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Abstract

Advances in multiplexed in situ imaging are revealing important insights in spatial biology. 

However, cell type identification remains a major challenge in imaging analysis, with most 
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existing methods involving substantial manual assessment and subjective decisions for thousands 

of cells. We developed an unsupervised machine learning algorithm, CELESTA, which identifies 

the cell type of each cell, individually, using the cell’s marker expression profile and, when 

needed, its spatial information. We demonstrate the performance of CELESTA on multiplexed 

immunofluorescence images of colorectal cancer and head and neck squamous cell carcinoma 

(HNSCC). Using the cell types identified by CELESTA, we identify tissue architecture associated 

with lymph node metastasis in HNSCC, and validate our findings in an independent cohort. 

By coupling our spatial analysis with single-cell RNA-sequencing data on proximal sections 

of the same specimens, we identify cell–cell crosstalk associated with lymph node metastasis, 

demonstrating the power of CELESTA to facilitate identification of clinically relevant interactions.

Spatial biology provides unprecedented characterization of tissue architectures through 

technological advances in multiplexed in situ imaging platforms1–6. Using these platforms, 

specific tissue architectures have been associated with tissue development and disease 

progression to improve treatment response7–10. For in situ image analysis, pixel-based data 

are often segmented into individual cells whose cell type needs to be identified. Current cell 

type identification methods typically involve manual gating or clustering. Manual gating 

is subjective, and unmanageable with high-dimensional data11,12. Clustering cells with 

similar marker expressions can be biased by numerous factors including the choice of the 

number of clusters. Even after clustering, a cluster’s cell type assignment can be subjective, 

particularly for clusters that are mixtures of cell types13. Hence, even clustering requires 

manual assessment, preferably by an expert pathologist. Given their subjective nature, use of 

clustering and manual assessment for cell type identification cannot be robustly evaluated.

To address the limitations, we developed an unsupervised machine learning cell 

type identification method called CELESTA (CELl typE identification with SpaTiAl 

information), which does not involve manual gating or clustering and instead leverages 

the marker expressions and spatial information of cells with minimal user dependence. 

CELESTA is a robust and fast (on the order of minutes) algorithm for cell type identification 

that assigns individual cells to their most probable cell types through an optimization 

framework leveraging prior knowledge in a transparent manner.

We demonstrate CELESTA’s performance on data generated using the CODEX (CO-

Detection by indEXing) platform14,15. CODEX is an immunofluorescence-based imaging 

technology that can quantify more than 50 proteins, across tens of thousands of cells in 

a tissue slice. To evaluate CELESTA’s performance against extant methods, we applied 

CELESTA to a published CODEX dataset generated on colorectal cancer samples for which 

cell type identification was based on clustering and manual assessment by a pathologist, 

and which we adopted as the gold standard6. CELESTA provides cell type assignments 

comparable to the gold standard, in a manner that can be robustly evaluated.

We applied CELESTA to identify tissue architectures associated with lymph node metastasis 

in head and neck squamous cell carcinoma (HNSCC) using CODEX images from primary 

samples associated with (N+) and without (N0) lymph node metastasis. We identified cell 

types that are co-localized more extensively in N+ than in N0 HSNCC, and validated our 

findings using tissue microarray (TMA) analysis from an independent cohort. By coupling 
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our spatial analysis with single-cell RNA-sequencing (scRNA-seq) data on proximal 

sections of the imaged specimens, we identified cell–cell crosstalk associated with node 

status, demonstrating the power of CELESTA to facilitate biological discovery.

Results

Overview of CELESTA.

A typical image analysis pipeline often starts with segmenting pixel-based images into 

cells followed by cell type identification and spatial analysis (Fig. 1a). CELESTA first 

assigns cell types to cells whose marker expressions match prior knowledge of cell type 

marker expressions; these cells are defined as ‘anchor cells’. Remaining cells, whose marker 

expressions do not clearly associate with a cell type, are referred to as ‘non-anchor cells’. 

For each non-anchor cell, CELESTA uses the cell’s neighboring cell type information, 

in addition to the cell’s marker expressions, to identify the cell type. Because cells are 

organized in coherent spatial patterns, we reason that spatial location is valuable information 

in additional to marker expressions to infer cell type. To test this assumption, we performed 

cell neighborhood enrichment analysis using a published permutation strategy16 on the 

annotations of a public CODEX dataset6 and demonstrate that cells with the same or similar 

cell types are enriched among each other’s nearest neighbors (Extended Data Fig. 1a). 

CELESTA uses an iterative optimization framework to assign cell types for non-anchor cells 

(Fig. 1b,c).

CELESTA (Fig. 2a) requires two main inputs. The first input is an image segmented into 

individual cells. Each cell is defined by its marker expressions and spatial location (Fig. 2b). 

CELESTA determines whether a marker is over- or under-expressed in a given cell by fitting 

a two-mode Gaussian mixture model to the marker expression distribution (Extended Data 

Fig. 1b) derived from the cells in a sample17. CELESTA converts marker expression into a 

probability using a sigmoid function, in which the expression levels are scaled between 0 

and 1 and the midpoint is the intersection of two-mode Gaussian distributions.

The second input to CELESTA is a cell type signature matrix that relies on prior knowledge 

of markers known to have high or low expression in specific cell types. For each marker the 

cell type signature matrix is initialized as 1 or 0 if the marker has high or low, respectively, 

probability of expression, for a given cell type (see Supplementary Table 1 for an example). 

A marker is denoted as ‘NA’ if it is considered irrelevant for cell type identification. The cell 

type signature matrix is updated as more cells are assigned (see Extended Data Fig. 1c for an 

example of a final cell type signature matrix).

For the initial cell type assignment, CELESTA matches a cell’s marker expression 

probability profile to the cell type signatures using a marker-scoring function (Fig. 2c). 

When a cell has one dominant cell type score, CELESTA assigns the corresponding cell 

type to that cell and defines it as an ‘anchor cell’. For a cell whose cell type cannot 

be identified using marker expressions alone (‘non-anchor cell’), CELESTA leverages cell 

type information from its N nearest spatial neighbors (Fig. 2d) using a spatial-scoring 

function that utilizes the Potts model energy function. The Potts model has been used for 

image segmentation18–20, as a clustering method on spatial transcriptomics data21 and for 
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the analysis of pathological images22. Using both the spatial-scoring and marker-scoring 

function, CELESTA represents each non-anchor cell as a node in an undirected graph 

with edges connecting to its N nearest neighbors. CELESTA associates each node with a 

hidden state, which is the cell type to be inferred, and assumes that the joint distribution 

of the hidden states satisfies a discrete Markov random field (Fig. 2e). To maximize the 

joint probability function, CELESTA uses a pseudo-expectation–maximization algorithm 

(an expectation–maximization-like algorithm) with a mean field approximation23. In each 

iteration, if the thresholds are met, cell types with maximum probabilities are assigned to the 

non-anchor cells. If the marker expressions and the spatial information still do not pass the 

threshold for a cell type assignment, CELESTA re-evaluates the cell on the next iteration as 

additional neighboring cells have been assigned. The process is repeated until a user-defined 

convergence threshold is met, whereupon unassigned cells are labeled as ‘unknown’.

Incorporation of cell lineage.

CELESTA introduces a cell type resolution strategy whereby cell type assignment is 

performed in multiple rounds, in which cell type resolution is increased in each round 

based on known cell lineages (Fig. 2f). This strategy reduces computational complexity and 

improves robustness when cell types from different lineages share marker expressions. The 

pseudocode for CELESTA is provided in Supplementary Note 1.

Performance of CELESTA.

We assessed the performance of CELESTA on a public CODEX dataset generated from 

a colorectal cancer TMA6. In this dataset, the cell type assignments, which we regard 

as our benchmark, were based on clustering24 and manual assessment by a pathologist 

using marker expressions and cell morphology features from hematoxylin–eosin images. 

CELESTA assignments were comparable to this benchmark (Fig. 3a). The number of cells 

for each cell type was highly correlated between CELESTA and benchmarked annotations 

(Fig. 3b,c). Using the benchmarked annotations as ground truth, CELESTA achieved 

average accuracy scores (Rand index) of around 0.9, average precisions between 0.6 and 

0.8, and F1 scores between 0.6 and 0.7 across the major cell types (Fig. 3d). For rare 

populations, CELESTA achieved average precision and F1 scores between 0.4 and 0.6. 

Noteworthy, there are two clusters assigned as cell type mixtures in the benchmarked 

annotations (Fig. 3e,f); for the cells in these two clusters, CELESTA-assigned cell types 

were consistent with canonical marker expression patterns.

To evaluate the mismatched assignments, we built a confusion matrix comparing the 

cell types between CELESTA and benchmarked assignments (Extended Data Fig. 2). 

Although there is high agreement between CELESTA and the benchmark annotations for 

most cell types, we found that tumor cells assigned in the benchmarked annotations but 

not by CELESTA expressed low to no cytokeratin, which is the tumor-specific marker 

defined in CELESTA’s cell type signature matrix. CELESTA assigned the majority (around 

80%) of these cells to the unknown category (Extended Data Fig. 2). It is possible that 

cell morphology from the hematoxylin–eosin images was used to identify low-cytokeratin-

expressing malignant cells in the benchmark dataset. Although the benchmarked annotations 
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included morphological features, CELESTA does not use morphology in its current 

implementation.

We evaluated the robustness of CELESTA’s performance on the benchmark dataset. We 

tested the cell type signature matrix with a leave-one-out strategy to demonstrate that 

CELESTA has a low rate of misclassification (Extended Data Fig. 3). We tested the cell 

type resolution strategy, and performed sensitivity tests against user-defined parameters 

(Extended Data Figs. 3,4 and Supplementary Note 2).

Comparison of CELESTA to clustering methods.

We compared CELESTA with two clustering methods, namely FlowSOM25 and 

flowMeans26, which are commonly used on mass cytometry data27. For each clustering 

method we varied the number of clusters (20, 30 and 50) and had two independent 

annotators manually assign cluster cell types (Extended Data Fig. 5). Between the two 

annotators, around 60% of the clusters had matched annotations. Compared with CELESTA, 

both annotators labeled more cells as ‘unknown’ cell type, and CELESTA had better F1 

scores, especially for the rare populations (Supplementary Note 3).

CELESTA applied to primary HNSCC tumors imaged by CODEX.

We generated a cohort of eight primary HNSCC tumors with four node-positive (N+) 

and four node-negative (N0) samples (Supplementary Table 2). We performed CODEX 

imaging using 52 markers (Supplementary Table 3) and assigned cell types with CELESTA 

(Supplementary Table 4). We manually assessed CELESTA’s performance by mapping 

assigned cell types onto the original images using canonical marker staining. We showed 

qualitatively that the CELESTA-assigned cell types matched well with marker staining (Fig. 

4a,b and Extended Data Figs. 6,7). We evaluated cell type composition from CELESTA 

with paired scRNA-seq data derived on proximal tissue sections, for four samples. Although 

CELESTA cell type compositions were correlated with scRNA-seq compositions (Fig. 4c), 

differences may arise because tissue dissociation28 in scRNA-seq data could cause immune 

cells to be over-enriched.

We applied manual gating as a benchmark to quantitatively evaluate CELESTA’s 

performance. We designed a gating strategy focusing on cell types relevant for downstream 

analysis (Extended Data Fig. 8). Compared with gating, CELESTA achieved an adjusted 

Rand index of between 0.6 and 0.9 (Fig. 4d). Due to imaging artifacts and lower tissue 

quality, cell type identification was more difficult in some samples. In terms of cell type 

compositions, CELESTA and gating were highly correlated (Fig. 4e). CELESTA achieved 

average F1 scores of around 0.7 and accuracy scores of around 0.9 for malignant, endothelial 

and T cells (Fig. 4f). For T cell subtypes, CELESTA achieved average F1 scores of around 

0.55 (Fig. 4f).

Spatial biology enabled by CELESTA.

We performed spatial analysis on our HSNCC cohort using CELESTA-identified cell types. 

We adapted the co-location quotient29 used in geospatial statistics to quantify spatial co-

localization between pairs of cell types, and tested whether there were differential pairwise 
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cell type co-localization patterns in N+ versus N0 HNSCC (Fig. 5a). We identified four 

pairs of cell types that were significantly more co-localized in N+ than in N0 HNSCC on 

two-sided Student’s t-test (Fig. 5b), namely malignant cells and T-regulatory cells (Tregs) 

(P = 0.038), CD4+ T cells and endothelial cells (P = 0.027), CD8+ T cells and CD4+ T 

cells (P = 0.049), and CD4+ T cells with themselves (P = 0.014) (Fig. 5c). Representative 

CODEX images show that FOXP3 (a Treg marker) is more co-localized with cytokeratin 

(tumor marker) staining, and that CD4 and CD8 (T cell markers) are more co-localized 

with CD31 (endothelial marker) staining, in N+ than in N0 HNSCC (Fig. 5d,e). To validate 

the hypothesis of co-localization of Tregs and malignant cells in N+ HNSCC, we stained 

FOXP3 and cytokeratin on a TMA from an independent HNSCC cohort. Representative 

TMA images show a stronger co-localization of malignant cells and Tregs in N+ than in N0 

samples (Fig. 5f), and N+ HNSCCs have significantly higher density correlations between 

cytokeratin and FOXP3 than N0 HNSCCs (P = 0.011, two-sided Student’s t-test) (Fig. 5g).

Spatially guided scRNA-seq analysis.

Because crosstalk between cells may be associated with physical proximity30,31, we sought 

co-localization patterns to guide the discovery of cell–cell crosstalk associated with node 

status. We leveraged HNSCC scRNA-seq data generated on specimens proximal to the 

imaged specimens (Fig. 6a) and analyzed using Seurat32,33. We identified a malignant 

cluster (Cluster 11) in which CXCL10, a chemokine ligand, was more expressed on N+ 

than on N0 HNSCC (Fig. 6b,c). We identified a Treg-enriched cluster (Cluster2) based 

on FOXP3 expression (Extended Data Fig. 9), in which CXCR3, a receptor of CXCL10, 

was more expressed on N+ than on N0 HNSCC (Fig. 6c). We reasoned that CXCL10–

CXCR3 crosstalk between malignant cells and Tregs mediated N+ HNSCC. Evidence for 

this interaction was found in a public scRNA-seq HNSCC dataset34 (Extended Data Fig. 

9). In a similar manner, we found that CCL20–CCR6 crosstalk is higher in N+ than in N0 

HNSCC, and may mediate crosstalk between endothelial and CD4+ T cells in N+ HNSCC 

(Fig. 6d). Hence, following CELESTA, spatial patterns guiding scRNA-seq analysis can 

identify potential mediators of node status (Fig. 6e).

Functional validation of CXCL10–CXCR3 crosstalk.

To validate the association of CXCL10–CXCR3 crosstalk between malignant cells and Tregs 

with node status, we leveraged a murine model of lymph node metastasis35 developed 

for melanoma. In this model, we created multiple generations of lymph node metastatic 

cell lines (LN1–LN6), with each generation exhibiting increased frequency of lymph node 

metastases. RNA sequencing showed that later generations (LN6) expressed significantly 

higher CXCL10 than the parental line (P = 0.036, Wilcoxon signed-rank test) (Fig. 6f).

We tested the hypothesis that CXCR3+ Tregs are more attracted to CXCL10+ malignant 

cells in a transwell experiment in which we found that LN6 cells induced more migration 

of CXCR3+ Tregs than parental cells (Fig. 6g and Extended Data Fig. 10). This finding 

supports the hypothesis that CXCR3–CXCL10 crosstalk promotes Treg migration toward 

lymph node-tropic malignant cells. Given the existence of an antagonist AMG487 blocking 

CXCR3 (refs36–38), we compared the migration of Tregs into parental tumor versus LN6 

tumor with and without AMG487 treatment in vivo (Fig. 6h). We found that LN6 tumors 
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recruited more Tregs than the parental tumors (Fig. 6i). Following AMG487 treatment on 

LN6 tumors, the number of Tregs recruited into the tumor was reduced (Fig. 6j).

Discussion

Spatial biology is a new frontier that has become accessible through advances in multiplexed 

in situ imaging. Exploring this frontier often involves converting pixel-based images into 

an interpretable cell-based format. This poses numerous technical challenges, among which 

is cell type identification. We developed CELESTA, an unsupervised machine learning 

method, for facilitating cell type identification on multiplexed images. CELESTA can 

process a tissue sample with 100,000 cells in the order of minutes on a typical laptop.

CELESTA has several important features. To determine whether a marker expression is high 

or low in a cell in a more reproducible manner than commonly used methods, CELESTA 

converts a marker expression into a probability of expression and allows the user to identify 

a threshold of high versus low expression. CELESTA leverages neighborhood enrichment, 

which is ignored in common cell type identification methods. Using a benchmark image 

dataset, however, we show that cells with the same cell types are enriched in each 

other’s nearest spatial neighborhoods. Because CELESTA is not based on manual gating 

or clustering and instead assigns the cell type to individual cells based on probabilities, 

it preserves single-cell resolution in cell type assignments. CELESTA uses a cell type 

resolution strategy that incorporates cell lineage information to improve computational 

speed and robustness. Users define the inputs required by CELESTA, and the effect of these 

inputs can be transparently evaluated through sensitivity analyses. Although our current 

analysis prioritized accuracy over the number of cells classified, the users can choose the 

parameters that trade-off accuracy and quantity of cells classified. We applied CELESTA 

to images generated on CODEX, but CELESTA could also be extended to other imaging 

platforms.

CELESTA still has several limitations. CELESTA requires segmented cells as input and 

thereby relies on the performance of the segmentation algorithm. For rare cell types, because 

their neighborhoods could be enriched with a different cell type with larger abundance, we 

recommend using smaller neighborhood sizes (5 cells or less). Technical artifacts from the 

imaging platform could add noise to the marker expression39,40; in such cases, some manual 

intervention may still be needed after CELESTA’s fast assessment. CELESTA relies on 

markers in the user-defined initial cell type signature matrix. A poorly informed initial cell 

type signature matrix will negatively affect the results, as would the mislabeling of a cell 

cluster. In addition, too few anchor cells assigned for a cell type may not provide sufficient 

spatial information to identify non-anchor cells for that cell type. Currently, CELESTA 

does not account for morphological features. Future additions to improve CELESTA could 

include morphological features for each cell.

After using CELESTA for cell type identification in HNSCC imaging, we performed spatial 

analysis by adapting a geospatial statistic and identified cell type pair co-localizations of 

primary HNSCC associated with node status. Integrating this analysis with tissue-proximal 

scRNA-seq data, we identified CXCL10 and CXCR3 as having higher expression in 
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malignant cells and Tregs, respectively, in N+ than in N0 HNSCC. This implicates 

CXCL10–CXCR3 crosstalk in the mediation of HNSCC lymph node metastasis, and 

supports prior work associating CXCL10–CXCR3 crosstalk with T cell trafficking and 

metastasis41,42. Using an antagonist of CXCR3 to reduce Treg tumor infiltration, we 

show that the CXCL10–CXCR3 axis is a potential therapeutic target. Our integrative 

spatial and scRNA-seq analysis also identified the CCR6–CCL20 axis as mediating 

immune–endothelial crosstalk in node-positive disease, which is consistent with prior work 

associating this interaction with cancer progression43–45.

In summary, we propose CELESTA as a fast and robust cell type identification method for 

multiplexed in situ images. Using CELESTA, we demonstrate the power of spatial biology 

to guide the discovery of clinically relevant cell–cell interactions.

Methods

CELESTA.

Marker-scoring function.—The marker-scoring function assesses how well a cell’s 

marker expression profile matches the cell type markers defined by the cell type signature 

matrix. To apply the marker-scoring function, we first need to quantify whether a marker has 

high or low expression in a cell. We apply a two-mode Gaussian mixture model to fit each 

marker’s expressions across the cells in a sample:

f xm ∣ λ = ∑
a

ϕag xm ∣ μa, Σa , a = {0, 1}, λ = {ϕ, μ, Σ), m = {1, …, M} (1)

where M is total number of markers, xm is the expression across cells for marker m, ϕ is the 

mixing probabilities that sum up to 1, μ is the mean and Σ is the variance. Assuming that a 

marker with high expression is in state a = 1 and a marker with low expression is in state a 
= 0, the posterior distribution for a marker with high expression is p(a = 1|xm) and that for a 

marker with low expression is p(a = 0|xm). At the decision boundary we have:

p a = 1 ∣ xm = p a = 0 ∣ xm (2)

Using Bayes’ theorem:

p xm ∣ a = 1 p(a = 1) = p xm ∣ a = 0 p(a = 0) (3)

where p (xm|a = 1) = g(xm|μ1, Σ1) and p (xm|a = 0) = g(xm|μ0, Σ0). p (a = 1) and p (a = 0) are 

the mixing probabilities ϕ1 and ϕ0. By solving equation 3, we identify the decision critical 

point xc at which a marker has equal probability of high versus low expression. We use a 

logistic function to quantify a marker expression probability (EP) for each marker in each 

cell as:

EP xm = 1
1 + exp − xm − xc

(4)
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We repeat the process for every marker; thus, for each cell, every marker expression is 

converted into a probability of marker expression scaled between 0 and 1. Next, we define 

the cell type score F for a cell i and cell type k as 1 minus the mean squared error between 

cell i’s marker expression probability profile and the marker reference profile in the cell type 

signature matrix for cell type k normalized for all cell types as follows:

Zik = 1 − 1
M ∑

m = 1

M
EPim − SPkm

2, Fik = Zik
∑t = 1

K Zit
(5)

where M is total number of markers, EP is the expression probability and SP is the reference 

probability in the cell type signature matrix. For each cell i we calculate the scores for 

each cell type k for k = 1, …, K, where K is the total number of cell types in the 

cell type signature matrix in a resolution round. When a cell has one dominant cell type 

score that satisfies the cell type probability threshold, and the cell’s marker expression 

probability satisfies the high and low expression probability thresholds for that cell type, 

CELESTA assigns the corresponding cell type to that cell and defines it as an anchor cell. 

For example, by setting the cell type probability threshold as 0.5 and the high and low 

expression probability thresholds as 0.7 and 0.3, for a cell to be a tumor cell it needs have 

a marker score of 0.5 or greater in equation 5. In addition, it needs to have a cytokeratin 

expression probability of 0.7 or greater, and the marker expression probability for all other 

measured markers needs to be 0.3 or lower. The high and low thresholds for expression 

probability provide the user with the flexibility to reduce artifacts due to, for example, 

doublets or noise from non-specific staining. Once the anchor cells are identified, the cell 

type signature matrix is updated to represent the average marker probabilities of the anchor 

cells. The cell type signature matrix becomes updated as non-anchor cells are assigned to 

specific cell types.

Markov random field.—For the cells whose marker expression probability profile is 

ambiguous (non-anchor cells), CELESTA is designed to maximize the joint probability 

distribution using a Markov random field46 that includes a spatial-scoring function 

component to account for cell spatial information and a marker-scoring function component 

to account for the marker expression profile. For non-anchor cells, we assume each cell 

i is a node in an undirected graph and each cell has connected neighboring cells that 

are stochastically dependent. We model the stochastic spatial dependency defined on the 

undirected graph G with the edges connecting each cell to its N nearest neighboring cells. 

Based on the sensitivity analysis, we recommend N = 5–10. We associate each node with an 

unknown state S, which is the cell type to be inferred. The spatial dependency is modeled by 

a hidden Markov random field with joint probability distribution:

P (S; β) = W (β)−1exp −E(S; β) + ∑
i ∈ I

F (6)

where I is the total number of unassigned cells after anchor cell assignment, β is a set of 

model parameters to be estimated, W(β) is a normalization constant, F is the marker-scoring 

function and E is the spatial-scoring function defined next.
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Spatial-scoring function.—We use the Potts model energy function defined as:

Eik si; βik = − βik∑
i j

N
1 si = sj (7)

where N is the number of nearest spatial neighboring cells of cell i based on the x and y 
coordinates of the cells obtained from the image. Each time a neighbor cell j has cell type 

k, the energy function is increased by 1 for the cell type k. For each non-anchor cell i, we 

calculate the spatial scores for each cell type k based on its neighborhood cell types. β is a 

set of model parameters that captures the distances between cells. β is used to decide how 

much information to include from the neighboring cells, and is defined as a triangular kernel 

multiplied by a scale factor γ as follows:

βik = γ × 1 − dik
ℎ fordik

ℎ < 1 .  Otherwise, βik = 0 (8)

where dik is the distance between unassigned cell i and its nearest cell that has cell type k 
assigned, and h is a user-defined bandwidth. γ is set at 5. The closer a cell i to its nearest cell 

assigned to cell type k, the higher the βik. If there are no cells of cell type k assigned within 

distance h to the unassigned cell, no neighborhood information from cell type k is used. A 

cell could be isolated if it is too far away from other cells with cell types identified.

Optimization of objective function for cell type identification.—Because our 

objective function in equation 6 is non-convex, we use a pseudo-expectation–maximization 

algorithm to iteratively solve it. For each unassigned cell, we approximate the probability of 

cell type k for an unassigned cell i using a mean field approximation by:

pik = Fik × E sik, βik
∑t = 1

K Fit × E sit, βit
(9)

where K is the total number of cell types in the cell type signature matrix. If multiple rounds 

are used with the cell type resolution strategy, K is the total number of cell types in a round. 

For each cell i, the probabilities for all of the cell types K should sum up to 1. Essentially, 

we approximate the probabilities of each cell type for cell i and assign the cell type with the 

highest probability provided that the cell type probability threshold is satisfied. For example, 

if there are four cell types defined in a round, this probability threshold should be set higher 

than 0.25. We recommend that this threshold value is no greater than 0.5, otherwise it could 

result in too many unassigned cells. If the cell type probabilities do not pass the threshold 

then no cell type is assigned for that cell in the current iteration and the cell is carried 

over to the next iteration. In the following iterations, as more cell types are assigned, that 

cell may have increased neighborhood information. After each iteration we update the cell 

type signature matrix β and the neighborhood cell types based on the newly assigned cells. 

The algorithm converges when the percentage of additional assigned cells is smaller than a 

user-defined threshold. The default convergence threshold is 1%. After convergence a cell is 

assigned to the ‘unknown’ category if it has not been assigned with a cell type.
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Human tumor specimens.

All patients from Stanford Hospital who were included in the study gave consent to 

take part in the study with no participant compensation following Institutional Review 

Board (IRB) approval (IRB protocol no. 11402). The patient information is summarized 

in Supplementary Table 2. Fresh HNSCC tissue was collected within 6 h after surgical 

resection. A 2–3 mm piece of tissue was cut from the sample. Samples from patients 7153 

and 7155 were immediately frozen in OCT (optimal cutting temperature) freezing media, 

while the other samples were placed in 30% sucrose for 1 h at 4 °C and frozen in OCT 

freezing media (Fisher Healthcare) on a metal block chilled in liquid nitrogen. The OCT 

samples were stored at −80 °C for CODEX processing and sequencing. The remaining 

tissue was placed on ice and processed in 50 μl tissue digestion media (DMEM-F12+ 

with magnesium and calcium (Corning Cellgro), 1%FBS (heat inactivated), 10 units ml−1 

Penicillin–10 μg ml−1 Streptomycin (Gibco), 25 mM HEPES (Gibco)).

CODEX image acquisition and segmentation.

Multiplexed CODEX analysis of HNSCC samples was performed using а panel of 

antibodies (Supplementary Table 3) conjugated to custom DNA barcodes and detector oligos 

and common buffers, with a robotic imaging setup, according to the instructions for CODEX 

staining of frozen specimens from Akoya Biosciences (https://www.akoyabio.com/). The 

7 μm sections were cut with a cryostat after the OCT blocks were equilibrated to the 

cryostat temperature for at least 30–40 min. Tissue sections were placed on the surface 

of cold poly-L-lysine-coated coverslips and adhered by touching a finger to the bottom 

surface to transiently warm up the coverslip. Frozen sections on coverslips can be stored 

at −70 °C for 1–2 months. Prior to staining the sections, frozen sections removed from 

the freezer were dried for 5 min on the surface of Drierite. Dried coverslips with sections 

on them were dipped for 10 min into room temperature acetone, then fully dried for 10 

min at room temperature (20 °C). Sections were then rehydrated for 5 min in S1 (5 mM 

EDTA (Sigma), 0.5% w/v BSA (Sigma)) and 0.02% w/v NaN3 (Sigma) in PBS (Thermo 

Fisher Scientific), then fixed for 20 min at room temperature (20 °C) in S1 with 1.6% 

formaldehyde. Formaldehyde was rinsed off twice with S1. Sections were equilibrated in S2 

(61 mM Na2HPO4 • 7H2O (Sigma)), 39 mM Na2HPO4 (Sigma) and 250 mM NaCl (Sigma) 

in a 1:0.7 v/v solution of S1 and doubly distilled H2O (ddH2O) with a final pH of 6.8–7.0 

for 10 min, and placed in blocking buffer for 30 min. All steps followed the Akoya CODEX 

instructions. Automated image acquisition and fluidics exchange were performed using an 

Akoya CODEX instrument driven by CODEX driver software and a Keyence BZ-X710 

fluorescent microscope configured with four fluorescent channels (DAPI, FITC, Cy3, Cy5) 

and equipped with a CFI Plan Apo λ ×20/0.75 objective (Nikon). Hoechst nuclear stain 

(1:3,000 final concentration) was imaged in each cycle at an exposure time of 1/175 s. 

Biotinylated CD39 detection reagent was used at a dilution of 1:500, and visualized in 

the last imaging cycle using DNA streptavidin–phycoerythrin (1:2,500 final concentration). 

DRAQ5 nuclear stain (1:500 final concentration) was added and visualized in the last 

imaging cycle. Each tissue was imaged with a ×20 objective in a 7 × 9 tiled acquisition at 

1,386 × 1,008 pixels per tile and a resolution of 396 nm per pixel, with 13 z-planes per tile 

(axial resolution 1,500 nm). Images were chosen with the best focus from the z-planes, and 

out-of-focus light was removed using deconvolution. Acquired images were preprocessed 
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(alignment and deconvolution with Microvolution software http://www.microvolution.com/) 

and segmented (including lateral bleed compensation) using a publicly available CODEX 

image processing pipeline available at https://github.com/nolanlab/CODEX.

Manual assessment of CELESTA performance on the HNSCC cohort.

CELESTA performance on the HNSCC cohort was assessed manually by mapping 

CELESTA-assigned cell types onto the original images using the x and y coordinates with 

the ImageJ plugin from https://github.com/nolanlab/CODEX (Extended Data Figs. 6 and 

7). For each cell type, CELESTA-assigned cells were plotted as yellow crosses on the 

canonical marker staining images. Marker staining was shown as a white signal on a black 

background. Key marker staining for each cell type is shown in Extended Data Figs. 6 and 7. 

Assessment for each cell was defined as positive canonical marker signals for that cell type.

Manual gating of the HNSCC cohort.

The segmented dataset was uploaded onto the Cytobank analysis platform and transformed 

with an inverse hyperbolic sine (cofactor of 5). The gating strategy was as follows: cells 

were defined using DRAQ5 nuclear expression and size, followed by endothelial (CD31+) 

and malignant cells (cytokeratin+). CD4+ T cells (CD4+ CD8− CD3+ CD31− cytokeratin−), 

CD8+ T cells (CD8+ CD4− CD3+ CD31− cytokeratin−) and Tregs (FOXP3+ CD25+ CD4+ 

CD8− CD3+ CD31− cytokeratin−) were defined. To adjust for the variability between 

sample image collection, each gate was tailored to each individual sample.

Spatial co-localization analysis.

We used the co-location quotient to identify cell spatial co-localization. By denoting cell 

type a as the target cells and cell type b as the neighboring cells, the co-location quotient 

shows the degree to which cell type b co-locates spatially with cell type a as a ratio of the 

observed to the expected number of cell type b among the set of nearest neighbors of cell 

type a, defined as:

CLQb a = Cb a/Na
Nb/(N − 1) (10)

where C is the number of cells of cell type b among the defined nearest neighbors of cell 

type a. N is the total number of cells and Na and Nb are the numbers of cells for cell type 

a and cell type b. Cell types with fewer than 20 cells were excluded for each sample. We 

calculated the co-location quotient for the pairwise cell types identified, and compared the 

co-location quotients for each pair between N+ and N0 samples.

HNSCC Tumor tissue dissociation.

Tumor tissue was thoroughly minced with a sterile scalpel and placed in a gentleMACS 

C-tube (Miltenyi Biotec) containing 1.5 ml tissue digestion media. Tissue was mechanically 

digested on the GentleMACS dissociator five times under the human tumor tissue program 

h_tumor_01. Tissue was filtered with a 40 μm nylon cell strainer (Falcon) into a 14 ml tube 

that was then filled up to 14 ml with tissue digestion media and spun at 4 °C for 10 min at 

514 r.c.f. The mechanically digested cell pellet was re-suspended for 2 min on ice in 1–4 
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ml ACK (ammonium-chloride-potassium) lysis buffer (Gibco) depending on the pellet size 

and number of red blood cells present. Cells were filtered with a 40 μm nylon cell strainer 

(Falcon) into a 14 ml tube that was then filled up to 14 ml with FACS buffer (PBS without 

calcium or magnesium (Corning), 2%FBS (heat inactivated), 10 units ml−1 Penicillin–10 μg 

ml−1 Streptomycin (Gibco) and 1 mM Ultra Pure EDTA (Invitrogen)) and spun at 4 °C for 

10 min at 514 r.c.f. Cells were washed one more time with FACS buffer and re-suspended 

in 25 μl FACS buffer. Solid tissue in the strainer was collected and placed back in the 

C-tube with 2 ml tissue digestion media of 1 ml 3,000 U ml−1 collagenase/1,000 U ml−1 

hyaluronidase (StemCell Technologies) and 1 ml 5 U ml−1 dispase (StemCell Technologies). 

The solid tissue in the C-tube was incubated at 37 °C on a rotator for 1 h, and then filtered 

with a 40 μm nylon cell strainer (Falcon) into a 14 ml tube that was then filled up to 14 

ml with tissue digestion media and spun at 4 °C for 10 min at 514 r.c.f. The enzymatically 

digested cell pellet was re-suspended in 1–4 ml ACK lysis buffer (Gibco) (depending on the 

pellet size and number of red blood cells present) for 2 min on ice. Cells were filtered with 

a 40 μm nylon cell strainer (Falcon) into a 14 ml tube that was then filled up to 14 ml with 

FACS buffer (PBS without calcium or magnesium (Corning), 2%FBS (heat inactivated), 

10 units ml−1 Penicillin–10 μg ml−1 Streptomycin (Gibco) and 1 mM Ultra pure EDTA 

(Invitrogen)) and spun at 4 °C for 10 min at 514 r.c.f. Cells were re-suspended in FACS 

buffer, counted on a hemacytometer and washed one more time with FACS buffer. Cells 

were kept in FACS buffer on ice until flow cytometry staining. The sorting panel is listed in 

Supplementary Table 5.

Single-cell RNA sequencing.

RNA and library preparations were performed according to the 10x Genomics v2.0 

handbook. Single cells were obtained from tissue dissociation. Cells were stained with 

4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) for live–dead detection and sorted 

for up to 500,000 live cells on a BD Aria II. Cells were counted after sorting and before 

10x chip preparation. The 10x/Abseq (BD Biosciences) library preparation followed the 

same protocol as the 10x Genomics samples except the addition of Fc Block and Abseq 

antibody staining according to the manufacturer’s handbook. Reads were aligned using 

CellRanger. Preprocessing, data normalization and batch correction were done following the 

Seurat SCTransform integration pipeline. Cells were clustered by shared nearest neighbor 

modularity optimization. The cell types present were identified using canonical markers.

HNSCC tissue microarray.

Formalin-fixed paraffin-embedded tissue blocks of HNSCC from 79 patients were pulled 

from the Stanford Health Care Department of Pathology archives. The area of malignancy 

was marked by a board-certified pathologist (C.S.K.). The TMA was constructed from 

1-mm-diameter cores punched from the tissue blocks. The 4-μm-thick sections were 

stained with hematoxylin and eosin, FOXP3 (clone 236A/E7, 1:100 dilution; Leica BOND 

epitope retrieval solution 2) and cytokeratin mix (AE1/AE3, 1:75 dilution and CAM5.2, 

1:25 dilution; Ventana Ultra; protease retrieval). The slides were digitized using a Leica 

whole-slide scanner with ×40 magnification. Three samples with unknown node status 

were excluded from analysis. To assess the co-localization of FOXP3 and cytokeratin 

immunohistochemistry staining, the whole-slide images were dearrayed to obtain each core 
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image. We ran color deconvolution to quantify DAB staining using the scikit-image package 

in Python. We thresholded the staining based on pixel intensity distributions of the DAB 

staining to quantify the positively stained pixels in the images. We used a sliding window 

of 100 × 100 pixels to quantify the positive pixel densities for cytokeratin and FOXP3 in 

each window and moved the sliding window to cover the whole core area. We correlated 

the densities of cytokeratin staining and FOXP3 staining across the whole core area for each 

sample. We then compared the density correlations between the N0 and N+ samples.

Statistical analysis and figure creation.

Statistical analyses were performed and the corresponding figures were generated in R or 

Python. Student’s t-test was used for comparisons of co-location quotient and comparisons 

of TMA density correlation between HNSCC N0 and N+ samples. For in vitro and in 

vivo functional experiments the non-parametric Wilcoxon rank-sum test was used for 

comparisons. In addition, when comparing paired conditions with equal sample sizes, we 

used the paired t-test. For multiple testing of differentially expressed gene expressions in 

scRNA-seq data, the permutation test (SAMR)47 was used, and the false discovery rate was 

used to adjust the P values. Results were considered statistically significant for P < 0.05 or 

adjusted P < 0.05 for multiple testing.

For cell neighborhood enrichment analysis (Extended Data Fig. 1a), for the five nearest 

neighbor cells for each cell, the number of cells of each cell type was calculated and the 

observed total number of cell types in the neighborhood of another cell type could be 

calculated. Using 1,000 permutations of the cell labels, the distribution of the randomly 

expected number of neighboring cells for each cell type could be constructed, and a right-

tailed P value was used to confirm that the observed number was larger than 95% of the 

randomly expected number for enrichment. The Benjamini–Hochberg procedure was used 

to adjust the P values. A statistically significant neighborhood enrichment of cells was 

confirmed when both the P value and the adjusted P value were less than 0.05.

For the public colorectal cancer dataset the ground truth was defined using the published 

annotations. For the HNSCC study cohort dataset the ground truth is defined using manual 

gating. For the public colorectal cancer dataset, cell types with fewer than 5 cells in a 

sample region in the annotations were excluded. For each cell type, the true positive (TP) 

is the number of cells assigned by both CELESTA and the ground truth benchmark, the 

false positive (FP) is the number of cells assigned by CELESTA but not by the ground 

truth benchmark, the false negative (FN) is the number of cells assigned by the benchmark 

but not by CELESTA, and the true negative (TN) is the number of cells not assigned 

by both CELESTA and the benchmark. For the HNSCC cohort the adjusted Rand index 

was calculated using the adjustedRandIndex function in the R package mclust. Precision is 

defined as TP/(TP + FP), and recall is defined as TP/(TP + FN). F1 score is defined as 

2(precision × recall)/(precision + recall). The Rand index, a measure of accuracy, is defined 

as (TP + TN)/(TP + TN + FP + FN).

Parts of Figs. 5 and 6 were created using the Biorender online tool (https://biorender.com). 

Multichannel overlay images were created using ImageJ.
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Cell lines and animals.

Cells were cultured in DMEM supplemented with 4 mM L-glutamine, 10% FBS and 1% 

Penicillin Streptomycin. The tumor lines were routinely tested for Mycoplasma using 

polymerase chain reaction, and all tests were negative. All animal studies were performed 

in accordance with the Stanford University Institutional Animal Care and Use Committee 

under protocol APLAC-17466. All mice were housed in an American Association for 

the Accreditation of Laboratory Animal Care-accredited animal facility and maintained in 

specific pathogen-free conditions.

Transwell migration assays.

FoxP3EGFP mice48 were acquired from The Jackson Laboratory (catalog no. 006772) 

and bred at Stanford University. Splenocytes were collected from tumor-naive female 

FoxP3EGFP mice. All studies were performed in female mice between 7 and 9 weeks 

of age. Mice were housed in facilities maintained at a temperature of 18–24 °C, with 

humidity between 40% and 60% and with 12–12 light–dark cycles (07:00–19:00 hours). 

Spleens underwent mechanical dissociation on 70 μm cell strainers and were washed with 

HBSS supplemented with 2% FBS and 2 mM EDTA (HBSSFE). Erythrocytes were lysed 

with ACK. Magnetic isolation of Tregs was performed using the EasySep Mouse CD25 

Regulatory T cell Positive Selection Kit (StemCell, catalog no. 18782) according to the 

manufacturer’s instructions. Tregs were cultured in RPMI-1640 supplemented with 10% 

FBS, 2 mM L-glutamine, 15 mM HEPES, 14.3 mM 2-mercaptoethanol, 1 mM Sodium 

Pyruvate, 1× MEM Non-Essential Amino Acids Solution and 300 IU hIL-2 (Peprotech) for 

72 h.

Tumor cell line suspensions were prepared by washing with PBS followed by treatment 

with StemPro Accutase (Thermo, catalog no. A1110501). A total of 105 tumor cells were 

plated in the bottom chamber of the 24-well transwell plates 24 h prior to the assay. The 

5 μm transwell membranes (Costar, catalog no. 3421) were incubated in complete RPMI 

for 24 h prior to the assay. Membranes were transferred to the tumor-containing wells and 

suspensions of 5 × 104 Tregs were added to the top chambers of the transwells. Cells were 

cultured for 2 h at 37 °C in 5% CO2, after which the membranes were removed, and cells 

from the bottom chamber were processed for analysis by flow cytometry.

Cell suspensions were washed in HBSSFE and stained with the following antibodies: Mouse 

Fc Block (BD, 2.4G2, 553142, 1:200), CD4 (BioLegend, RM4–5, 100563, 1:200), CD25 

(BioLegend, PC61, 102026, 1:75), and CXCR3 (BioLegend, CXCR3–173, 155906, 1:100). 

DAPI was used to stain for viability. Samples were run on an LSRFortessa cytometer 

(Becton Dickinson) and analyzed using FlowJo V10 (TreeStar).

In vivo Treg tumor infiltration.

Experiments were performed using either C57NL/6J (The Jackson Laboratory, catalog no. 

000664) or FoxP3EGFP (The Jackson Laboratory, catalog no. 006772) female mice housed 

in our facility at Stanford. B16-F0 or LN6–987AL tumor cells were washed with PBS 

and dissociated from tissue culture plastic with StemPro Accutase (Thermo, catalog no. 

A1110501). Cell suspensions of 2 × 105 cells in phenol-red free DMEM were injected 
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into the subcutaneous region of the left flank of 9-week-old female mice (The Jackson 

Laboratory, catalog no. 000664) following removal of fur with surgical clippers. After 15 

days of tumor growth the mice were euthanized and their tumors were processed for analysis 

by flow cytometry.

Tumors were weighed followed by digestion in RPMI-1640 supplemented with 4 mg 

ml−1 Collagenase Type 4 (Worthington, catalog no. LS004188) and 0.1 mg ml−1 

Deoxyribonuclease I (DNAse I, Sigma, catalog no. DN25) at 37 °C for 20 min with 

agitation. Tumors were then dissociated on 70 μm strainers, washed with HBSSFE 

and stained for viability using LIVE/DEAD Fixable Blue Dead Cell Stain (Thermo, 

catalog no. L34962). Surface proteins were stained, samples were fixed and permeabilized 

using the eBioscience FoxP3 Fixation/Permeabilization kit (Thermo, 00-5521-00), and 

intracellular FoxP3 was stained. The following antibodies were used: Mouse Fc Block 

(BD, 2.4G2, 553142, 1:200), CD4 (BioLegend, RM4–5, 100563, 1:200), CD8α (BioLegend, 

53–6.7, 100750, 1:200), CD3 (BioLegend, 17A2, 100237, 1:75), CD25 (BioLegend, PC61, 

102026, 1:75), B220 (BioLegend, RA3–6B2, 103255, 1:200), CD45.2 (BioLegend, 104, 

109806, 1:100) and FoxP3 (Thermo/eBiosciences, NRRF-30, 12-4771-82, 1:20). AccuCount 

fluorescent particles (Spherotec, catalog no. ACFP-50–5) were added to each sample to 

determine absolute cell counts. Samples were run on an LSRFortessa cytometer (Becton 

Dickinson) and analyzed using FlowJo V10 (TreeStar).

For CXCR3-blockade studies, LN6–987AL cells were prepared as above and injected into 

7-week-old FoxP3EGFP mice. Mice were treated with AMG487 (R&D Systems, catalog no. 

4487) at 5 mg kg−1 every 48 h starting on day 1 following tumor implantation. After 9 days 

of tumor growth the mice were euthanized and their tumors were processed for analysis by 

flow cytometry (BD FACS Diva 8.0.2) as described above.

Reporting summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Zhang et al. Page 16

Nat Methods. Author manuscript; available in PMC 2022 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data

Extended Data Fig. 1 |. Neighborhood enrichment analysis, expression distributions of protein 
markers and illustration of final updated prior knowledge cell type signature matrix.
(a) Cell neighborhood enrichment analysis using Schurch et al.6 cell type annotations. Red 

versus blue indicates that cells of a given cell type (columns) are significantly enriched 

versus are not enriched, respectively, in the 5-nearest neighborhood of a cell type of interest 

(rows). Cells of the same or similar cell type are enriched in each other’s neighborhoods. 

Statistical significance is determined with p-value right tail < 0.05 and Benjamini–Hochberg 

adjusted p-value < 0.05. Legend for cell count indicates the number of cells below 2,000, 

(2,000–4,000), (4,000–6,000), (6,000–8,000) and over 8,000 for each cell type across 

the 70 samples. (b) Histograms of protein expressions in a representative sample. Red 
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curves illustrate fitted bimodal Gaussian mixture model. The protein expression levels were 

ArcSinh transformed. (c) Illustration of final updated prior knowledge cell type signature 

matrix on a representative sample from Schurch et al. data. The initial user-defined cell type 

signature matrix is shown in Supplementary Table 1. There were no NK cells identified 

in this sample, and thus information on NK cells is not updated in the cell type signature 

matrix. White to red color indicates values from 0 to 1. Gray color indicates NA values.

Extended Data Fig. 2 |. Comparison between CELESTA and Schurch et al.6 annotations on the 
colorectal cancer dataset.
(a) Confusion matrix for each cell type identified by CELESTA (rows) versus Schurch et 

al.6 (column) for 70 samples. White to red color indicates values from low to high. (b) 
Nuclei staining for sample core 032. (c) Cytokeratin staining for sample core 032. (d) 
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Tumor cells identified by Schurch et al. (yellow crosses) overlaid on cytokeratin staining for 

sample core 032. (e) Tumor cells identified by CELESTA overlaid on cytokeratin staining 

for sample core 032. (f) Average canonical cell type marker expressions across all the 70 

samples on cells identified to be tumor cells by (i) both CELESTA and Schurch et al. 

(black), (ii) only CELESTA (orange), and (iii) only Schurch et al. (blue). (g) Similar to (f) 

but with error bars indicating 95% confidence interval based on sampling the same number 

of cells from each category across n = 70 samples and center values indicate mean values.

Extended Data Fig. 3 |. Testing leave-one-out marker and cell type resolution strategy and 
sensitivity analysis of user-defined parameters (hyperparameters) in CELESTA using the 
Schurch et al.6 dataset.
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(a) Assigned cell type proportions for testing of different cell type signature matrices with 

each time leaving one cell type marker and corresponding cell type out. (b) Comparison of 

CELESTA’s performance with (yellow) and without (purple) cell type resolution strategy. 

(c) Average numbers of neighboring cells as a function of the bandwidth parameter across 

n = 70 samples. Error bar indicates standard deviation, and center value indicates mean 

values. (d) F1 score as a function of the number of nearest neighbors. Left panel: major 

cell populations. Right panel: cell types with smaller populations. (e) Effect of different 

values for the threshold of high marker probability expression. Left panel: Number of 

cells assigned to unknown cell types as a function of the threshold for high marker 

probability expression. Middle panel: F1 scores as a function of the threshold for high 

marker probability expression, for major cell types. Right panel: F1 scores as a function of 

the threshold for high marker probability expression, for cell types with smaller populations.

Zhang et al. Page 20

Nat Methods. Author manuscript; available in PMC 2022 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4 |. Comparison of expression probabilities versus original staining across a 
representative sample.
Expression probability for a given marker for each cell CELESTA (left) compared to marker 

staining on the original image (right). For the CELESTA result, the marker expression 

probability is shown at the XY coordinates of the cell, where the XY coordinates represents 

the cell’s center; marker expression probabilities are color-coded for values over 0.5 in light 

blue to over 0.9 in dark blue. Markers illustrated are: (a) aSMA, a mesenchymal marker, (b) 
cytokeratin, a tumor marker and (c) CD31, an endothelial marker.
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Extended Data Fig. 5 |. Analysis of two different clustering-based methods (namely, flowMeans 
and FlowSoM) used to assign cell types on the Schurch et al.6 dataset.
(a) Heatmaps of cluster marker expressions on different numbers of clusters (n = 20, 30, 

50) with two independent annotators (Anno1 and Anno2) to assign cluster cell types based 

on manual assessment of cluster protein marker expressions; light green indicates matched 

annotations and dark green indicates mismatched annotations. (b) Percentage of matched 

cluster annotations between the two annotators as a function of the number of clusters, for 

two different clustering methods. (c) Number of cell types identified by the two annotators 

as a function of the number of clusters, for the two different clustering methods. (d) The 

percentage of cells assigned to unknown cell types with CELESTA and the two different 

clustering methods, as a function of the number of clusters and the annotator. (e) F1 scores 

per cell type, comparing CELESTA and cell type assignments from the two annotators using 
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the two different clustering methods, where annotations from Schurch et al. are used as 

ground truth. Abbreviations: Anno1 for Annotator 1; Anno2 for Annotator 2.

Extended Data Fig. 6 |. Visual assessment of CELESTA’s performance for a representative 
HNSCC sample.
(a)–(f) Identified cells are shown as yellow crosses using the x and y coordinates overlaid 

on canonical marker staining (white) CODEX images. For each cell type, nuclei staining and 

three example markers (positive and negative) important for the cell type are shown. Cell 

types shown (a)–(f): malignant cells, endothelial cells, fibroblast cells, B cells, NK cells, 

plasmacytoid dendritic cells.
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Extended Data Fig. 7 |. Additional visual assessment of CELESTA’s performance for a 
representative HNSCC sample.
(a)–(f) Identified cells are shown as yellow crosses using the x and y coordinates overlaid 

on canonical marker staining (white) CODEX images. For each cell type, nuclei staining and 

three example markers (positive and negative) important for the cell type are shown. Cell 

types shown (a)–(f): T cells, conventional dendritic cells, neutrophils, CD8 + T cells, CD4 + 

T cells, Treg cells.
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Extended Data Fig. 8 |. Gating strategies on the head and neck squamous cell carcinoma 
(HNSCC) samples.
Gating strategies used to identify key cell types relevant to the HNSCC study including 

malignant cells, endothelial cells and subtypes of T cells.
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Extended Data Fig. 9 |. Additional scRNA-seq analysis of primary HNSCC samples and scRNA-
seq analysis using public domain data from Puram et al. (2017)34.
(a) UMAP plot of identified cell clusters with node status on the study HNSCC cohort. 

(b)–(c) UMAP plots highlighting expression of FOXP3, IL2RA, CXCR3, CD4 and CD8A. 

(d) CXCR3 expression in different T cell clusters showing that CXCR3 is differentially 

expressed in N0 (n = 2) versus N + (n = 2) samples only in the Treg cells. (e) Violin plot 

of STAT1 expression in the Treg cluster between N + (n = 2) and N0 (n = 2) samples. 

STAT1 is a CXCR3 inducer. (f) Violin plot of CXCL9 and CXCL11 in the malignant cell 

cluster between N + (n = 2) and N0 (n = 2) samples. CXCL9 and CXCL11 are both 

ligands of CXCR3, but they are not differentially expressed in our data. (g) Heatmap shows 

expressions of CD274 (PD-L1), MUC1, EMT markers (CDH1 and VIM) and stemness 
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markers (CD44 and CD24). (h) UMAP of identified cell clusters using the Puram et al. 

dataset. (i) UMAP of identified cell type clusters with node status color-coded. (j) UMAP 

plots of CD4, CD8A, and FOXP3. (k) UMAP plot of CXCR3. (l) Violin plots of CXCR3 in 

the T cell clusters between N + (n = 12) and N0 (n = 6) samples. (m) Violin plot of CXCL10 

in malignant cell cluster 0 between N + (n = 12) and N0 (n = 6) samples. Differentially 

expressed genes were identified using SAMR and false discovery rate was used to adjust 

p-values. Center line of box plot defines data median, top value indicates largest value 

within 1.5 times interquartile range above 75th percentile, bottom value indicates smallest 

value within 1.5 times interquartile range below 25th percentile, and upper and lower bounds 

of the box plot indicate 75th and 25th percentile respectively. *: adjusted p-value < 0.05, **: 

adjusted p-value < 0.01, ***: adjusted p-value < 0.005, ****: adjusted p-value < 0.001.

Extended Data Fig. 10 |. Gating strategies used for mouse model studies.
Gating strategies used to study CXCL10–CXCR3 crosstalk between malignant and Treg 

cells in the functional studies.
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Fig. 1 |. Image analysis pipeline with CELESTA.
a, Typical analysis pipeline for multiplexed in situ image data. b, Schematic diagram 

illustrating the iterative process in CELESTA’s cell type assignment. c, In CELESTA’s 

cell type assignment, the cell types are assigned to an image tile in which each dot represents 

a single cell and is positioned on the cell’s centroid.
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Fig. 2 |. overview of CELESTA.
a, CELESTA flowchart. b, CELESTA’s inputs and preprocessing steps. c, Illustration of 

CELESTA’s marker-scoring function. d, Illustration of CELESTA’s spatial-scoring function, 

using spatial neighborhood information for each non-anchor cell i. The cell type information 

from the spatially nearest neighboring cells of cell i is derived using the energy function 

of the Potts model. e, Each non-anchor cell Ci is associated with an unknown state Si, 

which is the cell type to be inferred. Cells are represented as nodes in an undirected graph 

with edges connecting N nearest spatial neighbors. The joint distribution of S is assumed 

to satisfy a discrete Markov random field. f, Illustration of the cell type resolution strategy 

used by CELESTA, based on the HNSCC imaging panel markers (in parentheses). cDC, 

conventional dendritic cell; CK, cytokeratin; MRF, Markov random field; NK, natural killer; 
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pDC, plasmacytoid dendritic cell. Beta used in the flowchart (a) is a vector of model 

parameters.
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Fig. 3 |. CELESTA applied to a published CodEX dataset generated from a TMA of colorectal 
cancer primary samples (Schürch et al.6).
a, Representative TMA core with seven-channel overlay CODEX image (left), image using 

CELESTA-assigned cell types (middle) and image using annotated cell types from Schürch 

et al.6 (right). Scale bar, 50 μm. b, Cell type composition from CELESTA-assigned cell 

types versus annotations from Schürch et al.6, across the 70 cores of the entire TMA. 

c, Correlations between the number of cells identified, per TMA core across 70 cores, 

between the CELESTA and Schürch et al.6 annotations, for each cell type. The red line 

indicates a perfect correlation (slope = 1) and the blue line is the linear fit between the 

CELESTA-identified cell types and the Schürch et al.6 annotations. R represents the Pearson 

correlation coefficient. d, Precision score, F1 score and accuracy (Rand index) score for the 

major cell types identified by CELESTA using the Schürch et al.6 annotations as the ground 
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truth. Error bars are calculated using s.d. across all of the cores (n = 70) as independent 

samples; the center of the error bars indicates the mean. A cell type is defined as rare if it 

has, on average, fewer than 100 cells per core. e,f, CELESTA cell type assignments for a 

cluster that Schürch et al.6 annotated as a mixture of vasculature or immune cells (e) and as 

a mixture of tumor or immune cells (f). CELESTA cell type compositions are shown in the 

left panels and the average canonical marker expressions for each cell type in the cluster are 

shown in the right panels. aSMA, alpha-smooth muscle actin.
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Fig. 4 |. CELESTA applied to CodEX data generated from fresh-frozen HNSCC primary tumor 
samples.
a,b, CODEX image overlay (left) and CELESTA (right) for a primary tumor HNSCC 

sample associated with lymph node metastasis (N+) (a) and not associated with lymph node 

metastasis (N0) (b). Scale bars: main image and Hoechst stain, 200 μm; inset, 100 μm. 

c, Cell type compositions from scRNA-seq data (left) and CELESTA-inferred cell types 

on CODEX data (middle), by HNSCC patient sample. Paired scRNA-seq and CODEX 

data were generated on proximal tissue sections from four patient samples. The graph on 

the right shows the correlation (Pearson correlation test) between CELESTA-inferred cell 

compositions and scRNA-seq cell compositions on the same four samples. d, Adjusted Rand 

index (ARI) to assess the performance of CELESTA against manual gating for each HNSCC 

sample. Error bars indicate the s.d. calculated based on 50 runs of random sampling, and the 
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center of the error bars indicates the mean. e, Correlation (Pearson correlation test) between 

CELESTA-inferred cell compositions and manual gating compositions. f, Cell type precision 

score, F1 score and accuracy score (Rand index), across six independent samples, for six cell 

types. Error bars are calculated using s.d., and the center of the error bars indicates the mean. 

CK, cytokeratin; NK, natural killer.
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Fig. 5 |. Spatial pairwise cell type co-localization analysis based on CELESTA-identified cell 
types in the HNSCC study cohort.
a, Schematic representation of two different pairwise cell type spatial patterns: low pairwise 

cell type co-localization (left) and high pairwise cell type co-localization (right). b, 

Differential pairwise cell type co-location quotients (CLQs) when comparing N+ (n = 4) 

versus N0 (n = 4) HNSCC samples. Volcano plot based on nominal P values from two-sided 

Student’s t-test. c, Graphical illustration of inferred spatial architectural differences of 

cell–cell co-localizations in N0 samples (top) versus N+ samples (bottom). Created with 

BioRender.com. d, Representative regions of an N0 sample (left) and N+ sample (right) 

shown as three-color overlay images. Circled region in the right panel highlights a region 

with high co-localization of malignant and Treg cells in the N+ sample. Scale bars, 50 μm 

(0.4 μm per pixel). e, Representative regions for an N0 sample (left) and N+ sample (right) 
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shown as four-color overlay images. The arrows highlight the regions in the right panel 

with high co-localization of endothelial and T cells in the N+ sample. Scale bars, 50 μm 

(0.4 μm per pixel). f, Representative HNSCC TMA cores for N0 and N+ patients shown as 

overlay images with cytokeratin and FOXP3 staining. Each TMA core is approximately 1 

mm in diameter. Scale bars, 0.25 mm. g, Density correlation analysis shows that cytokeratin 

and Foxp3 expression have a higher density correlation in N+ patients (n = 44) than in 

N0 patients (n = 32) in an independent TMA cohort of HNSCC primary samples (P = 

0.011, two-sided Student’s t-test). The center line of the box plot represents the median, the 

whiskers represent 1.5-fold the interquartile range, and the upper and lower ends of the box 

plot indicate the 75th and 25th percentiles, respectively. *P < 0.05.
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Fig. 6 |. scRNA-seq analysis guided by spatial biology reveals cell–cell interactions unique to 
primary HNSCC associated with lymph node metastasis.
a, UMAP (Uniform Manifold Approximation and Projection; an algorithm for dimension 

reduction) of identified cell type clusters using HNSCC scRNA-seq data. b, UMAP of 

malignant cells (cluster 11) by node status (left) and CXCL10 expression (right). c,d, Violin 

plots showing the differential expression of CXCL10 and CXCR3 in malignant and Treg 

cell clusters (c) and CCL20 in an endothelial cell cluster and CCR6 in a CD4+ T cell 

cluster (d) between N+ (n = 2) and N0 (n = 2) samples. Differentially expressed genes 

were identified using SAMR (Significance Analysis of Microarrays in R) and the false 

discovery rate was used to adjust the P values. Violin plots show density distributions 

of the data. Center line of the box defines median. The white box in the center of the 

violin defines the interquartile range. The black line stretched above from the box defines 
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1.5 times interquartile range above the 75th percentile, and the black line stretched below 

from the box defines 1.5 times interquartile range below the 25th percentile. e, Graphical 

illustration showing the cell–cell crosstalk with identified chemokine ligand–receptor pairs 

mediating the cellular spatial co-localization in N+ samples. Created with BioRender. com. 

f, CXCL10 expression is significantly higher (two-sided non-parametric Wilcoxon test) in 

the sixth generation of a lymph node tumor cell line (LN6) in a mouse model (n = 5) 

than in the parental (n = 3) tumor cell lines (P = 0.036). TPM, Transcripts Per Kilobase 

Million. g, Transwell experiment showing that LN6 tumor cells attract more CXCR3+ Tregs 

through the membrane than parental tumor cell lines (paired t-test right-tailed, P = 0.05). 

Tregs were plated in the upper chambers; the bottom chambers were plated with either 

the parental cells (control group, n = 3) or LN6 cells (study group, n = 3). h, Schematic 

diagram of the in vivo experiments. Created with BioRender.com. i, LN6 (n = 4) tumors 

recruit more Tregs than parental (n = 4) tumors (paired t-test right-tailed, P = 0.034). j, 
AMG487 treatment significantly reduces the number of Tregs recruited into the LN6 tumors 

(two-sided non-parametric Wilcoxon test, P = 0.029). Untreated samples, n = 8, and treated 

samples, n = 7. The center line of the box plot defines the median, the top whisker indicates 

the largest value within 1.5-fold the interquartile range from the 75th percentile, the bottom 

whisker indicates the smallest value within 1.5-fold the interquartile range below the 25th 

percentile, and the upper and lower bounds of the box indicate the 75th and 25th percentiles, 

respectively. *adjusted P < 0.05, **adjusted P < 0.01, ***adjusted P < 0.005, ****adjusted 

P < 0.001.

Zhang et al. Page 41

Nat Methods. Author manuscript; available in PMC 2022 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://BioRender.com

	Abstract
	Results
	Overview of CELESTA.
	Incorporation of cell lineage.
	Performance of CELESTA.
	Comparison of CELESTA to clustering methods.
	CELESTA applied to primary HNSCC tumors imaged by CODEX.
	Spatial biology enabled by CELESTA.
	Spatially guided scRNA-seq analysis.
	Functional validation of CXCL10–CXCR3 crosstalk.

	Discussion
	Methods
	CELESTA.
	Marker-scoring function.
	Markov random field.
	Spatial-scoring function.
	Optimization of objective function for cell type identification.

	Human tumor specimens.
	CODEX image acquisition and segmentation.
	Manual assessment of CELESTA performance on the HNSCC cohort.
	Manual gating of the HNSCC cohort.
	Spatial co-localization analysis.
	HNSCC Tumor tissue dissociation.
	Single-cell RNA sequencing.
	HNSCC tissue microarray.
	Statistical analysis and figure creation.
	Cell lines and animals.
	Transwell migration assays.
	In vivo Treg tumor infiltration.
	Reporting summary.

	Extended Data
	Extended Data Fig. 1 |
	Extended Data Fig. 2 |
	Extended Data Fig. 3 |
	Extended Data Fig. 4 |
	Extended Data Fig. 5 |
	Extended Data Fig. 6 |
	Extended Data Fig. 7 |
	Extended Data Fig. 8 |
	Extended Data Fig. 9 |
	Extended Data Fig. 10 |
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |
	Fig. 6 |

