, transmural flow; IF, interstitial flow; P, pressure; PF, pulsatile flow. The second
column further subdivides the stimuli to improve readability: AB, apical-to-basal; BA, basal-to-apical; Up/Contra, upstream of the original vessel/contradirectional
to the sprout; Down/Co, downstream of the original vessel/codirectional to the sprout; HP, hydrostatic pressure; IP, interstitial pressure; τ shear; P, pressure.
Colour code: presence (black), low (blue)/physiological (brown)/high (purple), but for pulsatile flow where non-reversing (pink)/reversing (green)/oscillatory
(dark blue). Symbols: ? no information, ↑ increase, ↓ decrease, × contradictory effects, - no effect/minor effect, ⊲ gradient, → preferred direction. Striped
background means hypothesis. Growing arrows imply magnitude correlation. In each cell, values of the stimulus increase from top to bottom.
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effect of WSS appears to be different for arteries and veins,
with only venous EC angiogenesis and tubulogenesis being
inhibited by increased WSS [108,109].

In vivo, vessel stability is compromised by changes in WSS
[93]. In vitro, the effects of WSS on VBM degradation are
unclear, although endothelial stability appears to be favoured
by physiological levels of steady WSS (8–15 dyn cm−2) [116].
Interestingly, the effects of WSS appear to strongly depend
on the biochemical environment, as exemplified by the
strong synergistic effect with sphingosine 1-phosphate (S1P)
[114,117,118]. In the specific case of basementmembrane degra-
dation, MMP levels have been reported to either increase
[115,119,120] or decrease [121–123] with increased WSS.
A particularly interesting finding is the possible presence of a
maximum in MMP activation and matrix invasion, and
thus VBM degradation rate, at physiological WSS levels
(5.3 dyn cm−2) [117]. Regarding the integrity of the endo-
thelium, the effects of WSS depend on the duration, rate and
magnitude of the shear stress as well as on the vascular bed
[124]. In arterial and microvascular ECs, an increase in WSS,
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within the physiological range, leads to increased permeability
in the first 1 to 3 h [125–128] but appears to enhancemonolayer
integrity after that [129–131]. By contrast, both in the short and
the long term, low values of WSS induce disorganized junc-
tions and increased permeability [129,132]. In venous ECs,
while low-end physiological levels of WSS (less than
10 dyn cm−2) improve barrier function [133], an acute increase
in WSS induces a transient increase in permeability, with dis-
continuous cell–cell junctions, for WSS values ranging from 4
to 20 dyn cm−2 [134,135]. In vivo, similar differences have
been reported between low- and high-flow vessels [136–138],
although the results remain somewhat controversial [139].
These opposite short- and long-term effects on vessel destabili-
zation may explain the contradictory results of WSS on
sprouting found in vitro.

The initiation of a sprout through tip cell selection is
favoured by sub-physiological WSS levels, whereas physio-
logical shear levels induce a more quiescent behaviour.
Recently, it was shown that no or low WSS promotes the for-
mation of new vascular branching points [121,140]. This is in
line with the proposed paradigm that loss of shear stress
modifies gene expression, transforming phalanx cells into
tip cells [141]. Notch signalling, whose activation favours
the phalanx and stalk cell phenotypes [58,59] and limits
branch formation [142–144], is activated at physiological
WSS levels [108,145], especially in venous ECs [146],
although downregulation has been observed for WSS
values above 10 dyn cm−2 [147].

Because the distal tips of vascular sprouts are closed-ended,
it is tempting to posit that sprout elongation is independent of
luminal WSS. However, several studies show increased sprout
lengths in networks exposed to shear stress [115,148,149]. Com-
pared with static (no flow) conditions, very low WSS levels of
10−4 to 10−3 dyn cm−2 have been shown to favour EC prolifer-
ation [92], whereas physiological values of 15–20 dyn cm−2

inhibit glycolysis and DNA synthesis, which are necessary
for cell proliferation [150–153]. Higher values up to
100 dyn cm−2 increase proliferation and decrease apoptosis in
a magnitude-dependent manner [154], although the apoptosis
trend gets reversed, increasing above 300 dyn cm−2 [155].

Numerical simulations indicate that WSS maxima can be
found at the base of sprouts [90] (figure 2a). When combined
with the observation of increased EC migration from low to
high shear stress regions [138], this finding points to a
reinforcement of the migration of ECs in the original vessel
towards the base of the new sprout. Although this is poten-
tially suggestive of an elongation mechanism, whether or
not these migrating cells end up feeding the sprout would



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interfa

6
depend on other cues taking the lead within the sprout
itself, where the WSS is very low. Another important
consideration is that temporal and spatial shear gradients
induce different EC proliferative behaviours, depending on
the mean WSS level and the sign of the gradient. Positive
temporal gradients (as occurs in flow onset) have been
shown to stimulate EC proliferation [157]. Spatial gradients
appear to have different effects depending on mean shear
stress level. The threshold value of WSS is probably depen-
dent on EC type (arterial or venous) but falls in the range
of 10–30 dyn cm−2. Below this threshold, there is contrasting
evidence on the effects of spatial gradients, with some studies
reporting no significant effect [157] and others showing
altered cell–cell junctions [158]. Above this threshold, EC pro-
liferation has been reported to be favoured by positive spatial
WSS gradients and hindered by negative gradients [155].
We therefore hypothesize that temporal and spatial WSS
gradients are critical determinants of sprout elongation.
ce
19:20220360
3.2. Transmural flow
TF is generated by the intra- or extravasation of blood plasma
that arises from the pressure difference across the vessel wall.
In capillaries, hydrostatic and osmotic transmural pressure
differences add up to 0.5–3 mm Hg [159,160], thereby indu-
cing fluid extravasation. The equivalent values in arterioles
and venules are around 15 and −15 mm Hg, respectively
[161,162]. Estimations of the resulting shear stress on cell–
cell junctions vary from 0.1 dyn cm−2 [63] to 50 dyn cm−2

[163,164]. Several factors that are critical for transmural
fluid flow including vessel permeability, interstitial fluid
pressure and blood pressure are altered by pathologies such
as cancer [160,165], hypertension [166] and stroke [167]. By
virtue of its flow across the vascular wall, TF is likely to
coax ECs to abandon their monolayer state and migrate
into the underlying tissue.

In vivo experiments suggest that sprouts originate from
microvessels under the influence of inward TF [63], consistent
with the fact that tumour angiogenesis occurs preferentially on
the venous side of the circulation. Indeed, there is fairly broad
consensus that at the EC level, basal-to-apical (inward) TF
increases sprouting [67,168,169]. Conversely, the effect of
apical-to-basal (outward) TF is more controversial. While
some studies have reported a positive effect on sprouting
[106,115,170], others suggest that outward TF stabilizes vessels
[129] and inhibits sprouting [168].

Although the mechanisms underlying TF-mediated vessel
destabilization remain incompletely understood, a synergistic
effect with biochemical pro-angiogenic factors appears to
play a role [156,170–172]. For instance, some studies have
reported upregulation of MMP expression by TF [173] in a
magnitude-dependent fashion [115], leading to proportionate
degradation of the ECM [169]. The effect of TF on the integ-
rity of the endothelium appears to be more complex and to
depend on flow direction. More specifically, in the short
term (2 h), a sudden increase in apical-to-basal pressure
difference leads to a significant reduction in endothelial
permeability [174]. However, in the longer term, the resulting
shear stress on cell–cell junctions leads to an increase in
permeability [163]. By contrast, basal-to-apical TF disrupts
cell–cell junctions and reinforces cell–matrix adhesion
[168,170], thereby destabilizing the monolayer [129].
While the VBM does not seem to be a key player in fluid
transport [175], EC monolayer destabilization may increase
TF during the sprout initiation phase. ECs subjected to
basal-to-apical TF exhibit polarization in the form of actin
accumulation and protrusion formation, characteristic of the
tip cell phenotype, on the upstream (i.e. abluminal) side [168].
The underlying mechanism might be similar to drag-induced
migration experienced by cancer cells in three-dimensional
substrates [48], with an additional effect due to cell-matrix inter-
actions of two-dimensional monolayers being limited to the
abluminal side. Indeed, sprouts under apical-to-basal flow
exhibit fewer filopodia [67,170]. Although LF has been shown
to modulate Notch activity, the effects of TF on the Notch path-
way have, to the best of our knowledge, not been studied. An
interesting question is whether or not TF provides a possible
link between hypoxia-induced hyperpermeability [176] and
hypoxia-induced Notch signalling [177].

TF is strongly coupled to IF, hampering efforts aimed
at separating their respective effects on sprout elongation
[88,169,170]. However, in lumenized sprouts, TF allows
sprout luminal perfusion [90] (figure 2a), inhibiting sprout
regression until anastomosis occurs [88,115,138]. As such, TF
determines the flow pattern within the sprout and the ensuing
luminal shear stress [90]. Interestingly, it has been suggested
that due to the very narrow junctional spacing, the shear
stress exerted on cell–cell junctions as a result of TF is compar-
able to that resulting from luminal WSS [163]. Inward flow
reinforces EC apicobasal polarity, which is key to angiogenic
sprouting [168,178] and apical-to-basal pressure drop increases
the size of the newly formed sprout lumen [169].
3.3. Interstitial flow
IF is the movement of fluid within the parenchyma due to
pressure differences between the ECM, on the one hand, and
the blood and lymph circulatory systems, on the other [179].
In vivo quantification of IF is limited, with reported velocities
of up to 2.0 µm s−1 [180,181]. Flow through the porous ECM
results in shear and pressure forces on the abluminal surfaces
of both the original and newly formed vessel walls. Mean
pressure drops across amicrovessel as a result of the circumfer-
ential IF (figure 2b) are estimated to be of the order
of 10–100 dyn cm−2 [48] with associated shear stresses of
0.001–0.1 dyn cm−2, estimated using either a homogenized/
mesoscopic model [48,63,169] or a microscopic model of the
fibrous ECM [156,182]. Recent results, however, suggest that
these levels evolve in both time and space with considerable
levels of uncertainty [183]. Conditions that modify IF, such as
cardiovascular disease, neoplasia and inflammation, are
known to affect vascular development [184–186].

Angiogenic activity is greatly stimulated by IF in the pres-
ence of growth factors or other cells but not otherwise
[171,187,188]. This coupling is corroborated by the fact that
vasculogenesis appears to only be initiated for values of the
Peclet number larger than 10 (i.e. with convective transport
dominating diffusion), indicating the importance of mass
transport considerations [133,189]. IF suppresses co-directional
sprouts and enhances contra-directional sprouts both in vivo
[63] and in vitro [171,188]. The IF component perpendicular
to the vessel axis [181] might be responsible for this orientation
bias (figure 2c): similarly to what happens to isolated cells
under IF [48], the ‘front’ of the vessel is subjected to an
impinging flow with associated high pressure, while the
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‘rear’ sees a lower pressure due to losses through the ECM
(figure 2b). This asymmetrymay conceivably lead to differential
activation of ECs and directionally biased angiogenesis.
Additionally, even at Peclet numbers as small as 0.5, mass trans-
port of proteases and VEGF distribution are both strongly
influenced by advective IF [156]. The spatial pattern of VEGF,
both soluble andmatrix-bound, is known to influence angiogen-
esis [190]. Therefore, IFmayalso regulate angiogenesis indirectly
through its effect on VEGF distribution [156,168,188].

Although definitive evidence remains elusive, we propose
that the upstream accumulation of VEGF and MMP by the
impinging IF [168] constitutes a potential mechanism by
which IF regulates vessel destabilization. High concentrations
of VEGF would induce wall destabilization by disrupting
cell-matrix and cell–cell junctions [43,191], and MMP accumu-
lation would enhance ECM degradation [192]. Additionally,
MMP secretion and activation might also be increased by IF-
induced shear in ECs, as has been demonstrated for both
smooth muscle cells and fibroblasts [193,194].

Sprout initiation through induction of the tip cell pheno-
type appears to be directional. Sprouts have been reported to
grow against the IF direction, and sprouting is lost after IF
removal or reversal [170,171]. The role of VEGF in tip cell
selection and Notch regulation [195] points to mass transport
as a major player during this stage. Surprisingly, however, IF-
generated VEGF distributions do not appear to be consistent
with the counter-IF direction of sprouting. In the case of
matrix-bound VEGF, cleavage by soluble MMPs released by
the ECs would be expected to engender lower VEGF concen-
trations near the blood vessel, and a positive downstream
VEGF gradient [190,196] (figure 2c(i)). This gradient would,
in turn, be expected to favour co-IF sprouting. However,
the cleaving of VEGF by single cells appears to be minimal
[197], suggesting this autocrine mechanism may play only a
secondary role at the capillary level. In the case of soluble
VEGF, the upstream impinging IF leads to accumulation at
and around the stagnation point [168] (figure 2c(ii)); there-
fore, counter-IF sprouting would imply sprouting towards
lower VEGF concentrations, and would be unexpected. In
summary, the predicted VEGF gradients would be expected
to favour sprouting in the downstream rather than the
upstream IF direction. The explanation to the appearance of
counter-IF sprouting may thus lie in its induction by mechan-
ical stimuli resulting from IF, with impingement (stagnation)
points exhibiting singular behaviours such as pressure
maxima or zeros in shear stress and its gradient.

During the elongation phase, IF correlates with the sprout
penetration rate and its direction; it also plays a central role
in determining sprout morphology. Sprout elongation rate
has been shown in several studies to correlate with IF magni-
tude [63,169,170], possibly through MMP activation and
regulation of tip cell migration [169,170], while one study
points to a magnitude-independent role of IF [188]. Moreover,
IF guides elongation, whether co- [67,106,115] or contra-
directionally [63,67,169,171,188], even dominating the effect
of VEGF gradients [63]. However, removal or inversion of
contra-directional IF results in sprout regression, perhaps
linked to a loss of polarization in the stalk cells [138] but
mostly to tip cell depolarization as illustrated by filopodial
loss [170,171]. Finally, a fine balance between VEGF spatial dis-
tribution and IF magnitude is necessary for the formation of
continuous and lumenized sprouts [156,169,170,198], control-
ling their length and thickness [55,171]. Shallow gradients of
VEGF improve proliferation and decrease migration, whereas
steep gradients have the opposite effect, favouring branching
over elongation [199]. Indeed, mass transport resulting from
a single IF profile can lead to more or less steep gradients of
different VEGF isoforms, depending on their molecular
weight and matrix affinity [190], potentially promoting pro-
liferation of the stalk cells and migration of the tip cells at the
same time. The distribution of different VEGF isoforms
under diffusive conditions has been addressed using compu-
tational modelling [200], shedding light on its role in the
angiogenic process. Incorporating advection into these studies
promises to provide additional valuable insight.
3.4. Pressure
ECs are subjected to two types of pressure: hydraulic pressure
(HP) from the luminal blood flow on their apical surface and
interstitial pressure (IP) from the tissue fluid flow on their
basal surface (figure 2d). Values of HP in microvessels range
from 12 mm Hg in venules to 45 mm Hg in arterioles under
physiological conditions [161] and increase in diseases such
as diabetes or essential hypertension [166,201] with median
values increasing by up to 20% in skin capillaries [202]. Phys-
iological values of IP are in the range of −8 to 6 mm Hg
depending on the organ but can reach values as low as
−30 mm Hg in burned tissue and up to 60 mm Hg in the
centres of tumours [160,203].

In vivo, sprouting appears to preferentially occur from
lower-HP vessels towards higher-HP vessels [110]. Further-
more, hypertension has been linked to sprouting impairment
[204]. High IP in tumour centres results in avascular zones,
although the focus in this regard has been on the expression
of biochemical cues by cancer cells rather than mechanical
effects on ECs [184]. The literature on pressure and angiogen-
esis in vitro is limited, with only one report of increased
sprouting at the low end of the physiological pressure range
[205]. Interestingly, in ex vivo experiments, veins exhibit sprout-
ing in response to arterial flow [112] but not to arterial pressure
alone (i.e. without the increasing shear) [206]. This finding
suggests that pressure plays a secondary role to other stimuli,
such as luminal shear or TF. Interestingly, sprouting is
observed at abluminal impingement sites where IP is high,
but it is hampered at vessel bifurcations [106] and merging
points [110], which represent local maxima in HP.

Data scarcity precludes outright interpretation; however,
microvessel stability appears to be favoured by physiological
levels of pressure but compromised under pathologically high
values. In bovine aortic ECs in vitro, MMP production is
enhancedunder pressures up to 150 mmHgalthough it declines
afterwards (well above the characteristic values for microvessels
but close to the physiological maximum for bovine aortic
systolic pressure [207]), with Piezo-type mechanosensitive ion
channel component 1 (Piezo1) probably mediating the entire
process [208–210]. Physiological levels of microvascular HP
(10 mmHg) improvemonolayer integrity [211],while pathologi-
cal levels of blood pressure increase vessel permeability in mice
through disruption of adherens junctions [209]. Interestingly, the
effects of arterial pressure (50–100 mmHg) on cell–cell junctions
appear to be time-dependent: adherens junctions are reinforced
during the first hourbutweakenafterwards, resulting in intercel-
lular gap formation [209,212–214].

The direct effects of pressure on tip cell selection or Notch
signalling have received little attention. Nonetheless, sprout
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initiation hinges on changes in both the tip cell cytoskeleton
to form protrusions and cell–matrix junctions to initiate
migration. Arguably, pressure participates in the regulation
of both of these processes. More specifically, exposure of
bovine aortic and pulmonary ECs to pressure steps ranging
from 10 to 150 mm Hg leads to cytoskeletal remodelling,
with recruitment of thick actin fibres to central regions
[213,215,216] and multi-layering of F-actin filaments [217].
Pathological levels of hydrostatic pressure also increase the
tortuosity of the contours of individual ECs [216], which
might be linked to protrusion formation. The effects on
cell–matrix adhesion are more controversial: while physio-
logical values (3 mm Hg) reinforce focal adhesions
[125,126], no changes in focal adhesion dynamics have been
observed under pathological conditions (100 mm Hg) [212].

Sprout elongation relies principally on stalk cell prolifer-
ation, which has been shown to be modulated by pressure,
and on tip cell migration for which the effects of pressure
have yet to be explored. Physiological levels of HP induce pro-
liferation of venous ECs [125,126,214] through reduced cellular
contact inhibition resulting from the disruption of adherens
junctions [212,213]. In arterial ECs, proliferation is enhanced
for low values of HP [205,215], but the repercussions of
higher pressures are unclear [205,218]. Although the effects of
pressure on tip cell three-dimensional migration have not yet
been studied, we propose that pressure values that stimulate
EC proliferation but not tip cell migration might be in part
responsible for the increased tortuosity in tumour-feeding
vessels [219,220] through a buckling-likemechanism.Addition-
ally, lumens can develop through inverse membrane blebbing
[54], a blood pressure-induced mechanism, and are probably
enlarged as MMP activity is enhanced [208,221]. Recent evi-
dence points to a fundamental role for pressure in the
formation of junctional fingers, protecting from blood leakage
during lumen expansion [222]. As for IP, improved vasculogen-
esis under 50 mmHg [223] suggests a potential effect on sprout
elongation, a topic that certainly merits further investigation.
3.5. Flow pulsatility
Blood flow is pulsatile with baseline heart rates typically in the
range of 40–100 bpm and exceeding 200 bpm during exercise,
which translates to frequencies in the range of 0.7–3.3 Hz.
Although pulsatility is partially dampened throughout the
arterial vascular tree, several studies suggest the persistence
of significant unsteadiness in the microvasculature even
down to capillaries in various vascular beds [200,224–228].
Conceptually, pulsatile flow waveforms can be non-reversing,
with positive values throughout the entire cardiac cycle; rever-
sing, with a positive mean value but with negative (or reverse)
flow during a portion of the cycle; or purely oscillatory, with
periodic fluctuations around a zero mean value (figure 2e).
Flow pulsatility translates into pressure and WSS oscillations.

Although the literature on the effect of flow pulsatility on
angiogenesis is sparse, the few studies that exist suggest an
effect that differs from that of steady flow. For instance,
unlike steady shear, oscillatory shear stimulates tubulogenesis
in venous and microvascular ECs but not in arterial ECs [109].
Interestingly, pulsatility appears to be insufficient to induce
angiogenesis on its own [206], with pulsatile shear even limit-
ing sprouting compared with steady shear [81]. Fluctuations
may also affect mass transport and autocrine signalling [229],
with effects on angiogenesis that remain unknown.
The effect of flow unsteadiness on vessel stability remains
unclear, but most results point to pulsatile shear stress as a
destabilizing factor and to pulsatile pressure having a more
limited effect. Little information is available on the role of
unsteady flow on MMPs, with one study pointing to upregu-
lation under oscillatory shear [230]. As for EC monolayers,
non-reversing pulsatile flow (NPF) has been found to increase
monolayer permeability within the first 3 h, contrary to rever-
sing pulsatile flow (RPF) under which this increase was
suppressed [231]. Surprisingly, however, both reversing and
NPF have been shown to disrupt cell–cell junctions within
the first 6 h [232]. For longer exposure times, RPF results in
significant disruption, whereas the effects of NPF remain
unclear [232–234]. Furthermore, the effects of unsteady
shear stress are frequency dependent, with permeability
increasing significantly for 1 Hz but not 0.1 Hz oscillatory
flow (OF) [235]. Pulsatile pressure appears to have a less pro-
nounced effect on monolayer barrier function than pulsatile
shear stress [236].

The effect of pulsatile flow on sprout initiation has seldom
been considered, although it is known that pulsatile flow can
induce extensive cytoskeletal remodelling and upregulate
Notch signalling. On the one hand, alterations in stress fibre
and peripheral actin distribution under both reversing and
non-reversing pulsatile shear [237,238] as well as under pulsa-
tile pressure [236] suggest a possible role for these stimuli in tip
cell phenotype specification. On the other hand, compared
with steady flow, RPF and OF induce Notch upregulation
while NPF does not [147]. However, the overall picture is
clouded by results from a three-dimensional network for-
mation study that reported no significant differences in the
number of branches and bifurcation points under pulsatile
flows of different magnitudes and frequencies [81].

During the sprout elongation phase, the effects of unsteady
shear stress and pressure on the necessary balance between
migration and proliferation remain unclear. While 1 Hz non-
reversing pulsatile shear appears to maximize EC proliferation
[239], it has been shown to disrupt the migration-proliferation
equilibrium, leading to detached tip cells [81]. The effects of
pressure fluctuations on sprout elongation are equally com-
plex, with pulsatile pressures with amplitudes of 40 mm Hg
either promoting or impairing EC proliferation, depending
on the mean pressure value [240,241].
4. Role of solid mechanics in angiogenic
sprouting

In addition to fluid forces/stresses, ECs are continuously sub-
jected to mechanical stimuli from their solid surroundings, to
which they respond and adapt. These mechanical interactions
are bidirectional, reciprocal and coupled, complicating our
understanding of their effects on ECs in general and on the
angiogenesis process in particular. Several pathologies are
linked to either excessive neovessel formation (cancer, arthri-
tis, loss of sight) or insufficient angiogenesis (hypertension,
ischaemia). In many of these pathologies, alterations in the
mechanical properties of the vascular microenvironment
have been identified and are generally associated with
upregulation or inhibition of angiogenesis [242]. In vivo,
the organization and overall structure of the vascular
microenvironment are shaped by adjacent tissues [243]. Start-
ing from development, a simultaneous and coordinated



Table 2. Summary of the effects of solid mechanical stimuli on the early stages of angiogenesis. Effects are listed as positive for angiogenesis when increased.
The second column further subdivides the stimuli to improve readability: late and early cyclic compression are as defined in [246]. Colour code: presence (black),
low (blue)/physiological (brown)/high (purple). Symbols: ? no information, ↑ increase, ↓ decrease, × contradictory effects, - no effect/minor effect, ⊲ gradient,
|| parallel, ⊥ perpendicular. Striped background means hypothesis. Growing arrows imply magnitude correlation.
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morphogenesis of organs and their vasculature leads to the
emergence of the endothelium, which then adjusts locally
to form networks that meet the specific needs of the tissues
it penetrates and irrigates [244]. Tissue deformation and load-
ing of the surrounding matrix play an important role in
defining the architecture of these vascular networks by indu-
cing alterations in vessel formation, growth and vascular
remodelling [245]. In this section, we recapitulate the influ-
ence of solid mechanical cues on angiogenic sprouting. This
information is summarized in table 2.
4.1. Tensile stress
In the vasculature, ECs are naturally subjected to tensile stres-
ses that can be axial or circumferential, depending on their
origin. Axial strains are generated by tissue growth and move-
ment, in particular in the heart, muscles and lungs, while cyclic
pulse pressure strains the vessels circumferentially, typically up
to 7% [247]. It is generally accepted that tensile stresses are
restricted to specific ranges of values to preserve homeostasis.
Strains of approximately 5–10% are physiological, whereas
strains of approximately 15–20% are considered pathological.
Equiaxial chronic cyclic strains as low as 5% at 1 Hz have
been found to promote a twofold increase in angiogenesis in
ECs in vitro [248]. Interestingly, while angiogenesis is a process
typically governed by ischaemia of the surrounding tissues
[249], one of the main by-products of ischaemia [250],
hypoxia-inducible factor 1 (HIF1), is now known to be regu-
lated by mechanical loading through upregulation of
mechanosensitive transcription factors [251]. For instance,
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under non-hypoxic conditions, HIF1 mRNA levels in rats
increase after prolonged stretching [252,253].

The activation of ECs by cyclic strain is usually
accompanied by MMP activation, critical for blood vessel
remodelling [254]. Intermediate levels of strain (10–15%)
increase tubulogenesis and endothelial sprouting [255,256],
while large strains (above 15%) increase MMP secretion in
ECs, suggesting that mechanical forces play a fundamental
role in BM degradation events [257]. Interestingly, angiogen-
esis and MMP expression in ECs under chronic exposure to
cyclic strain (1 Hz, 24%) appear to increase with stimulation
time [258]. In [259], a Matrigel matrix was used for vessel for-
mation in vitro and a negative impact of exogenous cyclic
strain was demonstrated in the context of tissue repair and
revascularization under this type of mechanical stimulus.
Although pro-angiogenic MMP levels were not modified
and VEGF signals were even increased under such a stimu-
lus, the final network length ended up being smaller when
compared with static conditions. Permeability regulation, a
critical EC function, is also impacted by tensile stresses. In
a pulmonary endothelium in vitro model, permeability was
seen to increase in a monolayer stimulated with cyclic
strain, caused by the loss of cell integrity due to discrepancies
in latero-basal reinforcement of adhesion sites [260]. Interest-
ingly, the amplitude [261] and time dynamics [246] of the
mechanical stimuli also appear to be very important phenom-
enological parameters impacting physiological processes
such as permeability and inflammatory signalling by ECs.
Compared with static controls, a 1 Hz 20% stretch signifi-
cantly increased the density of endothelial sprouts [262].
Cyclic strains were also shown to trigger the secretion of sev-
eral angiogenic factors without affecting VEGF levels [263],
suggesting that mechanics is not only as pertinent as bio-
chemical signalling but that it may also cause it. In further
support of this notion, the exposure to growth factors,
which are responsible for the transition between maintenance
and regression of new vessels [264], is now known to be
initiated by mechanical deformations and stresses that
emanate from the matrix [263].

Tensile stresses also influence cell proliferation and
migration. Cyclic circumferential strains of low amplitudes
(5–10%) are known to activate ECs, inhibit apoptosis and
increase proliferation via cell–cell junctions and signalling
[265–268]. By contrast, large strains (15–20%) have the oppo-
site effect [255,269–271], and intermediate levels of strain
(10–15%) seem to increase endothelial motility and migration
[248]. Generally, tensile stresses align the newly formed
sprouts orthogonal to the resulting strain direction [272].
Recent results show that cell–cell junctional tension is also
increased during lumen expansion occurring in angiogenesis,
and this occurs in a blood pressure-dependent manner. This
mechanoresponse causes a force-dependent vinculin recruit-
ment thought to protect cell–cell contacts and to maintain
vascular integrity during sprouting [222].
4.2. Matrix stiffness properties
Matrix stiffness is another mechanical stimulus known to
affect the formation and structure of angiogenic vessels,
both in vivo and in vitro [273,274]. Recent studies suggest
that other mechanical properties of the matrix such as poros-
ity, plasticity or the presence of fibrous constituents, are also
probably crucial (figure 3a). In a healthy endothelium, the
surrounding ECM is principally composed of laminin, type
IV collagen and proteoglycans, with low fibronectin levels.
In damaged tissues, however, accumulation of fibronectin is
observed [277].

As for other cellular and tissue-level processes involved in
pathophysiological morphogenesis, stiffness is typically con-
sidered one of the principal arbiters, and its influence can
be studied thanks to recent progress in the fields of biomater-
ials and mechanobiology. Studies using hydrogels of varying
stiffnesses within the physiological range, from 100 Pa to a
few kPa, show a general trend of enhanced vascular network
formation in softer matrices. In [278], three-dimensional-
encapsulated ECs were shown to spread more and to form
longer-lasting vascular networks inside softer MMP-degrad-
able RGDS adhesive peptide hydrogels, while stiffer gels
slowed this process greatly. This effect is not gel-dependent
as other biomaterials exhibited similar results [279–281]. In
[280], it was shown that the EC response to stiffness is cell-
specific, as is the final vessel network architecture. This is
explained by differences in cell contractility and ECM
deformability. Similarly, the mechanical properties of the
matrix were found to influence the formation of de novo
functional endothelial tubes in a vasculogenesis assay on
soft compliant substrates. In [282], the existence of a compli-
ant range of stiffness on which ECs can better self-assemble
into network-like structures was identified, related to the
appropriate level of cell traction force required for the balance
between migration and proliferation. Together with these
intrinsic mechanical properties, the nature and architecture
of the ECM are also known to be important cues determining
complex angiogenic and homeostatic processes, as reviewed
elsewhere [283,284]. Similar to other cell types, mechanobiol-
ogy studies have shown that adhesion and migration of ECs
are also greatly impacted by substrate stiffness. In culture, cell
adhesion is increased under physiological stresses, favouring
anchoring and decreasing cell migration, while pathological
stresses weaken this adhesion [50,285] (figure 3b). Moreover,
when embedded and cultured in three-dimensional gels, ECs
appear to migrate over longer distances in degradable
matrices [286] while they spread inside soft ones [278], con-
trary to what is observed on flat two-dimensional
substrates. This may have consequences for the specific
migration of tip cells, as these transition from a curved two-
dimensional support towards a three-dimensional matrix in
which they elongate and form the sprout.

Interestingly, the mechanical properties of the ECM
are modified during and by the process of angiogenesis.
Dynamic changes have indeed been observed in the overall
stiffness of tissues where neovessels actively form [287].
Angiogenic sprouting was linked to a local softening of the
tissue associated with an increased MMP mRNA expression,
while neovessel elongation was associated with a subsequent
stiffening, explained by a decrease in proteolytic activity that
was accompanied by an increase in the expression of genes
related to ECM components and cell–ECM interaction.

Similar to the tensile stresses, substrate stiffness also greatly
affects endothelial permeability, at least in part through
cytoskeletal remodelling and exacerbation of inflammatory
processes [50]. In this case, compliant matrices (4–10 kPa) are
essential for the preservation of barrier function, while stiffer
materials lead to an increased permeability due to disrupted
adherens junctions and numerous intercellular gaps [288]
(figure 3b), as well as increased formation of stress fibres
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[288,289]. Furthermore, age-related intimal stiffening has also
been shown to increase EC permeability by upregulating cell
contractility and modifying cell–cell junctions [290].

Until recently, the transition between maintenance and
regression of new vessels was thought to depend exclusively
on exposure to growth factors [264]. These particular chemi-
cal signals are now known to also be regulated by mechanical
stimuli emanating from the matrix [263]. For example, matrix
stiffness is known to generally enhance EC proliferation [274].
Matrix stiffening, in contrast, was found to promote a tumour
vasculature phenotype, with more permeable and more tor-
tuous vessels than healthy tissues [291]. Elucidating the
mechanisms underlying vascular cell phenotype regulation
by mechanical stresses requires understanding the intricate
interactions between ECs and their matrices.
4.3. Cell matrix-generated forces
The mechanical coupling between ECs and their matrix is
reciprocal: ECs sense and respond to mechanical cues, such
as the tensile stresses and matrix properties described above,
but they also generate stresses on the matrix. These cell-gener-
ated forces can alter the matrix, for instance through a strain-
stiffening mechanism [292]. Interestingly, these forces also
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enable cells to communicate at long distances, up to dozens
of micrometres, through matrix deformations [65,292] that
appear to depend on the fibrous nature of the ECM [293].
This was recently demonstrated by studying mechanical inter-
actions between cells at the matrix level using traction force
microscopy (figure 3c). Califano & Reinhard-King [282]
demonstrated that individual ECs exerted forces that propa-
gated from the cell edges to the surrounding matrix, creating
strains in the substrate. Recently, the Baker group showed
that dynamic interactions between stalk cells and the neigh-
bouring ECM were at the core of sprouting angiogenesis.
Applying combined forces and proteolysis, sprout stalk cells
indeed compact and degrade the ECM, opening a space for
three-dimensional expansion that depends on the matrix
density and the forces at play [294]. This matrix-mediated
cell–cell mechanical communication was found to be critical
to direct cell migration and organize the vascular network,
guaranteeing viable function [65,292]. In particular, Ouyang
et al. showed that ECs exploit the strain-stiffening and
strain-aligning nature of a fibrous substrate to mechanically
communicate at long distances and direct migration patterns
by pulling on the ECM network [65] (figure 3d ).

Since the discovery of the influence of mechanics on EC be-
haviour, investigating the mechanotransduction pathways
involved in angiogenesis has been an intense field of study; a
recent review summarizes all the mechanisms known to date
[295]. Regarding the role of solid mechanics in angiogenesis,
arguably one of the first identified mechanisms can be found
in the work by Mammoto et al., in 2009, where the existence
of an ECM stiffness optimumwas suggested for VEGF receptor
(VEGFR2) expression in ECs [296]. Later, while searching for
possible tissue engineering applications, it was proposed that
the development of capillaries both in vitro and in vivo was
not guided by the stiffness of the surrounding ECM per se,
but that the matrix density was the global parameter that
explains the mechanical influence of the ECM on angiogenesis,
the orientation of its sprouts and their stability. In [297], denser
collagen/fibronectin matrices indeed promoted the preferen-
tial orientation of the initial sprouts occurring during the
destabilization stage in a direction parallel to the growth
factor gradient, while less-dense materials presented more
random or misaligned sprouts. In a follow-up study [298],
insisting on the fact that the ECM density is related but not
limited to stiffness, they developed an integrativemethod com-
bining experiments and modelling to show that stable and
more elongated sprouts are favoured by intermediate collagen
densities of 1.2–1.9 mg ml−1. This range of concentration was
identified as the one that strikes a balance between EC prolifer-
ation and migration. Low ECM densities, however, only
permitted fragile sprouts, and dense matrices suppressed
sprouting completely by impeding migration due to a high
fibrillar entanglement. This influence of ECMdensity on angio-
genesis was confirmed by a later study from the Hoying–Weiss
group, who even developed a computational model that
describes and predicts how three-dimensional neovessel top-
ology is guided by ECM density [299]. A collagen density of
2 mg ml−1, similar to the previously cited range, allowed
longer, more interconnected vessels with higher branching
points and less free ends per unit length than higher densities.
These studies, and others not cited here but mentioned in most
of the cited papers, clearly indicate an active role of the inter-
action of neovessels with the stroma in angiogenesis, and this
interaction is bidirectional. The growing vessels contract the
ECM by exerting forces on the stromal fibrils, compact them
into bundles and align them, while in turn, depending on its
density, the ECM guides and orients the vessels, influencing
their persistence length, branching and stability.

To more closely simulate in vivo conditions, a suspension
of intact, isolated microvessel segments was cultured inside
an ECM-derived matrix. This type of microvascular construct
helped identify with more precision the exact three-dimen-
sional mechanical interactions between cells and their ECM
in the process of angiogenesis. Indeed, following culture in
type-I collagen gels, the constructs can be implanted and,
thanks to blood perfusion, can form hierarchical microcapil-
lary networks that gradually adapt and remodel into a
functional network, while offering a great tool for study
[300]. Hoying, Weiss and their collaborators have successfully
employed this implant technique in a series of biomedical
applications and, using bioprinting techniques, imposed
axial tissue deformations during the post-implantation remo-
delling phase; they showed that maintaining this external
patterning stimulus allowed the imposition of a specific
alignment of the final microvessel structure regardless of
the initial architecture [301]. The removal of this constraint
during the neovessel maturation stage resulted in a randomly
oriented network. The alignment axes of the ECM fibrils thus
guide cell shape and orientation and mediate the peak vel-
ocities of the sprouts (figure 3a). In sprouting angiogenesis,
ECs invade a matrix of a certain density and mechanical stiff-
ness, and this stromal environment is in turn modified by the
neovessels. The understanding of how these bidirectional
stresses influence the dynamics and shape of newly formed
vessels is progressing, and better models can be constructed
using microfluidic systems to elucidate or mimic this process
in two dimensions and three dimensions, integrating fluid
shear stress and soluble signals [276,302,303]. Several math-
ematical models based on experimental results have been
developed and account for these complex mechanical inter-
actions to describe changes in migration patterns during
vessel formation [304,305]. Matrix deformations around
angiogenic sprouts can also be measured experimentally
using traction force microscopy, thereby providing a more
precise understanding of neovessel patterning in both space
and time. These measurements confirm a very dynamic pull-
ing activity during sprout elongation [302–306]. Recently, a
three-dimensional out-of-plane pulling activity of tip cells
was identified in vitro [276] and was thought to be correlated
with the fanlike reorientation of collagen fibrils near the tips
of early-stage sprouts [307]. In [308], it was shown that the
dynamic forces generated by the actomyosin machinery of
ECs in three-dimensional fibrin gels were capable of bund-
ling the stromal fibrils, hence increasing the ECM density
locally, in a short period of only a few minutes. They also
demonstrated that these differences in ECM ligand density
could alter cell signalling and phenotype. Concerning the
possible regionalization of cell phenotype, a model of tension
and proliferation around tip cells [309] suggested that the ten-
sion exerted by the stalk cells created voids that could trigger
the cell proliferation necessary for sprout elongation. In
addition to this physical outcome, tissue deformation
during angiogenesis may also be linked to the formation of
a gradient of pro-angiogenic microenvironments, as shown
in [310]. This regionalized heterogeneity in cellular density
causes local differences in VEGF-A and VEGFR-2 expression
and in cell proliferation rates. Finally, regarding the
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importance of the temporal impact of cell–ECM interactions,
a recent study already cited above [246] has shown that in the
context of tissue healing, the initiation time, magnitude and
mode of compression of the ECM are all critical parameters
that influence angiogenesis mechanotransduction. While
immediate high-strain loading (of 30%) impeded angiogen-
esis by inhibiting early sprout tip cell selection genes, a
delayed stress favoured neovessel formation, with a greater
network length and a higher number of branches.
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5. Challenges and perspectives
5.1. Coupled stimuli
Among the many difficulties associated with the in vivo study
of angiogenesis, the coupled nature of different factors is of
particular relevance to the biomechanical approach reviewed
here. It is tempting to think of such a problem in linear terms
(i.e. the effect of a combination of stimuli resulting in the
sum of their individual effects); however, the integration of
mechanical stimuli by cells has been shown to be a complex
phenomenon [12,13,311–314]. Recent in vitro and in vivo
studies point to active roles of different combined factors
in the regulation of endothelial function and, more specifi-
cally, in angiogenesis. For instance, responses to shear stress
can be influenced by both surface topography [315] and
pressure [110]. These interactions can even lead to positive
feedback loops that may prevent endothelial homeostasis
[316]. Moreover, the mechanical response of ECs is bidirec-
tional: EC response is dictated by the surrounding
environment, which in turn is impacted by EC behaviour
[65,292,294], adding another level of coupling.

Although most in vitro systems to date have focused on
individual stimuli, we believe that the understanding of
coupled effects is currently within our grasp thanks to the
development of smart microfluidic systems that can be com-
plemented with computational modelling [317–319]. In the
context of in vitro platforms, we would like to highlight the
work of Akbari et al. on the competing effects of IF, TF and
LF [106]. Other examples include the work of Shirure et al.,
which suggests that IF sensitivity is regulated by matrix stiff-
ness [188] as well as the work of Abe et al. on the balance
between VEGF concentration and IF (although coupled to
TF) [169]. The interplay among matrix stiffness, shear stress
and traction forces by cells was also studied to explore the
possible existence of optimal mechanical conditions for new
vessel formation and maintenance [302]. Finally, a highly
illustrative example of the complex mechanical coupling
that can exist in the microvasculature is provided by recent
in vitro work involving the development of a microvessel-
on-chip [320]. In this study, it was shown that a fraction of
the LF crosses the endothelium and seeps into the viscoelastic
and highly permeable collagen hydrogel that constitutes the
microvessel wall. As a result, both the luminal pressure and
the wall shear stress within the microvessel vary axially.
The axial pressure variations, in turn, translate into changes
in the microvessel diameter as a result of the deformation
of the soft collagen hydrogel, which also has an effect on
the pressure and wall shear stress fields. Finally, the TF
associated with fluid seepage into the hydrogel changes
pressure levels within the soft hydrogel which feeds back
into the determination of the microvessel diameter. Decipher-
ing the complex coupling described above is essential if such
a microvessel system is to be used for understanding the role
of mechanical factors in sprouting angiogenesis.

In addition to computational models that shed light on bio-
chemical and mechanical stimuli [321,322], a particularly
exciting direction is provided by emerging frameworks such
as poroelasticity or active matter [46,323,324], which are open-
ing new avenues of research in the coupling of stimuli during
angiogenesis. We find active matter models especially promis-
ing, as they have already successfully been applied to other
morphogenetic events such as epithelial cell extrusion [325]
or hydra formation [326]. The active matter framework
describes systems composed of individual active components
that transform energy into mechanical work, an approach
that appears to be particularly suited to mechanobiology.
However, other possible approaches are also potentially prom-
ising. For instance, since mechanical properties of biological
tissues have been shown to be associated with instabilities
that determine morphogenesis [327–329], the notion that
angiogenic sprouting can be viewed as an instability is cer-
tainly worth exploring. In this type of paradigm, different
stimuli compete to either amplify or dampen the formation
of sprouts [330], with stochasticity as a key player in the process
[331]. Regarding sprout elongation, an analogy with jet stab-
ility that challenges the roles of tip and stalk cells has been
proposed [332]. Based on this, and inspired by the theory
of hydrodynamic instabilities [333], we see the need for the
development of appropriate dimensionless numbers that
describe the different regimes and potentially allow prediction
of the angiogenic outcome under coupled mechanical and
biochemical stimuli.

5.2. Biological scaling in angiogenesis: from organism
to cell structures

Developing in vitro and in silicomodels that are truly pertinent
to the angiogenic process is fraught with challenges. One of the
difficulties stems from the multi-scale character of the factors
affecting angiogenesis. Developing formulations that span
the range from the subcellular scale to the scale of the entire
organism constitutes a challenge that will undoubtedly require
substantial effort from the research community.

To illustrate this need, we can start by considering the pur-
pose of angiogenesis: in vivo, angiogenesis is vital for
development, wound healing and tissue oxygenation [334].
Precise conditions need to be recapitulated in vitro in order to
study the complex spatio-temporal mechanisms behind this
process. While the majority of angiogenic stimuli are local,
some, such as luminal shear stress or cyclic stretch resulting
from the heartbeat, are systemic throughout the vascular net-
work. Because of its critical role in meeting metabolic needs,
the vascular system scales with the tissues it vascularizes
[335]. A recent study demonstrated that blood vessels regulate
epidermal proliferating clusters in skin by coordinating the
stem cell population [336]. More generally, the branched archi-
tecture of blood vessels is thought to derive its existence from
the need to optimize access from a single point to a surface
or a volume [337]. However, how large-scale haemodynamic
parameters impact angiogenesis at the cellular level remains
unclear. In the particular case of a regenerative organ, such
as the liver, mechanical stimuli are now known to mediate
tissue growth: blood flow and pressure, in addition to bio-
chemical signals, are extrinsic triggers of the regenerated
organ and regulators of its size and vascularization [338].
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Given the network nature of the vascular system and the
constant evolution of its design space, it seems logical to
think of its development in terms of topology optimization
[339]. Moreover, its biological nature and the occurrence of
vessel remodelling and pruning (i.e. its heuristic character)
evoke the idea of using different types of optimization algo-
rithms [340] to reproduce the vascular network. As can be
inferred from the paragraph above, much work remains to
unveil the constraints, loads and boundary conditions
that arise from the spatio-temporal evolution of the angio-
genic environment and that enable this type of approach.
However, new hints are available concerning the relevant
factors in this process. In light of recent findings, the roles
of elastic energy dissipation and matrix viscoelasticity and
viscoplasticity are critical in morphogenetic processes and
in both individual and collective cellular behaviours
[327,341,342]. It thus seems important to investigate these
mechanisms in the context of angiogenesis [343]. Indeed,
viscoelastic deformations of the ECM have been shown to
play a major role in cell migration [344], vessel formation
and stabilization [345,346].

Another concept that merits further attention is the scale
at which mechanosensing and mechanotransduction act
during angiogenesis. While some candidate mechanosensors
such as the glycocalyx or mechanosensitive ion channels are
essentially associated with individual cells, others such as
cell–cell junctions are more suggestive of collective behaviour
[36,347]. Recent evidence on the role of filopodia under VEGF
stimulation [348] has set the course for a promising line of
research. ECs sense and react to a VEGF stimulus individu-
ally, developing filopodia within seconds. Filopodia, in
turn, increase EC sensitivity to VEGF, amplifying differences
in the input signal. This mechanism determines cell fate, sup-
ported by Notch signalling in a subsequent stage [348]. Based
on this study, we suggest that the effects of IF around a micro-
vessel could be explained by a similar process, with filopodia
acting as flow sensors.
6. Conclusion
Because of the role of the vasculature in the transport of
oxygen, nutrients and metabolic products under both
physiological and pathological conditions, it is fundamental
to understand and control the formation of new blood vessels
in biomedical and tissue engineering applications. While
angiogenesis was initially thought to be driven exclusively
by biochemical stimuli, most notably VEGF [349–352], research
over the past two decades has established the central influence
of mechanical factors. Both fluid and solid mechanical cues
have been shown to greatly impact angiogenic sprouting
through a variety of different mechanisms [156,168,263]. Here
we reviewed the central role of ECs in those mechanisms
specifically during the critical early phases of angiogenesis
and highlighted outstanding questions, particularly in the con-
text of EC responsiveness to multiple coupled stimuli. A key
notion is that beyond individual response to mechanical
cues, ECs also alter their environment, thereby providing
cues to other cells or even to themselves [65,292]. A critical chal-
lenge will be to establish the role that other factors, including
the presence of mural or parenchymal cells, play in the angio-
genic process. Although in vivo experiments will continue to be
essential for understanding the initiation and progression of
angiogenesis, recent advances in physiologically relevant
three-dimensional in vitro systems and in advanced compu-
tational models provide valuable tools in efforts aimed at
understanding and controlling the angiogenic process.
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