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Abstract

Background: Cirrhosis is associated with cardiac dysfunction and distinct ECG abnormalities. 

This study aimed to develop a proof-of-concept deep learning-based artificial intelligence (AI) 

model that could detect cirrhosis-related signals on ECG and generate an AI-Cirrhosis-ECG 

(ACE) score that would correlate with disease severity.

Methods: A review of Mayo Clinic’s electronic health records identified 5,212 patients with 

advanced cirrhosis ≥18 years of age who underwent liver transplantation (LT) at the three Mayo 

Clinic transplant centers between 1988 and 2019. The patients were matched by age and sex in a 

1:4 ratio to controls without liver disease, then divided into training, validation, and test sets using 

a 70%–10%–20% split. The primary outcome was the performance of the model in distinguishing 

patients with cirrhosis from controls using their ECGs. Additionally, the association between the 

ACE score and the severity of patients’ liver disease was assessed.

Results: The model’s AUC in the testing set was 0.908 with 84.9% sensitivity and 83.2% 

specificity, and this performance remained consistent after additional matching for medical 

comorbidities. Significant elevations in the ACE scores were seen with increasing MELD-Na. 

Longitudinal trends in the ACE scores before and after LT mirrored the progression and resolution 

of liver disease.

Conclusion: The ACE score, a deep learning model, can accurately discriminate ECGs from 

patients with and without cirrhosis. This novel relationship between AI-enabled ECG analysis 
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and cirrhosis holds promise as the basis for future low-cost tools and applications in the care of 

patients with liver disease.
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Introduction

Cirrhosis is the common endpoint in patients with chronic progressive liver diseases of 

various causes. Globally, cirrhosis accounts for approximately 2 million deaths each year.

(1) In the United States, it is the 12th leading cause of death overall but the 4th leading 

cause among patients aged 45–64 years.(2) Cirrhosis is known to cause distinct cardiac 

dysfunction and electromechanical abnormalities that correlate with severity of liver disease.

(3) Recently, deep learning-based artificial intelligence (AI) models utilizing convolutional 

neural networks (CNN) have enabled automated prediction of various cardiac and non-

cardiac conditions on digitized 12-lead ECGs. We proposed that the structural and metabolic 

changes in the circulatory system that take place alongside hepatic cirrhosis would be 

reliably detected on 12-lead ECGs by a CNN trained on a well-curated sample of patients 

with cirrhosis. The aim of our study was to determine if an ECG-derived CNN could 

accurately detect the presence of cirrhosis and to produce a numerical scale that correlated 

with disease severity.

Methods

Data Sources and Study Population

To best capture cirrhosis-related ECG changes on our CNN, we trained the model using 

ECGs of patients with advanced cirrhosis who underwent liver transplantation (LT). A 

retrospective review of Mayo Clinic’s electronic health records was performed to identify 

patients over 18 years of age who underwent LT at three Mayo Clinic sites (MN; AZ; 

FL) between years 1988 and 2019 and had at least one standard, 10-second, 12-lead ECG 
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at most a week prior to LT. Those who underwent LT for non-cirrhosis-related reasons 

were excluded. Patients were randomly matched on age and sex in a 1:4 ratio to controls 

without liver disease. Both the cirrhosis and the control cohorts were divided into training, 

validation, and test sets using a 70%–10%–20% split (Figure 1). Baseline demographic 

information and medical comorbidities at the time of the ECGs were collected. Continuous 

variables were reported as mean (±SD) and median (Q1, Q3), and compared using the 

Student’s t-test. Categorical variables were reported as absolute numbers and percentages 

and compared using the chi-square test.

Model Development

We trained a binary classification model using a CNN. The model input was a standard 10-

second, 12-lead ECG and the output being the likelihood of the ECG being from a patient 

with cirrhosis. A detailed description of the CNN architecture and training is provided in the 

Supplemental Methods.

Model Performance Assessment

The primary outcome was the ability of the CNN to distinguish patients with cirrhosis 

from controls. The CNN produced the AI-Cirrhosis ECG (ACE) score, a continuous 

value between 0 and 1 indicating the estimated likelihood of cirrhosis on each ECG. 

After developing and refining the model, we used the receiver-operating characteristic 

(ROC) curve from the validation set to select an optimal ACE score threshold for binary 

classification. The CNN was then applied to a hold-out test set and its performance metrics 

were measured using this optimal threshold. To minimize confounding from other disease 

states, we evaluated the CNN’s performance in the test set using controls matched not only 

for age and sex, but also for comorbidities, specifically hypertension, diabetes mellitus, 

cardiovascular disease, chronic kidney disease, and chronic lung disease. In addition, we 

assessed the model performance in subgroups of the test set categorized by sex, age, 

comorbid medical conditions, and etiologies of liver disease.

Relationship between the ACE score and Liver Disease Severity

We evaluated the relationship between the magnitude of the ACE score and the severity 

of liver disease as represented by the model for end-stage liver disease-sodium score 

(MELD-Na).(4) For patients with cirrhosis in the test set, we obtained patients’ MELD-Na 

corresponding to the time of their ECGs. Individuals were then grouped into categories 

according to their MELD-Na, and the median ACE scores across these categories were 

compared using the Kruskal-Wallis test. In addition, we calculated the Spearman coefficients 

to assess correlation between the ACE score and laboratory markers of cirrhosis.

Longitudinal changes in the ACE score before and after liver transplant

To assess how changes in the ACE score reflect the severity of patients’ liver disease over 

time, we investigated longitudinal trends in the ACE scores of 547 test set patients who 

received long-term care at Mayo Clinic and had multiple 12-lead ECGs at various time 

points. We assessed the distribution of their ACE scores over time, categorized by years 
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before and after LT. We used the Kruskal-Wallis test to determine differences in median 

ACE scores between the time point categories.

ACE scores in asymptomatic patients with compensated cirrhosis

As an additional validation, the performance of the model was tested in a distinct set 

of patients with earlier stages of disease, namely compensated cirrhosis. Review of 

the electronic records identified a cohort of 843 patients with cirrhosis without any 

decompensating events including variceal hemorrhage, ascites, or hepatic encephalopathy. 

ECGs were obtained for all these patients at most 6 months prior to the diagnosis of 

compensated cirrhosis according to clinical documentation. The distribution of ACE scores 

was compared to the original controls and patients with cirrhosis requiring LT.

Results

Baseline Characteristics of the Patients with Cirrhosis and Controls

Table 1 demonstrates the baseline characteristics for the cirrhosis and control groups. 

Overall, there were 5,212 patients with cirrhosis meeting the inclusion criteria and 

20,728 age and sex-matched controls without liver diseases. According to the 70%–

10%–20% split, a total of 18,281 (3,665 cirrhosis vs. 14,616 controls), 2,592 (532 

cirrhosis vs. 2060 controls), and 5,067 (1,015 cirrhosis vs. 4,052 controls) subjects were 

assigned to the training, validation, and test sets respectively (Supplemental Table 1). 

All groups had comparable age (median age = 57) and sex distributions (65% male). 

Controls had higher prevalence of cardiovascular diseases (coronary artery disease or 

cardiomyopathy) while the patients with cirrhosis had higher prevalence of diabetes 

mellitus, hypertension, chronic lung disease and chronic kidney disease. Among patients 

with cirrhosis, viral hepatitis was the most common cause of liver disease followed 

by alcohol-related liver disease, non-alcoholic steatohepatitis (NASH), biliary diseases, 

hereditary/genetic conditions, cryptogenic cirrhosis, autoimmune hepatitis and other liver 

diseases. Hepatocellular carcinoma was present in 27.1% of patients.

Model Performance in the Test Set

Figure 2 shows the CNN’s performance as a binary classifier within the test set. The full 

model using standard 10-second, 12-lead ECGs showed an excellent performance with AUC 

of 0.908. When the model was modified to use only the first 2 seconds of 12-lead ECGs, 

its AUC was unchanged at 0.908. Simpler models utilizing 10 seconds of six limb leads and 

10 seconds of lead I continued to perform well with AUCs of 0.866 and 0.842, respectively. 

Using an ACE score of 0.17 as the optimal threshold, the model showed 84.9% sensitivity 

and 83.2% specificity, as well as 55.9% PPV and 95.7% NPV for the detection of cirrhosis 

in this cohort.

For the 1,015 patients with cirrhosis in the test set, we were able to match 921 (90.7%) 

patients in a 1:1 ratio to controls on 5 comorbid conditions of hypertension, diabetes 

mellitus, cardiovascular diseases, chronic kidney diseases, and chronic lung diseases (Table 

2). In this matched subset of test set subjects, the ACE model’s performance did not 

significantly change, with an AUC of 0.893, 83.6% sensitivity and 81.8% specificity.
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Subgroup Analyses

Figure 3 shows the results of subgroup analyses on the test set according to age, sex, 

and medical comorbidities. The 95% confidence intervals for diagnostic odds ratios of all 

subgroups overlapped around the diagnostic odds ratio for the overall cohort, suggesting 

that the model performance was uniform regardless of subjects’ sex, age, or comorbidities. 

Among patients with different etiologies of liver disease, the model’s sensitivity was the 

highest in patients with NASH (92.4%) and consistently above 80% in patients with 

autoimmune, biliary, cryptogenic, viral, and other liver diseases. Notably, the sensitivity 

was lower for patients transplanted for hepatocellular carcinoma (73.6%).

Relationship between ACE score and markers of liver disease severity

Figure 4a shows the distributions of test set patients’ ACE scores across groups of ascending 

MELD-Na. A clear trend of increasing ACE scores with increasing MELD-Na was observed 

for patients with MELD-Na less than or equal to 20. Starting at the lowest MELD-Na 

between 6 to 10, the median ACE scores were significantly higher compared to controls 

(0.225 vs. 0.016, p<0.001). Significant differences in ACE scores with rising MELD-Na 

groups of 6 to 10, 11 to 15, and 16 to 20 were found (median ACE: 0.225 vs. 0.519 vs. 

0.713, p<0.001). A plateau in the ACE score was seen for MELD-Na above 20, with no 

significant differences in the high MELD-Na groups of 26 to 30, 31 to 35, 36 to 40, and 

above 40.

Assessing the Spearman’s correlation coefficient (ρ) between the ACE score and several 

laboratory test-based markers of liver disease severity showed that the ACE score positively 

correlated with MELD-Na (ρ = 0.3267, p<0.001), total bilirubin (ρ = 0.2976, p<0.001) and 

INR (ρ = 0.1120, p<0.001) (Table 3). On the other hand, an inverse correlation with platelet 

count (ρ = −0.2719, p<0.001) and serum sodium levels (ρ = −0.1757, p<0.001) was found.

Changes in ACE score before and after liver transplant

Figure 4b shows the longitudinal changes in the ACE scores for 547 patients with cirrhosis 

who had ECGs at multiple time points prior to and after LT. Significant increases in median 

ACE scores were observed year-over-year leading to the time of LT, starting around 0.079 

more than five years pre-transplant and rising to 0.762 around the time of LT (p<0.001). 

Following LT, the median ACE score markedly dropped to 0.183 within a year and 

further dropped two years after LT, continuing to remain very low and comparable to the 

ACE scores for the control population. This trend remained consistent after controlling 

for medications commonly prescribed for complications of portal hypertension, such as 

nonselective beta-blockers, diuretics, and/or lactulose (Supplemental Figure 1).

ACE scores in asymptomatic patients with compensated cirrhosis

The CNN accurately classified most of the ECGs from the additional cohort of patients 

with compensated cirrhosis as having cirrhosis based on the established threshold of 

0.17 from model development. The ACE scores for the compensated cirrhosis group 

(Supplemental Figure 2) were overall lower in comparison to the ACE scores of patients 

with decompensated disease, but also notably higher from non-cirrhosis controls.
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Discussion

In this proof-of-concept study, an AI model utilizing a CNN was able to differentiate 

between ECGs from patients with and without cirrhosis with excellent accuracy. 

The model’s performance was maintained after matching for comorbidities including 

cardiovascular disease. The ACE score was also associated with liver disease severity as 

determined by the MELD-Na as well as individual laboratory markers. Furthermore, trends 

in the ACE score before and after LT reflected the progression and resolution of cirrhosis, 

and importantly did not appear related to post-transplant medication changes, including 

nonselective beta-blockers, diuretics, or lactulose. These results demonstrate that ECGs 

differ sufficiently between patients with and without cirrhosis to be discriminated by a CNN, 

and also that deep learning-based analyses of ECG signals offer promising potential as the 

basis of novel tools, such as the ACE score and its future iterations, in the care of patients 

with liver disease (Figure 5).

Several mechanisms could play a role in the relationship between liver disease and ECG 

changes. Cirrhosis and the related development of portal hypertension are intricately 

linked to the circulatory system. Patients with cirrhosis develop a distinct type of cardiac 

dysfunction named cirrhotic cardiomyopathy independent of the etiology of liver disease.

(6) In patients with portal hypertension, there is increased production and activity of 

vasodilators such as nitric oxide, carbon monoxide, and endogenous cannabinoids within 

the splanchnic vasculature. This pathological state is known to have decreased vascular 

reactivity to vasoconstrictors.(7) These agents may directly impact cardiac endothelium and 

myocytes, leading to subtle ECG changes. Additionally, these physiologic changes cause 

splanchnic vasodilation and a reduction in vascular resistance that leads to a compensatory 

hyperdynamic circulatory state characterized by an increased heart rate and cardiac output 

with low mean arterial pressure.(3) These secondary compensatory changes may further 

impact the ECG.

The circulatory changes and cardiac dysfunction seen in patients with cirrhosis are 

not mere observations, but critically related to clinical outcomes. The hyperdynamic 

circulatory dysfunction and abnormal activation of vasoconstrictor systems such as 

the renin-angiotensin-aldosterone system, sympathetic nervous system, and antidiuretic 

hormone axis lead to hypervolemia and ascites. Persistent activation of vasoconstrictors can 

escalate into renal vasoconstriction resulting in hepatorenal syndrome, a deadly condition 

with high mortality.(8) In 1988, Llach et al. identified mean arterial pressure and plasma 

norepinephrine as the best predictors of survival in patients with cirrhosis.(9) Studies 

suggest that cardiac dysfunction precedes hepatorenal syndrome and predicts poor survival 

in patients with cirrhosis.(10) Furthermore, patients with cirrhosis-related cardiovascular 

dysfunction are at increased risk of decompensation following transjugular intrahepatic 

portosystemic shunt insertion(11, 12) as well as poor outcomes following LT.(13, 14)

Several electrophysiological changes in the context of cirrhosis have been well studied. 

The most commonly reported ECG abnormality in cirrhosis is a prolonged QTc interval.

(15) In patients with cirrhosis, the prevalence of prolonged QTc interval increased with 

worsening Child-Pugh scores (16) and significantly improved following LT.(17) Proposed 
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mechanisms for prolonged QTc in cirrhosis include increased sympathetic activity,(18) 

molecular defects in the myocardial potassium(19) and calcium channels,(20) and increased 

levels of cardiotoxic substances due to portosystemic shunting.(21) Other studies found 

significantly lower QRS voltage in patients with cirrhosis and noted its association with 

presence of ascites.(22, 23) R-R interval variations, considered to represent the integrity of 

the cardiac vagal nervous system, were also found to be decreased in patients with cirrhosis, 

especially in parallel with the presence and degree of hepatic encephalopathy.(24, 25) In 

addition, short TpTe intervals (the time from the peak to the end of the T wave) were found 

to be associated with disease severity and predictive of death and/or LT.(26)

Despite the well-known electrophysiologic effects of cirrhosis, the ECG findings are 

generally non-specific, often subtle, and highly variable, and as such have not been 

incorporated into routine evaluation and management of patients with cirrhosis. This is the 

first study to apply state-of-the-art deep learning-based AI methodologies to demonstrate the 

presence of a strong cirrhosis-associated ECG signal and quantify the signal in a manner that 

correlates with liver disease severity. The CNN is not constrained by the commonly known 

intervals and waves, but instead analyzes thousands of ECG waveforms to simultaneously 

process multiple, nonlinear, subtle patterns and combinations of features. The feasibility 

of this strategy is supported by several published studies which successfully demonstrate 

the ability of AI-ECG models to predict a variety of cardiac and non-cardiac conditions 

including left ventricular dysfunction,(27) hypertrophic cardiomyopathy,(28) paroxysmal 

atrial fibrillation,(29) as well as hyperkalemia,(30) sex and age.(31) Another strength of such 

a model is that ECGs are already used worldwide as one of the most ordered medical tests. 

Discovery of a new role for such an inexpensive, standardized, and ubiquitous test makes 

wide implementation feasible. Additionally, the fact that our model was able to achieve an 

excellent classification performance even with a single lead (lead I) is promising for its 

incorporation in app-based wearable devices.

The main limitation of this study is the “black-box” nature of neural networks, meaning 

that the specific ECG characteristics that the CNN uses to detect cirrhosis are not known. 

The fact that the model’s performance did not change between 10 seconds vs. 2 seconds 

of the 12-lead ECGs suggests that it is not relying on time-dependent patterns such as 

heart rate but instead on waveform morphology. Moreover, the remarkable improvement in 

patients’ ACE score after LT suggests that the CNN is capturing predominantly functional 

aspects rather than more ingrained structural derangements of the electrophysiological 

system. As mentioned above, there are numerous functional changes in the autonomic 

nervous system, myocardial ion channels, and levels of cardiotoxic substances which may 

resolve with restoration of normal hepatic function. Although higher ACE scores were 

associated with laboratory markers of liver disease severity, the retrospective nature and 

large cohort size precluded an accurate assessment of the relationship between ACE and 

clinical manifestations of advanced portal hypertension. The association of the ACE score 

with the presence of ascites, hepatic encephalopathy, pulmonary vascular disease, and frailty 

will be important to elucidate in further studies.

Another potential limitation is external generalizability. The cirrhosis and control cohorts 

used to develop our CNN were highly diverse, as they were obtained from three Mayo Clinic 
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sites across the United States. Nevertheless, the three sites are highly specialized tertiary 

referral centers whose patient population may differ from those seen in rural/community 

settings. Concerns have been raised that AI algorithms developed at university hospitals tend 

to over-represent individuals with higher income, younger age, and white race and may not 

be as effective when applied to a community hospital serving a low-income, minority patient 

population.(32) A prospective implementation at different sites with continuous refining of 

the model using new data will be essential for long-term viability.

We acknowledge that there are several important steps to be taken before the ACE score 

can be applied to the clinical care of patients with cirrhosis. For diagnostic purposes, its 

performance will need to be tested among a large cohort of patients with asymptomatic, 

early-stage cirrhosis and compared against existing tools such as the FIB-4 index or transient 

elastography. For prognostic purposes, the ACE score’s ability to predict liver-related 

outcomes will need to be evaluated against or in combination with existing prognostic tools 

such as the MELD-Na score.

Conclusion

Application of AI in the form of deep convolutional neural network to analyze a standard 

12-lead ECG enables it to distinguish cirrhosis-related signals from others. Although 

rigorous refinement and validation in external, heterogeneous cohorts in a prospective 

manner is needed, this represents a unique discovery with promising potential as the basis 

for novel ECG-enabled tools and applications in the care of patients with liver disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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MELD model for end-stage liver disease score

MELD-Na model for end-stage liver disease – sodium score

NASH non-alcoholic steatohepatitis

NPV negative predictive value

PPV positive predictive value

ROC receiver-operating characteristic
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Study Highlights

WHAT IS KNOWN

• Cirrhosis is associated with cardiac dysfunction and distinct 

electrophysiologic changes seen on ECGs.

• Deep learning-based artificial intelligence (AI) models have enabled 

automated detection of several cardiac and non-cardiac conditions on ECGs.

WHAT IS NEW HERE

• The AI-Cirrhosis-ECG (ACE) score, a deep learning model trained on 

thousands of ECGs from patients with cirrhosis and age and sex-matched 

controls, was able to accurately discriminate ECGs from the two patient 

cohorts.

• The magnitude of the ACE score was significantly associated with liver 

disease severity over time mirroring the disease progression up until liver 

transplantation and the expected resolution afterwards.
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Figure 1. 
Cohort Selection and Model Development

Ahn et al. Page 12

Am J Gastroenterol. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Model Performance
The receiver operating characteristic (ROC) curve for the model performance using 10 

seconds of 12 leads, 2 seconds of 12 leads, 10 seconds of six limb leads (I, II, III, aVL, aVF, 

aVR), and 10 seconds of single lead (I).

Abbreviation: AUC = area under the curve
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Figure 3. Subgroup Analysis
Abbreviations: OR = odds ratio; NPV = negative predictive value; PPV = positive predictive 

value
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Figure 4. Relationship between ACE score and liver disease severity
(A) Relationship between MELD-Na score and ACE score

(B) Longitudinal trends in ACE score before and after liver transplant. Negative numbers 

represent years prior to transplant, positive numbers represent years following transplant.
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Figure 5. 
Conceptual Overview
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Table 1.

Baseline Characteristics

Overall Set
N = 25,940

Categories Cirrhosis
N=5,212

Control
N=20,728

p-value

Sex F 1,801 (34.6%) 7,207 (34.7%) 0.84

M 3,411 (65.4%) 13,521 (65.3%)

Age Median
(Q1,Q3)

57.0
(50.0,63.0)

57.0
(50.0,63.0)

0.80

Mean
(SD)

55.63 (10.17) 55.66 (10.17)

Cardiovascular disease 458
(8.8%)

2,387
(11.5%)

<0.01

Diabetes mellitus 1,793
(34.4%)

2,928
(14.1%)

<0.01

Hypertension 2,268
(43.5%)

8,197
(39.5%)

<0.01

Chronic lung disease 955
(18.3%)

3,452
(16.7%)

<0.01

Chronic kidney disease 1,553
(29.8%)

1,453
(7.0%)

<0.01

Alcohol-related liver disease 1,337
(25.7%)

0
(0.0%)

<0.01

NASH 966
(18.5%)

0
(0.0%)

<0.01

Viral Hepatitis (HBV/HCV) 1,929
(37.0%)

0
(0.0%)

<0.01

Biliary
(PBC/PSC)

656
(12.6%)

0
(0.0%)

<0.01

Autoimmune hepatitis 204
(3.9%)

0
(0.0%)

<0.01

Hereditary/Genetic
(A1ATD, HH, WD)

273
(5.2%)

0
(0.0%)

<0.01

Cryptogenic 238
(4.6%)

0
(0.0%)

<0.01

Hepatocellular carcinoma 1,413
(27.1%)

0
(0.0%)

<0.01

Other liver diseases 302
(5.8%)

0
(0.0%)

<0.01

MELD Score Median
(Q1,Q3)

18.0
(13.0,24.0)

N/A

Mean
(SD)

19.14
(8.5)

N/A

Abbreviations: A1ATD = alpha-1-antitrypsin deficiency; HBV = hepatitis B virus; HCV = hepatitis C virus; HH = hereditary hemochromatosis; 
PBC = primary biliary cholangitis; PSC = primary sclerosing cholangitis; WD = Wilson’s disease
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Table 2.

Distribution of comorbidities and ACE model performance in the test set before and after matching for 

comorbidities

Before matching on comorbidities After matching on comorbidities

Comorbidities Cirrhosis
(N = 1,015)

Controls
(N = 4,052) p-value Cirrhosis

(N = 921)
Controls
(N = 921) p-value

Cardiovascular disease 83 (8.2%) 456 (11.3%) <0.01 79 (8.6%) 79 (8.6%) 1.0

Hypertension 351 (34.6%) 569 (14.0%) <0.01 408 (44.3%) 408 (44.3%) 1.0

Diabetes mellitus 434 (42.8%) 1589 (39.2%) 0.04 278 (30.2%) 278 (30.2%) 1.0

Chronic kidney disease 192 (18.9%) 651 (16.1%) 0.03 192 (18.9%) 192 (18.9%) 1.0

Chronic lung disease 281 (27.7%) 286 (7.1%) <0.01 165 (17.9%) 165 (17.9%) 1.0

Model Performances Before matching on comorbidities After matching on comorbidities

AUC of the ACE model 0.908 0.893

Sensitivity of the ACE model 84.9% 83.6%

Specificity of the ACE model 83.2% 81.8%

Abbreviations: ACE = AI-Cirrhosis-ECG; AUC = area under the curve
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Table 3.

Correlation between ACE score and laboratory-based markers of liver disease severity

Variable Spearman Correlation P-Value

MELD-Na 0.3267 <0.001

ALT 0.0788 0.003

AST 0.0723 0.006

Platelet count −0.2719 <0.001

Creatinine 0.0476 0.049

Sodium −0.1757 <0.001

Total bilirubin 0.2976 <0.001

INR 0.1120 <0.001

Abbreviations: ALT = alanine aminotransferase; AST = aspartate aminotransferase; FIB-4 = fibrosis-4 score; INR = international normalized ratio; 
MELD-Na = model for end-stage liver disease score-sodium
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