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METHODOLOGY

Analysis of multiple‑period group 
randomized trials: random coefficients model 
or repeated measures ANOVA?
Jonathan C. Moyer1*   , Patrick J. Heagerty2 and David M. Murray1 

Abstract 

Background:  Multiple-period parallel group randomized trials (GRTs) analyzed with linear mixed models can represent 
time in mean models as continuous or categorical. If time is continuous, random effects are traditionally group- and 
member-level deviations from condition-specific slopes and intercepts and are referred to as random coefficients 
(RC) analytic models. If time is categorical, random effects are traditionally group- and member-level deviations from 
time-specific condition means and are referred to as repeated measures ANOVA (RM-ANOVA) analytic models. Long-
standing guidance recommends the use of RC over RM-ANOVA for parallel GRTs with more than two periods because 
RC exhibited nominal type I error rates for both time parameterizations while RM-ANOVA exhibited inflated type I error 
rates when applied to data generated using the RC model. However, this recommendation was developed assuming 
a variance components covariance matrix for the RM-ANOVA, using only cross-sectional data, and explicitly modeling 
time × group variation. Left unanswered were how well RM-ANOVA with an unstructured covariance would perform 
on data generated according to the RC mechanism, if similar patterns would be observed in cohort data, and the 
impact of not modeling time × group variation if such variation was present in the data-generating model.

Methods:  Continuous outcomes for cohort and cross-sectional parallel GRT data were simulated according to RM-ANOVA 
and RC mechanisms at five total time periods. All simulations assumed time × group variation. We varied the number of 
groups, group size, and intra-cluster correlation. Analytic models using RC, RM-ANOVA, RM-ANOVA with unstructured covar-
iance, and a Saturated random effects structure were applied to the data. All analytic models specified time × group ran-
dom effects. The analytic models were then reapplied without specifying random effects for time × group.

Results:  Results indicated the RC and saturated analytic models maintained the nominal type I error rate in all data sets, 
RM-ANOVA with an unstructured covariance did not avoid type I error rate inflation when applied to cohort RC data, 
and analytic models omitting time-varying group random effects when such variation exists in the data were prone to 
substantial type I error inflation unless the residual error variance is high relative to the time × group variance.

Conclusion:  The time × group RC and saturated analytic models are recommended as the default for multiple 
period parallel GRTs.
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coefficients
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Background
Group- or cluster-randomized trials (GRTs) randomly 
assign groups or clusters to treatment conditions and 
measure members of those groups to assess the effect 
of an intervention. This may be done because the inter-
vention is implemented at the group level, manipulates 
the physical or social environment, or simply cannot 
be delivered to individuals without substantial risk of 
contamination [1]. A key feature of such trials is that 
outcome measures within groups tend to be positively 
correlated—failing to account for this intraclass corre-
lation coefficient (ICC) in trial design and analysis can 
result in inflated Type I error rates [1–5].

Multiple-period GRTs span two or more time periods, 
allowing for several design configurations [6]. Parallel 
GRTs randomly assign half of the groups to the inter-
vention and follow all groups over time. Such designs 
can be modified to include one or more baseline periods 
in which no groups receive the intervention. These are 
examples of nested designs because each group appears 
in only one study condition. Cross-over designs, in which 
groups switch treatment status at least once over the 
course of the trial, are another type of multiple-period 
GRT [7, 8]. Stepped-wedge group-randomized trials are 
a form of one-way cross-over trial in which the interven-
tion condition is implemented in groups on a staggered 
schedule until all groups receive the intervention [9]. 
These cross-over designs are examples of crossed designs 
because each group appears in each study condition. This 
paper is focused on analytic methods for parallel GRTs, 
which are always nested.

Multiple-period parallel GRTs can also be classified 
according to the presence of repeated observations. 
Designs in which the same individuals are measured at 
each time period are referred to as cohort designs, while 
designs in which individuals are measured only once 
are referred to as cross-sectional designs [1, 10, 11]. An 
example of a cross-sectional design with repeated meas-
ures on groups can be found in the Minnesota Heart 
Health Program [12]. In this study, six communities with 
300–500 new individuals per community were surveyed 
at regular time periods on various health outcomes. 
In addition, the Minnesota Heart Health Program also 
included a cohort design with repeated measures on both 
groups and their members. Another example of a cohort 
parallel GRT is the Teens Eating and Nutrition Study, in 
which 16 schools with 52–344 students per school were 
followed over time to assess an intervention to improve 
nutrition among 7th and 8th graders [13]. In a review 
of parallel GRTs with cancer-related outcomes, Murray 
et al. [14] reported that 76.4% of those studies included 
a cohort design and 21.1% included a cross-sectional 
design while 2.1% included both; they also reported that 

17.1% included two periods and another 6.5% included 
three or more periods, indicating parallel GRTs with 
repeated measures on groups and members are fairly 
common. Repeated observations on groups and mem-
bers further complicates the correlation structure of out-
come measures by introducing correlations across time 
at both the group- and member-level [1, 15, 16].

Analytic models for multiple-period parallel GRTs 
require several decisions about how best to specify the 
primary analysis. With this design, both individuals and 
clusters may be followed longitudinally and each warrant 
appropriate longitudinal correlation models. Key consid-
erations include the representation of time in the mean 
model as categorical or continuous, the specification of 
random effects to generate both longitudinal correlations 
within an individual and correlation among individuals 
from the same cluster, choice of a covariance matrix for 
any random effects, and the degrees of freedom used for 
hypothesis tests of the intervention effect.

We begin with two classical strategies used for stand-
ard longitudinal analysis. First, traditional linear mixed 
models typically represent time as a continuous vari-
able in group-specific mean models (with potential use 
of polynomial terms) and adopt random coefficients to 
induce correlation among repeated observations that 
share the same member- or cluster-specific trajectory. 
We refer to these models as random coefficient (RC) 
models, in which case random effects represent group- 
or member-level deviations from treatment condition 
specific intercepts and slopes. In contrast, repeated 
measures ANOVA models (RM-ANOVA) traditionally 
model time categorically using time-specific indicators 
and then adopt random effects that represent group- or 
member-level deviations from time-specific treatment 
group means. For standard longitudinal data analy-
sis, RM-ANOVA models can adopt a simple random 
intercept model to induce covariance among repeated 
observations or can adopt more general random effects 
structures such as an exchangeable model for time-
varying random effects. More generally, it is possible to 
assume a saturated or unstructured covariance matrix 
for repeated outcomes on an individual. Ultimately, 
longitudinal GRTs potentially require consideration of 
random effects at both the member-level and the clus-
ter-level to characterize within-member correlation 
(for cohort designs) and within-cluster correlations. In 
generalizing RM-ANOVA models to GRTs, we refer to 
the general class of models specifying both time-invar-
iant random effects (at the member or group level) and 
time-varying random effects (at the member or group 
level) as RM-ANOVA models, while models specify-
ing only time-varying random effects at both levels are 
referred to as Saturated models.
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Relatively few existing works have compared RM-
ANOVA and RC approaches in the context of the design 
and analysis of parallel GRTs. Motivated by the design 
challenges of the Minnesota Heart Health Program [12], 
Murray et al. [17] explored the performance of RC mod-
els with UN covariance matrix and RM-ANOVA with VC 
covariance matrix on cross-sectional, parallel GRT data 
generated assuming RC or RM-ANOVA mechanisms. 
They observed that RC analytic models maintained nomi-
nal type I error rates for both data generation mechanisms; 
however, RM-ANOVA analytic models showed inflated 
type I error rates when applied to RC data. As it is com-
mon to use information criteria to select models, Mur-
ray et al. [17] also identified AIC and BIC favored models 
for their simulated data sets and found that these models 
often exhibited an inflated type I error rate. Thus, RC ana-
lytic models were recommended for multiple-period par-
allel GRT data and use of AIC or BIC to select a different 
model was discouraged. More recently, Kasza and Forbes 
[18] investigated the impact of mis-specifying correla-
tion structures in the RM-ANOVA setting—for example, 
assuming correlation between outcomes within the same 
group at different time periods is the same when in fact the 
correlation decays as a function of time. As their primary 
focus was studying misspecification of decaying correla-
tion structure, they did not investigate RC analytic models 
but noted that further work in this area is required.

Correct specification of the random effects structure is 
important for obtaining proper estimates of parameters and 
their standard errors [19]. In the context of linear mixed 
models, Bell et al. [20] show that omitting random slopes in 
analytic models when such variation exists in the data gen-
erating mechanism results in standard error estimates that 
are too small. Bell and Rabe [21] applied the mixed model 
for repeated measures frequently used in longitudinal indi-
vidually randomized trials to multiple-period parallel GRTs. 
In the terminology defined above, this analytic model is an 
RM-ANOVA analytic model for cohort data with a ran-
dom effect for group, no time × group random effect, and 
an UN covariance matrix at the member level and a VC 
covariance matrix at the group level. They found the model 
maintained nominal type I error rate across a range of ICCs 
when applied to data generated assuming an RM-ANOVA 
mechanism with no time × group component of variation. 
In contrast, if the data generation mechanism included 
a time × group component of variation but the analytic 
model did not, the type I error rate was inflated, with the 
level of inflation increasing as the magnitude of the time × 
group component of variation increased. Importantly, Bell 
and Rabe [21] did not evaluate their RM-ANOVA model for 
data generated assuming a RC model.

In the context of RM-ANOVA and RC analytical 
models, three primary questions guide this work. First, 

would Murray et al. [17] have found better performance 
with RM-ANOVA models using an unstructured covari-
ance matrix? In their conclusions, Bell and Rabe [21] 
noted their model was not explored by Murray et al. [17] 
and that the recommendations of the latter were there-
fore “too broad.” This observation prompted investiga-
tion of the UN covariance matrix in this work. Second, 
would Murray et  al. [17] have seen patterns in cohort 
data similar to those they saw with cross-sectional data? 
Such data requires specification of a more complicated 
covariance structure than in cross-sectional data. Third, 
how important is the time × group random effect term 
in the analytic model if the data generation mechanism 
also includes variability at that level? Murray et al. [17] 
did not explore the ramifications of omitting the time 
× group random effect in RM-ANOVA and RC analytic 
models if the data generation mechanism includes vari-
ability at that level. While inflated type I error rates may 
be expected for the RM-ANOVA model based on Bell 
and Rabe [21], the performance of RM-ANOVA analytic 
models compared to RC analytic models in this regard is 
not known.

In this work, we expand on the Monte Carlo analysis 
of type I error rate for the hypothesis of no fixed effect 
interaction in Murray et  al. [17] and Bell and Rabe [21] 
to address these questions. In the “Background” sec-
tion, we provide background related to these issues and 
present RM-ANOVA and RC models. The “Method” sec-
tion details the simulation procedures and methods used 
to address the questions of interest. Results are presented 
in the “Results” section, with further discussion in the 
“Discussion” section. In the “Conclusions” section, we 
summarize our finding and present conclusions.

Method
Data generation
In this section, we present the repeated measures 
ANOVA (RM-ANOVA) and random coefficients (RC) 
data generation mechanisms. Next we discuss the vari-
ous correlations important to characterizing within- and 
between-group variation, in the same time period or 
across time. Finally, we present details on data generation 
parameters.

Repeated measures ANOVA (RM‑ANOVA) model
We first consider a nested cross-sectional multiple-
period parallel GRT design, where individuals are 
measured only once in each time period. Let Yijkl be a 
continuous outcome for the i th member ( i = 1, . . . ,m ) 
nested within the k th group ( k = 1, . . . , g ) and the l th 
condition ( l = 1, . . . , c ) at time j ( j = 1, . . . , t ). The cross-
sectional RM-ANOVA model is as follows:
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where µ is the mean outcome in the control condition at 
baseline, Cl the baseline difference between the mean of 
the l th condition and control condition mean ( C1 = 0 ), 
Tj is the difference between the mean outcome of the j th 
time period with baseline mean in the control condition 
( T1 = 0 ), TCjl is the time by condition interaction for the 
l th condition at the jth time period ( TC1l = TCj1 = 0 ), 
Gkl  is a random intercept for the k th group in the l th 
condition, TGjkl  is a random intercept for group k in 
condition l at time j , and ǫijkl is random member-level 
measurement error. Random effects are assumed to 
be independent and distributed as Gkl ∼ N (0, σ 2

g ) , 
TGjkl ∼ N (0, σ 2

tg ) , and ǫijkl ∼ N (0, σ 2
e ).

To account for the cohort data structure, Eq.  1 can 
be extended by adding member-level random effects as 
follows:

where Mikl is the random intercept for the i th member 
of the k th group in the l th condition and TMijkl is the 
random intercept for the i th member of the k th group 
in the l th condition at the j th time period. These ran-
dom effects are assumed to be independent of all other 
random effects and distributed as Mikl ∼ N (0, σ 2

m) and 
TMijkl ∼ N (0, σ 2

tm).
As is common with most trials, in this work, we 

assume only one observation per member per measure-
ment occasion. In such a setting, TMijkl cannot be dis-
tinguished from residual error and will be omitted from 
model 2. However, if members have multiple observa-
tions per measurement occasion, then it is possible to 
separately estimate the variance for the time × member 
random effect TMijkl and the residual error variance.

Random coefficients (RC) model
The RC model represents time as a continuous variable 
and further considers a random slope for the continuous 
time variable. For cross-sectional data, the RC model is 
given by the following:

where T(lin) is the linear time slope in the control condi-
tion, tj is the value of time at the j th period, T(lin)Cl is the 
interaction between the l th condition and j th time point 
( T(lin)C1 = 0 ), and T(lin)Gkl is a random slope for the k th 
group in the l th condition such that T(lin)Gkl ∼ N (0, �2

t(lin)g
) , 

with other terms defined as for model 1. Random effects 
Gkl and T(lin)Gkl are assumed to be independent of ǫijkl , 
but they need not be independent from each other.

(1)Yijkl = µ+ Cl + Tj + TCjl + Gkl + TGjkl + ǫijkl

(2)
Yijkl = � + Cl + Tj + TCjl + Gkl + TGjkl +Mikl + TMijkl + �ijkl

(3)Yijkl = � + Cl + T(lin)tj + T(lin)Cltj + Gkl + T(lin)Gkltj + �ijkl

Extending model 3 to accommodate the cohort design 
requires the addition of random effects for member-level 
intercepts and slopes as follows:

where T(lin)Mikl is the random slope for the i th member 
in the kl th group, with T(lin)Mikl ∼ N (0, σ 2

t(lin)m) . Similar 
to the group-level random effects Gkl and T(lin)Gkl , Mkl 
and T(lin)Mkl are assumed to be independent of other ran-
dom effects but may covary with each other. More details 
on the cohort RC model can be found elsewhere [16]. 
In contrast to RM-ANOVA, one observation per mem-
ber per measurement occasion is sufficient to estimate 
the variance component for the time × member random 
effect T(lin)Mikl.

Within‑ and between‑period intracluster correlations (ICC)
In single-period parallel GRTs, an important parameter 
is the intraclass correlation (ICC) which can be defined 
as the average bivariate correlation among observations 
taken in the same group or as the fraction of the total 
variation in the outcome attributable to groups. For mul-
tiple-period parallel GRTs, more complicated random-
effects structure gives rise to within- and between-period 
correlations [6]. These quantities provide information on 
the similarity among outcome values due to correlation 
within groups or clusters and to repeated measures on 
the same groups or clusters or on the same members.

The within-period ICC (WPICC) is a measure of the 
similarity among values on the outcome variable for two 
different members of the same group or cluster within a 
given time period and is equivalent to the ICC in a single-
period GRT. In the cross-sectional RM-ANOVA setting, 
the WPICC implied by model 1 can be calculated as

In the cohort RM-ANOVA setting, the WPICC implied 
by model 2 is defined as

Between-period ICC (BPICC) measure similarity among 
values on the outcome variable across time. The BPICC 
implied by model 1 is

(4)
Yijkl = � + Cl + T(lin)tj + T(lin)Cltj + Gkl

+ T(lin)Gkltj +Mikl + T(lin)Mikltj + �ijkl

(5)WPICC =

σ 2
g + σ 2

tg

σ 2
g + σ 2

tg + σ 2
e

(6)WPICC =

σ 2
g + σ 2

tg

σ 2
g + σ 2

tg + σ 2
m + σ 2

tm + σ 2
e

(7)BPICC =

σ 2
g

σ 2
g + σ 2

tg + σ 2
e
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and the BPICC implied by model 2 is

Between-period correlations are often expressed in terms 
of cluster autocorrelation (CAC) and individual autocor-
relation (IAC) [6, 10, 14]. CAC is the correlation between 
the population means for the outcome from the same 
group or cluster at two different time periods and is pre-
sent in both cross-sectional and cohort data. Sometimes 
called the over-time correlation at the group level [1], 
CAC is equivalent to the ratio of BPICC to WPICC.

Individual autocorrelation (IAC) is the correlation on the 
outcome variable for the same individual at two different 
time periods and is present only in cohort designs. The 
IAC is sometimes called the over-time correlation at the 
member level [1].

We make three remarks regarding these expressions. 
First, as mentioned previously, most trials measure indi-
viduals once per measurement occasion. Thus, the time 
× member random effect variance σ 2

tm is indistinguish-
able from residual error variance and is typically omitted 
from these expressions in other sources. Second, recent 
work in multiple-period GRTs in the RM-ANOVA set-
ting has focused on exponentially decaying cluster and 
individual autocorrelations over time [11, 22]. We do 
not consider such model extensions in this work, but it 
should be noted that misspecifying the exponentially 
decaying structure can have a strong impact on the type I 
error rate for testing treatment effect. Finally, in the RM-
ANOVA setting, BPICC is constant over time while in 
the RC setting BPICC is a non-constant function of time; 
the explicit expression is given in [23]. For ease of presen-
tation, in this work, we represent all WPICCs using the 
RM-ANOVA definitions given by Eqs. 5 and 6.

Data generation parameter settings
To address the three research questions indicated in 
“Background” section, data sets were repeatedly simu-
lated for cross-sectional and cohort multiple-period 
GRTs for both RM-ANOVA and RC models given in 
Eqs.  1–4. Note that these models all contained time × 
group variation, so all simulated data were generated 
assuming variability at that level. All random effects were 
assumed to be independent. This includes the effects Gkl 

(8)BPICC =

σ 2
g

σ 2
g + σ 2

tg + σ 2
m + σ 2

tm + σ 2
e

(9)CAC =
BPICC

WPICC
=

σ 2
g

σ 2
g + σ 2

tg

(10)IAC =
σ 2
m

σ 2
m + σ 2

tm + σ 2
e

and T(lin)Gkl in both models 3 and 4, as well as random 
effects Mkl and T(lin)Mkl random effects in model 4.

All simulations assumed two conditions, five equally 
spaced time periods (0 to 4), and 40 members per group. 
The number of groups per condition varied over 10, 20, and 
40. All fixed effects parameters were set to 0. The variances 
of the group and time × group random effects were set to 
1, resulting in a CAC of 0.50. Other variance values were 
chosen to obtain within-period ICCs in the RM-ANOVA 
framework of 0.10, 0.01, and 0.001 and an IAC of 0.70 
for cohort models. This value of IAC was chosen because 
member-level effects are not expected to impact analysis 
unless the individual autocorrelation is large [24, 25]. While 
there is no one threshold for what constitutes a large IAC, 
we use a value similar to Bell and Rabe [21]. For cross-sec-
tional models 1 and 3, residual error variances were set to 
18, 198, and 1998. For cohort models 2 and 4, member-level 
and residual error variances were set using the values listed 
in Table 1. For each combination of the two data structures 
(cross-sectional and cohort), three values for groups per 
condition, and three ICCs, we simulated 1000 data sets.

Analytic models
Several analytic models were fit to the simulated data sets 
using the PROC MIXED procedure of SAS software, Ver-
sion 9.4 of the SAS System for Windows. Before provid-
ing details on these analytic models, we review the generic 
formulation of a general linear mixed model in the context 
of a longitudinal study to explain different constraints on 
covariance matrices. This facilitates the subsequent discus-
sions on specific models for longitudinal GRTs.

Covariance structures
The general linear mixed model for the outcome from the 
ith member is given as follows:

(11)Yi = Xiβ + Ziγi + ǫi

Table 1  Table of variance values for member random effects, time 
by member random effects, and residual error for RM-ANOVA and 
RC cohort data generating mechanisms. The variance values were 
chosen to have an individual autocorrelation of 0.70

Data generation 
mechanism

σ 2
m σ 2

t(lin)m
σ 2
e

ICC

RM-ANOVA 12.6 5.4 0.10

12.6 59.4 0.01

12.6 599.4 0.001

RC 12.6 1 4.4 0.10

12.6 11 48.4 0.01

12.6 111 488.4 0.001
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where Yi is the vector of repeated outcome measures, Xi 
is the fixed effects design matrix, β is the vector of fixed 
effects, Zi is the random effects design matrix, γi is the 
subject-specific vector of random effects, and ǫi is resid-
ual error. We assume vectors γi and ǫi are independent 
and γi ∼ N (0,G) and ǫi ∼ N (0,R) , where G and R are the 
between- and within-subject random effects covariance 
matrices, respectively.

SAS PROC MIXED offers several options to fit covari-
ance matrices G and R using the TYPE option in the 
RANDOM and REPEATED statements, respectively. One 
structure is variance components (VC), which models an 
independent variance component for each random term. 
For example, fitting a VC structure to model 3 with five 
time periods yields the following G matrix in SAS:

The first entry in the diagonal represents the variance 
of random effect Gkl , while the remaining entries corre-
spond to the five TGjkl random effects for each of the five 
time periods.

Another approach is to use a compound symmetric (CS) 
structure, which assumes random effects have the same 
variance at each time period and a constant covariance. For 
example, the R matrix of model 2 could be given by:

Diagonal elements of the matrix denote member-level 
variation within a time period, while off-diagonal ele-
ments represent the covariance between member-level 
outcomes across time periods.

Finally, an unstructured (UN) covariance matrix allow-
ing variances for each random effect as well as the covari-
ances between them may be used. For example,the R 
matrix of model 2 could be fitted as

where σ 2
j  denotes the member-level variation at time j 

and σjj′ denotes the covariance between member-level 
observations at times j and j′ . SAS offers a variation of 
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UN covariance called UN(1), which is an unstructured 
matrix with off-diagonal elements equal to 0.

The choice of covariance structure comes with ben-
efits and drawbacks [26]. VC and CS require estimation 
of relatively few variance parameters, but they are simple 
structures and may not adequately characterize the vari-
ance structure in a real data set. Conversely, UN covari-
ance requires estimating substantially more parameters, 
but is flexible and can be more widely applicable to any 
data set with an adequate sample size.

Analytic models
Four analytic models were fit to each replication. All 
models possessed fixed effects for time, condition, and 
their interaction.

The first analytic model—“RM-ANOVA with VC 
covariance”—specified random effects for group and and 
time × group. The variance components (VC) covariance 
structure for the G matrix was used when the model was 
applied to both cross-sectional and cohort data sets. For 
cohort data sets, a compound symmetric R matrix was 
also used. The cross-sectional version of RM-ANOVA 
with VC covariance is equivalent to the RM-ANOVA 
data generation mechanism shown in model 1. While the 
cohort version of the RM-ANOVA with VC covariance 
analytic model did not directly specify a member-level 
random effect, with the use of a compound symmetric R 
matrix this analytic model is equivalent to the data gen-
eration mechanism shown in model 2.

The second analytic model—“RM-ANOVA with UN 
covariance”—specified random effects for group and 
time × group. For cross-sectional data, an unstructured 
G matrix was specified. For cohort data, variance compo-
nents and unstructured covariance structures were used 
for the G and R matrices, respectively.

The third analytic model—“RC”—specified random 
effects for group and time × group. An unstructured 
covariance structure for the G matrix for both cross-
sectional and cohort data was used. For cohort data, RC 
analytic models also specified random effects for mem-
ber and time × member. For both cross-sectional and 
cohort data, an unstructured covariance structure was 
used for the G matrix. The cross-sectional and cohort 
versions of the RC analytic model are equivalent to the 
RC data generation mechanisms given by models 3 and 4, 
respectively.

The fourth analytic model—“Saturated”—specified 
an unstructured G matrix for both cross-sectional and 
cohort dataset. Cohort Saturated models also utilized an 
unstructured R matrix, while cross-sectional Saturated 
models employed an unstructured R matrix with off-
diagonal elements equal to 0, i.e., “type” option of UN(1). 
Notably, Saturated models did not specify time-invariant 
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random effects for group as the preceding three analytic 
models did.“Saturated” was chosen as a name because a 
consequence of using unstructured covariance matrices 
and time-varying random effects is that as many within- 
and between-period variance-covariance parameters are 
estimated as is possible.

Table 2 summarizes the G and R matrices specifications 
for these analytic models, along with the number of covar-
iance parameters estimated for models fit to individual-
level data and—where indicated—mean models. Analytic 
model code is provided in Supplemental material. As these 
four analytic models possessed time-varying group random 
effects, they are referred to as “time × group” models.

Recall that all data were generated with variation at the 
time × group level. To assess the impact of omitting time 
× group random effects in the analysis, we also fit versions 
of the RM-ANOVA and RC analytic models omitting the 
time × group random effect. Note that this could not be 
done for the saturated model as it contains only time × 
group random effects. Analytic models omitting time × 
group random effects are referred as “intercept only” mod-
els. The model utilized by Bell and Rabe [21] corresponds 
to the intercept only RM-ANOVA, UN for cohort data.

Most analytic models were fit on individual-level data. 
Exceptions included the cross-sectional, time × group 
RM-ANOVA with UN covariance analytic models as 
well as both cross-sectional and cohort saturated analytic 
models. In these cases, the analysis was conducted on the 
group means. When group sizes are the same, the group 
mean model formulation is not expected to be much less 
efficient than the individual level formulation [5], but the 
former can dramatically reduce model fitting time com-
pared to the latter. This was borne out in test simulations, 
in which F-test results for the the intervention effect 
yielded the same p-values. A consequence of this is that 
the results for cross-sectional time × group RM-ANOVA 
with UN covariance are identical to cross-sectional satu-
rated analytic models. This makes sense, as these two 

analytic models just apportion the total variance found in 
the denominator of Eq. 5 differently.

To assess the performance of the various analytic models, 
type I error rates were estimated under the null hypothesis 
of no fixed effect time × condition interaction—TCjl for 
RM-ANOVA and Saturated analytic models and T(lin)Cl 
for RC. For RM-ANOVA and saturated analytic models, 
the null hypothesis is that there is no difference in the pat-
tern of condition means over time between condition l and 
the control condition, while for the RC analytic model the 
null hypothesis is that there is no difference in linear slope 
between intervention condition l and the control condition. 
The “nobound” option was used with all models to remove 
the non-negativity constraint when estimating variance 
components, which has been shown to maintain nominal 
type I error rates [27]. In addition, all models were fit using 
restricted maximum likelihood. The nominal level of sig-
nificance for all tests was specified at 0.05. Kenward-Rogers 
degrees of freedom were specified in the “ddfm” option 
- specifically, “kr2” [28, 29]. This setting has been shown 
to give good performance relative to other denominator 
degrees of freedom estimation methods across a range of 
settings common to GRTs [30, 31]. A drawback when con-
ducting simulations using Kenward-Roger degrees of free-
dom is that the approach tends to require more computing 
resources and therefore may take an extended period of 
time to run. The use of Kenward-Roger degrees of free-
dom is a change from the earlier work of Murray et al. [17], 
which employed BW degrees of freedom. We conducted 
a round of simulations using BW degrees of freedom and 
include these results as Supplementary data. The propor-
tion of the 1000 replications with p-values below the level 
of significance provided an estimate of the type I error rate 
of the analytic model in question. The ggplot2 R package 
was used to generate plots of estimated type I error rate as 
a function of the WPICC assuming RM-ANOVA as shown 
in Eqs.  5 and 6 [32]. The kableExtra R package [33] was 
used to generate LaTeX tables displaying type I error rates 

Table 2  Table of analytic models and specifications for G and R matrices, along with the number of covariance parameters. A 
hyphen in the R matrix columns indicates that no R-matrix type was specified. For the parameters, numbers appearing to the left 
of the comma pertain to analytic models containing time × group random effects, while numbers to the right pertain to analytic 
models containing only group-intercept random effects. Values appearing in parentheses correspond to to the number of covariance 
parameters for the mean model. Note that Saturated analytic models did not fit time-invariant group random effects

Cross-sectional Cohort

Model G Matrix R Matrix Parameters G Matrix R Matrix Parameters

RM-ANOVA with VC VC - 3, 2 VC CS 4, 3

RM-ANOVA with UN UN - 16 (15), 2 VC UN 17, 16

RC UN - 4, 2 UN - 7, 4

Saturated UN UN(1) 20 (15), - UN UN 30 (15), -
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for the various parameter settings, which are added as Sup-
plementary data.

Results
Simulation results for applying the various analytic 
models to data generated according to models 1 to 4 are 
given in Figs.  1 and 2. For each panel, the y-axis is the 
estimated type I error rate and the x-axis is the within-
period ICC in descending order. Each column of panels 
corresponds to a data generation mechanism, while each 
row of panels corresponds to the number of groups per 
condition. Results of the analytic models are indicated 
by line color in each panel. The gray horizontal line near 
the bottom of each panel corresponds to the nominal 
type I error rate of 0.05.

Figure  1 shows results for analytic models specifying 
time × group random effects. As seen in the two left 
columns, all four analytic models performed well when 
applied to RM-ANOVA data. However, the two right 
columns indicate that the RM-ANOVA with VC covari-
ance matrix struggled with RC data unless the ICC was 
low, which happens only when there is little variation 
attributable to both group and time × group. The RM-
ANOVA with UN covariance matrix analytic model per-
formed poorly on RC cohort unless the ICC was low. The 
RC and Saturated analytic models performed well in all 
situations.

Figure  2 shows results for the intercept only analytic 
models that do not account for time × group variation. 
Note that the saturated model is omitted as it contains 
only time-varying random effects, and that the scale 

of the y-axis is much wider than that of Fig. 1. For data 
generated with an RM-ANOVA mechanism, the RC ana-
lytic model performed best, but all three analytic mod-
els attained nominal type I error rates only when the 
ICC was at its lowest value. For data generated with an 
RC mechanism, the RM-ANOVA with UN covariance 
matrix performed slightly better than the other two ana-
lytic models at all values of the ICC. All three analytic 
models specifying only group-level intercepts performed 
poorly unless the ICC was very low.

Note that the type I error rates for both RM-ANOVA 
analytic models in Fig.  2 are the same when applied 
to cross-sectional data. This is to be expected, as the G 
matrix in both models only contains one variance term 
corresponding to the group-level random intercept Gkl.

In our work, we set the variances of the group random 
effect Gkl and time × group random effects TGkl and 
T(lin)Gkl for RM-ANOVA and RC data models, respec-
tively, to 1. This yielded a cluster autocorrelation of 0.5. 
However, in practice the variance of the time × group 
random effect is often small with respect to that of the 
group random effect. To account for this, we repeated the 
simulation study with time × group random effect vari-
ance set to 0.10, yielding a cluster autocorrelation of 0.91. 
This modification did not change the overall pattern of 
results.

Discussion
The goal of this work was threefold. The first goal was to 
assess the performance of RM-ANOVA analytic models 
with UN covariance relative to those with VC structure 

Fig. 1  Time by group analytic model results
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when applied to cross-sectional data. Both analytic mod-
els performed well when applied to cross-sectional RM-
ANOVA data when using Kenward-Roger degrees of 
freedom. This setting is important, as using BW degrees 
of freedom resulted in RM-ANOVA with UN covari-
ance having inflated type I error rates when the number 
of groups per arm was low. Both RM-ANOVA analytic 
models did well when applied to cross-sectional RC data 
as long as the ICC was low and Kenward-Roger degrees 
of freedom was used. However, if the ICC was large, RM-
ANOVA with VC covariance exhibited inflated type I 
error rates. As noted in Murray et al. [17], RM-ANOVA 
analytic models with VC covariance exhibited inflated 
type I error rate when group-specific slopes were hetero-
geneous. RM-ANOVA with UN covariance can accom-
modate this heterogeneity of trends, but a key component 
is the use of Kenward-Roger degrees of freedom, which 
offers a more conservative estimate of degrees of free-
dom than the design-based BW approach. We note that 
RC and saturated analytic model exhibited nominal type I 
error rates when applied to cross-sectional data, with the 
use of Kenward-Roger degrees of freedom being impor-
tant with the Saturated model.

The second goal was comparing the performance of 
RC and RM-ANOVA analytic models when applied to 
cohort data. The correctly specified RC analytic model 
performed well in terms of type I error control on cohort 
data generated assuming both mechanisms. Both RM-
ANOVA analytic models performed well on cohort RM-
ANOVA data when Kenward-Roger degrees of freedom 

were used, but not RC cohort data unless the ICC was 
low. Like the cohort time × group RC analytic model, the 
saturated model with Kenward-Roger degrees of freedom 
did well when applied to data generated assuming both 
mechanisms.

Finally, the importance of including time × group in 
the analytic model if the data contain variability at that 
level was investigated. As seen in Fig. 2, severe inflation of 
type I error rates was observed unless the ICC was small, 
which would happen only if the group and time × group 
components of variance were both small. This finding is 
consistent with the recent report from Bell and Rabe [21]. 
These patterns held for both Kenward-Roger and BW 
degrees of freedom. The necessity of including time × 
group random effect in the analytic model has also been 
emphasized in the existing literature for stepped wedge 
designs [23, 34].

In this study, we applied analytic models to data gener-
ated with both group and time × group random effects. 
During review, it was suggested we apply our analytic 
models to data generated with a group random effect 
but no time × group random effect. We did this for all 
cross-sectional data generation settings, but due to time 
constraints only generated cohort data having 10 and 20 
groups per arm and nominal ICCs of 0.01 and 0.10. We 
found little impact on type I error rates if time × group 
random effects were included in the analytic model. 
This supports the general recommendation of includ-
ing time × group random effects in the analysis of mul-
tiple period GRT data as there is little indication of any 

Fig. 2  Intercept only analytic model results
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penalty of having it and the potential for a substantial 
problem if left out. This is consistent with other findings 
in the literature suggesting that the drawbacks of over-
fitting tend to be less severe than those associated with 
under-fitting [35–37].

In summary, we offer the following recommendations 
regarding the time × group analytic models used in this 
work. RM-ANOVA with VC covariance exhibits type I 
error inflation when applied to RC data, with either BW 
or Kenward-Roger degrees of freedom. As the data gen-
eration mechanism is unknown, this suggests avoiding 
the use of RM-ANOVA with VC in general. Similarly, 
RM-ANOVA with UN covariance exhibits inflated type I 
error rates when applied to cross-sectional RC data with 
either BW or Kenward-Roger degrees of freedom. Thus, 
another conclusion is to avoid the use of RM-ANOVA 
with UN, which disagrees with Bell and Rabe [21]. RC 
analytic models performed well across all data sets, as 
did Saturated analytic models when used in conjunction 
with Kenward-Roger degrees of freedom. Indeed, the 
use of Kenward-Roger degrees of freedom can be gener-
ally recommended, as it offers benefits when used with 
UN covariance matrices with no price in type I error. Fit-
ting analytic models on individual-level data with Ken-
ward-Roger degrees of  freedom can take a considerable 
amount of time when the number of groups per arm is 
large and the ICC is low, but with the saturated model it 
is straightforward and fast to apply the analytic model to 
the group means at each period.

We focused on VC and UN covariance structures for 
the G matrix in our RM-ANOVA analytic models, but 
statistical software offers many other options such as 
compound symmetric or Toeplitz structures. As with 
the VC covariance structure, these covariance structures 
have fewer parameters to fit than the UN covariance 
structure, but they require adequate support in the data 
to justify. The UN covariance structure can be applied to 
all data sets, but this flexibility comes at the cost of fit-
ting many parameters. In the context of RM-ANOVA 
analytic models with the UN covariance matrix, the 
number of covariance parameters increases dramatically 
as the number of time periods increases. Therefore, to 
maintain nominal type I error rates in these settings, it 
is important to employ a more conservative approach to 
estimating denominator degrees of freedom, such as the 
Kenward-Roger approach. RC analytic models have an 
advantage in this regard as they generally require esti-
mating many fewer covariance parameters.

This work focused primarily on type I error rates in 
analytic models, but we say a few words about statisti-
cal power here. Our RC analytic model assumed a linear 
slope with time, which may result in reduced power if this 

assumption is violated. If this is a concern, the RC model 
can easily be extended to accommodate higher-order 
terms with time to improve power, provided enough 
groups per arm exist to provide degrees of freedom for 
the additional parameters. Alternatively, the Saturated 
model using Kenward-Roger degrees of freedom can be 
employed. While calculating power in this setting using 
simulation is straightforward, methods for calculating 
power and sample size assuming Kenward-Roger degrees 
of freedom have recently become available [38].

A common form of model selection is the use of infor-
mation criteria such as AIC and BIC. This approach was 
explored in Murray et al. [17], who found that AIC- and 
BIC-favored models had inflated type I error rates in 
some situations. This points to the need to use RC or sat-
urated analytic models for multiple period GRTs and not 
to rely either on RM-ANOVA analytic models with UN 
covariance or on an AIC or BIC favored model.

Future work in this area involves assessing the RM-
ANOVA, RC, and saturated analytic models to other 
trials involving some component of group randomiza-
tion, such as individually randomized treatment trials or 
stepped wedge group randomized designs [23, 39]. The 
performance of RC analytic models with these designs 
compared to RM-ANOVA has not been examined, 
according to a recent review of models for longitudinal 
GRTs [23]. Another area of potential study is comparing 
the RC, RM-ANOVA, and saturated analytic models for 
multiple period GRTs in the presence of an exponentially 
decaying cluster or individual autocorrelation. Recent 
papers in multiple-period GRTs have illuminated the 
need account for decaying autocorrelations in design and 
analysis [11, 22, 40]. The situation for RC models is more 
complicated, as the between-period ICC under the RC 
analytic model is a non-constant function of time.

Conclusions
We found time × group RC and saturated analytic mod-
els using Kenward-Roger degrees of freedom main-
tained nominal type I error rate when applied to all data 
sets generated under a cohort and a cross-sectional par-
allel GRT design. We therefore recommend these ana-
lytic models for multiple-period parallel GRTs for both 
cross-sectional and cohort data, allowing an investigator 
to choose whether to model time as continuous or cat-
egorical. Analytic models specifying only group-level 
intercepts exhibited substantially inflated type I error 
rate unless the ICC was very low. This suggests time × 
group random effects are important to include in analytic 
models, as most investigators will not know in advance 
whether the time × group component of variance is zero.
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