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Abstract

G protein-coupled receptors (GPCRs) mediate cellular responses to diverse extracellular stimuli
that play vital roles in the regulation of biology, including behavior. Abnormal G protein-coupled
receptor kinase (GRK)-mediated regulation of GPCR function is involved in the pathogenesis

of hypertension. Among the seven GRK subtypes, GRK4 has attracted attention because of its
constitutive activity and tissue-specific expression. Increasing number of studies show that GRK4
affects blood pressure by GPCR-mediated regulation of renal and arterial function. The target
receptor of GRK4 is confined not only to GPCRs, but also to other blood pressure-regulating
receptors, such as the adiponectin receptor. Genetic studies in humans show that in several ethnic
groups, GRK4 gene variants (R65L, A142V, and A486V) are associated with salt-sensitive or
salt-resistant essential hypertension and blood pressure responses to antihypertensive medicines. In
this article, we present a comprehensive overview of GRK-mediated regulation of blood pressure,
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focusing on the latest research progress on GRK4 and hypertension and highlighting potential and
novel strategies for the prevention and treatment of hypertension.
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1. Introduction

Essential hypertension, also known as primary hypertension and idiopathic hypertension,

or simply hypertension, is a major contributing risk factor for cardiovascular diseases and
other diseases with adverse clinical outcomes, including stroke, heart failure, end-stage-renal
disease, and all-cause mortality (Virani et al., 2021). In the United States National Health
and Nutrition Examination Survey 2015 to 2018, the prevalence of hypertension was 28.2%,
60.1%, and 77.0% among subjects 20 to 44, 45 to 64, and = 65 years old, respectively
(https://lwww.cdc.gov/nchs/nhanes/). The estimated expenditure for hypertension in the US
from 2016 to 2017 was $52.4 billion (Virani et al., 2021). Of 154 health conditions in the
US, hypertension ranked 10th in health care costs (Dieleman et al., 2020). Hypertension is a
major public health problem worldwide (Fisher & Curfman, 2018; Kostova et al., 2020).

The pathogenesis of hypertension is determined by genetic and environmental factors and
their interaction (Harrison, Coffman, & Wilcox, 2021; Wang et al., 2020), in which several
organs such as the arteries, brain, endocrine organs, gastrointestinal tract, heart, kidneys,
and nerves are involved. Many endocrine factors or neurotransmitters, such as dopamine,
angiotensin Il (Ang I1), endothelin, and epinephrine, regulate sodium homeostasis and
vascular reactivity, via their G protein-coupled receptors (GPCRS), to maintain a normal
systemic arterial blood pressure (Eroglu, Kocyigit, & Lindholm, 2020; Prieto, Gonzalez,
Visniauskas, & Navar, 2021; Rianto, Hoang, Revoori, & Sparks, 2021; Yang, Villar, Jose,
& Zeng, 2021). However, in hypertension, GPCR function is aberrant, causing sodium
retention and attenuated vasodilation (Prieto et al., 2021; Rianto et al., 2021; Yang et al.,
2021). Although the mechanisms leading to aberrant GPCR function are complex, abnormal
GPCR phosphorylation plays an important role in the pathogenesis of hypertension.

GPCR kinases (GRKSs) comprise seven serine/threonine protein kinases, characterized by
their ability to recognize specific GPCRs and phosphorylate their intracellular elements,
leading to their uncoupling from G protein subunits, also known as desensitization,
promote receptor internalization, and terminate the GPCR-mediated signaling pathway
(Benovic, 2021; Gurevich & Gurevich, 2020). Due to the important roles of GPCRs in

the development of human diseases, GRKs have attracted considerable attention for their
role in the pathogenesis of cardiovascular diseases, including hypertension (de Lucia et al.,
2021; Li et al., 2021; Pfleger, Gresham, & Koch, 2019).

Among the GRKs, GRK4 may be the most versatile subtype of GRK in the regulation of
blood pressure (Yang, Villar, Jones, Jose, & Zeng, 2015). Several studies have shown that
GRKA4 plays a vital role in the pathogenesis of hypertension and response to antihypertensive
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treatment (Jeong et al., 2020; Vandell et al., 2012; Zhang et al., 2020). In this article, we
present a comprehensive overview of GRK-mediated regulation of blood pressure, especially
focusing on the latest research progress on GRK4 and hypertension, and highlighting
potential and novel strategies for the prevention and treatment of hypertension.

2. Classification and characteristics of GRKs

It is well known that there are over 800 genes encoding GPCRs in the human genome.
However, of the primary mediators of agonist-dependent phosphorylation of GPCRs, only
seven GRKs (GRK1-7) have been identified (Benovic, 2021; Gurevich & Gurevich, 2020;
Pfleger et al., 2019). The GRKs comprise a family of seven serine/threonine protein kinases
characterized by their ability to recognize and phosphorylate, specifically, agonist-activated
GPCRs (Chaudhary & Kim, 2021; Harris, 2012; Santos-Otte et al., 2019). According to their
amino acid sequences and ternary structural homologies, the seven mammalian GRKSs can
be classified into three sub-groups: the GRK1-like subfamily, also called as visual GRK
subfamily, which includes rhodopsin kinase GRK1 and visual pigment kinase GRK?7; the
GRK2-like subfamily, otherwise known as p-adrenergic receptor (B-AR) kinase subfamily,
which includes GRK2 (B-ARK1) and GRK3 (B-ARK2); and the GRK4-like subfamily,
which includes GRK4, GRKS5, and GRK6 (Benovic, 2021; Gurevich & Gurevich, 2020;
Pfleger et al., 2019).

The seven GRKSs share certain characteristics but are distinct enzymes with specific
regulatory properties. They have a similar basic structural architecture, which consists of

an amino terminal (N-terminal) domain (~185 amino acids), a central highly conserved
catalytic domain (~270 amino acids), and a carboxyl terminal (C- terminal) domain (~105
to 230 amino acids). Each GRK has a well-conserved N-terminus, which is considered to
be vital for receptor binding and selective recognition of the activated GPCR. GRKSs also
contain a regulator of G protein signaling (RGS) homology (RH) domain (~120 amino
acids) (Chaudhary & Kim, 2021; Hullmann, Traynham, Coleman, & Koch, 2016; Yu,

Sun, Jiao, & Lee, 2018). Differences among GRKSs are most notable in the C-terminal
domain, which is responsible for their membrane localization. For example, GRK1 and
GRKY7 are prenylated at the C-terminus; however, GRK2 and GRK3 have a pleckstrin
homology domain, which facilitates recruitment to the membrane via interacting with Gpy
subunits. Within the GRK4-subfamily, GRK4 and GRKG6 are palmitoylated, whereas GRK5
contains a positively charged lipid-binding amphipathic helix and binds phospholipids via its
C-terminus (Homan, Glukhova, & Tesmer, 2013; Ribas et al., 2007). By contrast, the central
domain that is involved in its kinase catalytic function is highly conserved among different
GRKs. It should be noted that how GRKSs recognize GPCRs still remains unclear. A recent
study showed direct evidence that upon receptor activation, the N-terminus of GRK1 forms
a helix that anchors into the open cytoplasmic cleft of rhodopsin (Chen et al., 2021). The
mechanism by which other GRK subtypes recognize GPCRs and vice-versa needs further
studies.

The seven GRK subtypes have different tissue distributions. The four GRK subtypes, GRK2,
GRK3, GRKS5, and GRKS®, are widely expressed in mammalian tissues (Benovic, 2021;
Gurevich & Gurevich, 2020; Pfleger et al., 2019). By contrast, the other three subtypes,
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GRK1, GRK4, and GRK?7, are found in a limited number of tissues. Among them, GRK1
and GRK7 are found almost exclusively in the retina, whereas GRK4 has very limited
distribution in a few organs or tissues (see below) (Benovic, 2021; Gurevich & Gurevich,
2020; Li et al., 2021; Pfleger et al., 2019; Yang et al., 2015; Zhang et al., 2020). The
different tissue expressions among GRKs suggest specific properties in the regulation of
GPCRs or other targets and different physiological functions in different organs or tissues.

3. Regulation of blood pressure by GRKs

Studies have shown that most GRKSs, e.g., GRK2, GRK3, GRK4, GRKS5, and GRK®, but not
GRK1 and GRK7, are involved in the regulation of blood pressure via different mechanisms
(Chaudhary & Kim, 2021; Harris, 2012; Vandell et al., 2012; Yang et al., 2015; Zhang et al.,
2020).

Elevated GRK2 expression and activity are associated with increased blood pressure (Cohn
et al., 2009; Murga et al., 2019; Napolitano et al., 2012). Hypertensive humans and

several animal models of hypertension have elevated expression and activity of GRK2 in
lymphocytes, aortas, and vascular smooth muscle cells (VSMCs) (Cohn et al., 2009; Gros
et al., 2000; Izzoetal., 2008; Napolitano et al., 2012; Zhao, Vanhoutte, & Leung, 2015). Our
previous study also found that maternal diabetes mellitus-programmed hypertension in the
offspring is caused by increased GRK2 activity (Luo et al., 2018). Mice with VSM-targeted
GRK?2 overexpression have impaired (B-AR-mediated vasodilation and increased resting
blood pressure (Eckhart, Ozaki, Tevaearai, Rockman, & Koch, 2002). Pharmacological
blockade of GRK2 and (B1-AR interaction prevents the development of hypertension

in spontaneously hypertensive rats (SHRs), suggesting that inhibition of GRK2 activity
could be a strategy for treating hypertension and protecting target organs (Polhemus et

al., 2016; Rainbow et al., 2018; Sun et al., 2021). GRK2 downregulation/inhibition also
enhances cardiac insulin sensitivity and mild heart hypertrophy with preserved systolic
function, that is accompanied with repressed expression of genes related to pathological
hypertrophy (Lucas et al., 2014). However, there are a few reports that could be considered
as inconsistent with a major role of GRK2 in some hypertensive models (Avendafio et

al., 2014; Ciccarelli et al., 2013; Cohn et al., 2008; Oliver et al., 2014; Tutunea-Fatan

et al., 2018; Tutunea-Fatan, Caetano, Gros, & Ferguson, 2015). For example, nitric oxide
production in adult GRK2 hemizygous mice protects against Ang ll-induced hypertension
(Avendanio et al., 2014). GRK2 expression is decreased in the aortas of N(G)-nitro-L-
arginine methyl ester (L-NAME)-induced hypertensive rats, but unchanged in the mesenteric
arteries of SHRs (Oliver et al., 2014). The reasons leading to the differences are still
unknown, which need to be elucidated in the future.

Transgenic mice with cardiac-restricted expression of GRK3 have elevated systolic blood
pressure and increased cardiac output, associated with cardiac myocyte a.1-AR hyper-
responsiveness (Vinge et al., 2008). Although a-ARs are important regulators of vascular
resistance and GRK3 is expressed in the VSMCs, it is still unclear whether or not GRK3 can
regulate blood pressure by affecting vascular resistance. An overall blood pressure lowering
effect of GRK3 activation is supported from clinical evidence showing an inverse correlation
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between GRK3 mRNA expression in lymphocytes and ambulatory systolic and diastolic
blood pressure in normotensive and hypertensive humans (Oliver et al., 2010).

VSM-specific overexpression of GRKS5 in mice causes hypertension (Keys, Zhou, Harris,
Druckman, & Eckhart, 2005). In SHRs, the intramyocardial gene transfer of the amino-
terminal region of GRKS5 reduces GRK5-mediated exacerbation of cardiac hypertrophy in a
blood pressure independent manner (Hullmann et al., 2014; Sorriento et al., 2010; Sorriento
et al., 2018). GRKS5 and B1-AR expressions are increased in the left ventricles of rats with
hypertension induced by L-NAME and in peripheral blood mononuclear cells from humans
with heart failure. By contrast, GRK2 expression is increased in all tissues with increased
B2-AR expression (Mont6 et al., 2015). Thus, GRK5 may regulate B1-AR whereas GRK2
may regulate B,-AR. In addition, GRK5 polymorphism (41Q > L) is associated with a
decreased risk of cardiovascular outcomes in hypertensive patients treated with atenolol
and hydrochlorothiazide (Lobmeyer et al., 2011). This GRK5 polymorphism may be also
protective in heart failure by inhibition of B-AR signaling (Liggett et al., 2008).

Renal GRKG6 expression is decreased in hypertensive subjects (Xu, Watanabe, Felder, &Jose,
2001). GRKG6 deficient mice have enhanced coupling of dopamine D»-like receptors in

the striatum, which suggests that GRK6 negatively regulates these receptors (Gainetdinov

et al., 2003). In the intestinal cell line IEC-6, GRK6 and GRK4 are responsible for the
homologous desensitization of dopamine D1-like receptors (Fraga, Jose, & Soares-da-Silva,
2004). In hypertensive Sprague-Dawley (SD) rats, caused by coarctation of the abdominal
aorta, expression of GRK®6 in endothelial cells from the common carotid arteries is repressed
(Wang et al., 2017). In rats with SHR heart failure, there is a subcellular redistribution of
GRKG6 from the intercalated discs to the cytoplasm of cardiac myocytes (Yi et al., 2005).

In addition, in rats, overexpression of GRK®6 in the 6-hydroxydopamine-injured striatum
induces the internalization of D4 receptor (D1R) and normalizes the D4R signaling by
promoting its desensitization (Ahmed et al., 2010). However, the role of GRK6 in human
essential hypertension remains to be determined.

4. Regulation of blood pressure by GRK4

4.1.

Features of GRK4

Of all the seven GRKs, GRK4 is the unique subtype with four splice variants (GRK4a, B, v,
and 6) in humans (Fig. 1) (Premont et al., 1996). GRK4a, consisting of 578 amino acids, is
the longest and full-length GRK isoform. GRKA4, consisting of 546 amino acids, has no N-
terminal exon 2 (32-codon deletion), which contains the phosphatidylinositol bisphosphate
(PIP>) binding region. GRK4-y, consisting of 532 amino acids, has no C-terminal exon 15
(46-codon deletion). GRK48, consisting of 500 amino acids, the shortest isoform, has no
exons 2 and 15 (Jose, Soares-da-Silva, Eisner, & Felder, 2010; Premont et al., 1996). It
should be noted that alternative splicing in GRK4p and GRK46 would lead to the loss of a0
and a1 helices of the RH domain, and GRK4y and GRK46 would lose the C-terminal end
of @10 and all of the a11 helix, which brings the folding and stability of these three GRK4
isoforms into question (Allen et al., 2015). Unlike humans with four GRK splice variants,
rats have five GRK4 splice variants (GRK4A, B, C, D, and E), while mice have only one
GRK4. Rat GRK4A has 76% identity with GRK4a, the longest of the human GRK4 splice
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variants. However, the mouse and rat GRK4 sequences are 90% identical (Premont et al.,
1996; Virlon et al., 1998).

Three missense single nucleotide polymorphisms (SNPs) in the coding region of GRK4~y
have attracted the most attention in the regulation of blood pressure. The SNPs in nucleotide
448, CGT to CTT (amino acid 65R > L, rs2960306); nucleotide 679, GCC to GTC (amino
acid 142A >V, rs1024323); and nucleotide 1711, GCG to GTG (amino acid 486A >V,
rs1801058) are associated with hypertension (Jose et al., 2010; Yang et al., 2015), which will
be discussed in detail. It should be noted that the GRK4 SNPs (A142V, A486V and R65L)
increase its activity, although the mechanisms are not clear at this time.

Unlike the ubiquitously expressed GRK2, GRK3, GRK5, and GRK6, GRK4 is expressed in
a limited number of tissues, i.e., arteries, bones, cerebellum, heart, kidneys, small intestines,
thyroid, and testes (Jose et al., 2010; Voigt, Holzapfel, Meyer, & Paschke, 2004; Yang et al.,
2015). The GRK4/GRK5/GRKG6 group has constitutive activity while GRK1, GRK2, GRK3,
and GRKY7 are activated by binding to ligand-activated GPCRs (Baameur et al., 2010; Fraga
etal., 2004; Jose et al., 2010; Li et al., 20154, b; Yang et al., 2015). The constitutive activity
of GRK4 may be due, at least in part, to its ability to bind to inactive Ga and G subunits
(Keever, Jones, & Andresen, 2008; Neve, 2006).

4.2. Localization of GRK4

GRK4 has a restricted expression pattern, with highest levels in the testes and myometrium
and, to a lesser extent, in a few other organs, including the arteries, brain, kidneys, small
intestines, and thyroid, but minimal expression in the normal heart (Jose et al., 2010; Voigt et
al., 2004; Yang et al., 2015).

Due to the vital role of the kidney in blood pressure regulation, the distribution of GRK4 in
the kidney has been extensively studied. In human, rat, and mouse kidneys, GRK4 is highly
expressed in the subapical membranes of renal proximal tubules (S1 and S3 segments), thick
ascending limbs of the loop of Henle, distal convoluted tubules, and renal resistance vessels,
and much less, in glomeruli (Felder et al., 2002; Sanada et al., 2006a, b; Villar et al., 2009;
Yang et al., 2020). GRK4, distributed at the plasma membrane and cytoplasm under basal
conditions, becomes internalized at the perinuclear area after activation of GPCRs (Felder et
al., 2002; Villar et al., 2009; Yang et al., 2020). Specifically, in the renal plasma membrane
microdomains, GRK4 is distributed in non-lipid raft fractions and in lipid raft fractions
(Villar et al., 2009). We have also reported that GRK4 is localized in the nuclei of human
renal proximal tubule cells and in HEK-293 cells, heterologously expressing hGRK4-y wild
type or variants (Wang et al., 2016).

The blood vessels are also critical in the regulation of blood pressure. GRK4 is expressed

in the tunica media and adventitia of conductance and resistance arteries from rats and

mice (Chen et al., 2014; Zhao et al., 2015). The GRK4 mRNA is well expressed in the
aortas of Wistar Kyoto (WKY) rats and SHRs (Zhao etal., 2015). In fact, GRK4 is generally
distributed in both large and small arterial vessels, including the thoracic aorta, superior
mesenteric arteries, carotid arteries, and renal arteries; there is no difference in GRK4
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expression among these vessels. Similar to the GRK4 location in renal proximal tubule cells,
GRK4 is also distributed at the membrane and cytoplasm in VSMCs (Chen et al., 2014).

The heart and resistance vessels are the organs involved in the generation of arterial
pressure. GRK4 is modestly expressed in the normal heart, but substantially increased after
myocardial infarction (Li et al., 2021; Sanada et al., 2006a, b). Our recent study showed
that in the heart, GRK4 protein is expressed to a higher extent in cardiomyocytes than in
non-cardiomyocytes, such as smooth muscle cells, endothelial cells, and fibroblasts (Li et
al., 2021).

4.3. Effect of GRK4 on blood pressure

GRK4 expression and activity in the kidneys and arteries are increased in the hypertensive
state, relative to the normotensive state (Table 1). The increase in renal GRK4 levels

in hypertension may be organ specific because there is no difference in cardiac GRK4
expression between WKY rats and SHRs (Sanada et al., 2006a, b). Moreover, unlike other
GRK subtypes, such as GRK2 and GRKS5, which have increased expression secondary to
hypertension, GRK4 expression and activity are increased before the onset of hypertension.
Therefore, GRK4 may be of importance in the development of hypertension.

A role for GRK4 in regulating blood pressure is supported by several studies using GRK4
knockout, selective renal reduction of GRK4 expression via the chronic renal cortical
interstitial-selective infusion of GRK4 antisense oligodeoxynucleotides or GRK4 small
interfering RNA (siRNA) delivered by ultrasound-targeted microbubble destruction, and
overexpression of GRK4 variants (Table 2). In contrast to the GRK4 knockdown-mediated
amelioration of blood pressure in hypertensive rodents, the expression of human GRK4 gene
variants (h\GRK4y 65 L, hGRK4y 142, or hGRK4y 486 V) in mice increases blood pressure
(Table 2).

4.4. Mechanisms involved in the regulation of blood pressure by GRK4

Humans with essential hypertension have aberrant pathophysiological changes, such

as increased renal sodium reabsorption and vasoconstriction and impaired arterial
vasodilatation, that are not properly regulated by hormones via their receptors (Harrison
etal., 2021; Kemp, Howell, Gildea, Keller, & Carey, 2020; Liu et al., 2021; Nizar, Shepard,
Vo, & Bhalla, 2018; Olivares-Hernandez et al., 2021; Rianto et al., 2021). Accumulating
evidence show a role of GRK4 on the dysfunction of GPCRs or non-GPCRs in hypertension.

4.4.1. GRKA4 regulates DR function by affecting its phosphorylation state—
The dopaminergic system exerts an autocrine/paracrine regulatory role on renal sodium
transport and blood pressure via its five receptor subtypes (Albrecht et al., 1996; Gildea et
al., 2010; Jose, Eisner, Drago, Carey, & Felder, 1996; Olivares-Hernandez et al., 2021; Yu
et al., 2006). Dopamine receptors, belonging to GPCRs, are classified into two families:
D1-like receptors (D1R and DsR), which stimulate adenylyl cyclase activity and D»-like
receptors (DR, D3R, and D4R), which inhibit adenylyl cyclase activity. D-like receptors
are the major determinants of dopamine-mediated regulation of sodium transport (Albrecht
et al., 1996; Chugh, Lokhandwala, & Asghar, 2011; Harris, 2012; Jose et al., 2010; Villar
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etal., 2013; Wang et al., 2014; Yang et al., 2021; Ye et al., 2018; Yu et al., 2006). Indeed,
during conditions of moderate sodium excess, more than 50% of renal sodium excretion is
regulated by D4-like receptors (Yang et al., 2021). However, in hypertensive patients and
hypertensive animal models, such as the Dahl salt-sensitive rat and SHR, D;R-mediated
natriuresis and diuresis are decreased (Albrecht et al., 1996; Jose et al., 1996).

The impaired function of D4R in hypertension is not due to decreased renal dopamine
production, mutation of the D1R gene, or decreased expression of DR, but is caused

by increased D1R phosphorylation and a defect in the coupling of the D1R to its G
protein/effector complex in renal proximal tubules (Yu et al., 2006), which is ascribed

to increased GRK4 expression or activity (Felder et al., 2002; Jose et al., 2010; Lu et

al., 2018; Sun, Chen, Wang, Zhou, & Zeng, 2020) (Fig. 2). SHRs have higher renal
GRK4 expression than WKY rats (Sanada et al., 2006a, b). The intrarenal infusion

of GRK4 antisense oligodeoxynucleotides or ultrasound-microbubble destruction-targeted
GRK4 siRNA delivery to the kidney effectively decreases GRK4 expression, attenuates the
augmented D4R phosphorylation, normalizes the sodium balance, and reduces the blood
pressure of SHRs (Huang et al., 2016; Sanada et al., 20063, b). Besides the SHR, GRK4-
mediated inhibition of DR is also reported in other hypertensive animal models (Lu et
al., 2018; Sun et al., 2020; Wang et al., 2014; Ye et al., 2018). GRK4y 142 V transgenic
mice have higher blood pressure than GRK4y wild-type mice, which is related to renal
D;R hyperphosphorylation and impaired D;R-mediated natriuresis and dieresis (Felder et
al., 2002; Wang et al., 2016; Yang et al., 2020).

The regulatory effect of GRK4 on D4R in vivo is confirmed by in vitro studies. GRK4
activity is enhanced in human renal proximal tubule cells from hypertensive subjects,
which constitutively phosphorylates D1R even in the absence of D4R agonist (Felder

et al., 2002). Inhibition of GRK4 activity with heparin or depletion of GRK4 with
antisense oligodeoxynucleotides blunts the D4-like receptor agonist fenoldopam-induced
D3R desensitization in human renal proximal tubule cells (Watanabe, Xu, Bengra, Jose, &
Felder, 2002). In Chinese hamster ovary cells transfected with GRK4y variants, including
Al142V, R65L and A486V, GRK4 activity is also increased that is associated with an
increase in basal D1R phosphorylation and impairment of D;R-mediated cAMP production
(Felder et al., 2002).

4.4.2. GRKA4 regulates AT4{R function by affecting its expression and
phosphorylation—Ang |1, the principal renin-angiotensin system (RAS) effector peptide,
exerts its physiological functions via its receptors, type 1 (AT1R) and type 2 (AT,R) (Fatima,
Patel, & Hussain, 2021; Ziaja, Urbanek, Kowalska, & Piastowska-Ciesielska, 2021). The
vast majority of the actions of Ang Il are transduced via AT1R, which increases renal sodium
reabsorption and induces vasoconstriction (Paz et al., 2020).

The renal expression of GRK4 and AT1R is higher in kidneys of SHRs than WKY

rats (Yatabe et al., 2008). The selective intrarenal cortical infusion of GRK4 antisense
oligodeoxynucleotides increases sodium excretion and decreases arterial blood pressure in
SHRs (Sanada et al., 20064, b); these effects are increased with the combined inhibition of
renal GRK4 and AT1R (Yatabe et al., 2008). Another study also found that the increased
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renal GRK4 expression correlates with increased renal AT1R expression and function in old
Fischer 344 x Brown Norway rats, suggesting that GRK4-mediated increase in renal AT{R
expression may be necessary for the development of age-associated hypertension (Chugh,
Lokhandwala, & Asghar, 2012).

AT1R expression and function are regulated by GRK4 variants, as related to regulation of
blood pressure (Fig. 2). The hypertension in hGRK4-y 142 V transgenic mice is associated
with increased AT1R expression and function in the kidneys and arteries. GRK4~y 142

V transgenic mice that are deficient of AT;R have normal blood pressure (Wang et al.,
2016). We have reported that both AT1R expression and AT1R-mediated vasoconstriction are
higher in the aorta of hGRK4y 142 V than hGRK4+y wild type transgenic mice. Moreover,
Ang Il causes a greater increase in blood pressure while infusion of the AT{R antagonist
candesartan causes a greater decrease in blood pressure in hGRK4+y 142 V that hGRK4-y
WT transgenic mice (Chen et al., 2014). AgtrI mRNA and AT4R protein expression and
function are greater in VSMCs expressing hGRK4-y 142 V than in cells expressing hGRK4~y
WT. In those cells expressing GRK4-y 142 V, the activity of NF-xB, a regulator of AT{R
promoter activity, is increased, accompanied by an increase in its binding to the AT{R.

The opposite is true for AT1R protein degradation, indicating that the regulation of AT{R
expression by hGRK4-y occurs at both transcriptional and post-translational levels (Chen et
al., 2014).

Histone deacetylase type 1 (HDACL) is involved into the regulation of Agirl mRNA
expression by GRK4. The phosphorylation of HDAC1 by GRK4 promotes the export of
HDAC1 from the nucleus to the cytoplasm, which causes an increase in AT{R promoter
activity (Wang et al., 2016). The phosphorylation of ATR is also regulated by GRKA4.
The phosphorylation of AT1R protein is lower in hGRK4-y 142 V-transduced VSMCs than
in hGRK4 WT-transduced cells, which seems to be inconsistent with GRK4 function

as a phosphorylating enzyme. However, our further study showed that the interaction
between GRK4 and AT1R in VSMCs is reduced in hypertension, as determined by co-
immunoprecipitation (Chen et al., 2014). This may be, at least in part, explained by the
lower level of AT{R phosphorylation, although the underlying mechanism leading to the
reduced GRK4/AT R vascular interaction is not known. Additional studies are needed to
elucidate this GRK4/ATR vascular interaction.

Similar to hGRK4-y 142 V transgenic mice, hGRK4-y 486 V transgenic mice also have
higher blood pressure and greater renal AT{R expression than hGRK4y WT mice. However,
there is a distinct difference that hGRK4y 142 V transgenic mice are hypertensive on a
normal salt diet. By contrast, hGRK4y 486 V transgenic mice develop hypertension only
on a high salt diet (Diao et al., 2017; Wang et al., 20064, b). The contribution of AT{R

in the salt sensitivity of blood pressure in hGRK4y 486 V transgenic mice remains to be
determined.

The studies suggest that GRK4 regulates AT1R expression and its actions in kidneys
and arteries. In the kidney, the increased expression of GRK4 or presence of GRK4
variants increases the transcription of ATR, leading to an increase in AT{R protein
expression and renal sodium reabsorption, and subsequently hypertension. In the artery,
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the increased expression of GRK4 or presence of GRK4 variants increases AT41R protein
expression, via both transcriptional and post-translational levels and aggravates AT R-
induced vasoconstriction and subsequently hypertension. However, it should be noted that
not only AT1R but also other receptors, such as dopamine receptors, are targets of GRK4.
Thus, the effect of GRK4 expression or variants on blood pressure could be ascribed, at least
in part, to their regulation of AT{R and other GPCRs.

The activation of AT,R, the other receptor of Ang I, induces natriuresis and lowers

blood pressure (Kemp et al., 2020). Our preliminary data indicate that hGRK4y 142

V transgenic mice have increased phosphorylation of renal AT,R with impaired AT,R-
mediated natriuresis, compared with hGRK4y WT transgenic mice. This is supported by an
in vitro study in which overexpression with hGRK4+y 142 V in renal proximal tubule cells
impairs AT,R-mediated inhibition of Na*-k*-ATPase activity (Zhang and Yang, unpublished
data). Accumulating pieces of evidence indicate that GRK4 regulates blood pressure by
affecting several GPCRs, which affect sodium retention, arterial function, consequently
leading to elevated blood pressure level.

4.4.3. GRK4 regulation of other GPCRs—More and more GPCRs are reported to
be regulated by GRK4. These include endothelin receptor type B (ETBR), thromboxane
receptors, and dopamine D3 receptor (D3R).

Endothelin, via its receptor, ETBR, decreases renal tubular sodium transport. However, in
hypertensive states, the renal ETBR is hyperphosphorylated and ETBR-mediated sodium
excretion is impaired (Dhaun & Webb, 2019). GRK4 is believed to play an important

role in this process because down-regulation of renal GRK4 by siRNA normalizes the
phosphorylation of ETBR and ameliorates the impaired renal ETBR function in the SHR
(Yang et al., 2020). Moreover, hGRK4y 142 V transgenic mice, which are hypertensive,
have increased phosphorylation of renal ETBR and impaired ETBR-mediated natriuresis and
diuresis (Yang et al., 2020) (Fig. 2).

Thromboxane receptors may be also regulated by GRK4. GRK4 expression in aortic smooth
muscles is higher in SHR than in WKY rats (Zhao et al., 2015). More importantly, in the
SHR but not the WKY aorta, a.1-AR activation desensitizes thromboxane receptors through
activation of PKC-e (Zhao et al., 2015), which is a positive regulator of GRK4 (Gildea et
al., 2013). These findings suggest that GRK4 may be involved in the regulation of aortic
thromboxane receptors in hypertension. However, the direct relationships between GRK4
and those receptors have not been fully elucidated.

In addition to D1R, GRK4 also regulates other dopamine receptor subtypes, including D3R.
GRK4 is required for D3gR-mediated mitogenesis and activation of the mitogen activated
protein kinase pathway in human renal proximal tubule cells (Villar et al., 2009). This effect
of GRK4 on the regulation of D3R is isoform-specific because even though all four GRK4
isoforms are expressed in human renal proximal tubule cells, only GRK4a and GRK4y
(GRK4y > GRK4a) isoforms, not GRK4p and GRK46, modulate the phosphorylation of
D3R (Villar et al., 2009). However, the role of GRK4-mediated D3R regulation in the
development of hypertension has not been determined.
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4.4.4. GRKA4 regulation of non-GPCRs—A few studies also reported that non-
GPCRys, such as adiponectin receptor 1 (AdipoR1), are regulated by GRK4. AdipoR1,
as with GPCRs, has 7 transmembrane domains. However, the orientation of AdipoR1
is opposite that of GPCRs; its N-terminus is intracellular and its C-terminus is external
(Tanabe et al., 2015).

Obesity, characterized by excess body fat, is associated with impaired natriuresis and
increased risk of hypertension (Hall et al., 2021; Powell-Wiley et al., 2021). As an
endocrine organ, adipose tissue produces and releases adipokines, such as adiponectin
(Zhao, Kusminski, & Scherer, 2021). Adiponectin, an adipocytokine produced by adipose
tissue can also be produced by renal proximal tubules (Perri et al., 2013). In addition

to adiponectin receptor 1 (AdipoR1), there are two other adiponectin receptors, AdipoR2
and T-cadherin; AdipoR1 mRNA is 20 times higher than AdipoR2 in human renal

proximal tubule cells (Shen, Hughes, Charlesworth, Kelly, & Peake, 2008). Adiponectin, via
AdipoR1, decreases renal sodium transport. However, adiponectin-mediated natriuresis and
diuresis are impaired in SHRs. The impaired adiponectin function in hypertension may be
due, in part, to the hyperphosphorylation of adiponectin receptor (Zhang et al., 2020). GRK4
is thought to play a role in the impairment of adiponectin receptor function in hypertension
(Fig. 2) because hGRK4+y 142 V transgenic mice have increased phosphorylation of

renal AdipoR1 and impaired diuretic and natriuretic response to adiponectin, relative

to hGRK4y WT mice. Moreover, renal-selective GRK4 knockdown via renal ultrasound-
directed siRNA restores the adiponectin-mediated increase in sodium excretion and reduces
blood pressure in SHRs (Zhang et al., 2020). These observations indicate that GRK4 causes
the hyperphosphorylation and impaired function of renal AdipoR1 in hypertension. These
studies also show that GRK4 can regulate the function of GPCRs and non-GPCRs.

4.45. GRK4 regulation of cellular senescence—Cellular senescence, an age-
related physiological process, is recognized as a vital contributor to the development of
cardiovascular diseases, including hypertension (Gorgoulis et al., 2019). The heterologous
expression of GRK4 in HEK293 cells causes cell cycle G1/G0 phase arrest, accompanied by
an increase in senescence-associatedp-galactosidase activity, indicating that GRK4 halts cell
proliferation and induces cellular senescence (Luo et al., 2019; Xiao et al., 2017). Therefore,
GRK4 may be associated with age-related hypertension, by impairing cellular growth and
promoting senescence. However, the causal role of GRK4-mediated regulation of cellular
proliferation or senescence on the pathogenesis of hypertension needs to be demonstrated.

5. Regulation of GRK4 expression and activity

GRK4 expression and activity are higher in the hypertensive than normotensive state. It is
known that the presence of GRK4 variants leads to increased activity of GRK4, although
the mechanisms are still unclear. To our knowledge, until today, there is only one article that
reported the possible mechanism on how GRK4 polymorphism affects enzymatic activity
(Allen et al., 2015). There are differences in the crystal structure of GRK4a A486V and
wild-type GRK4a and other GRKSs, e.g., GRK6. Allen et al found that there is a lag in

the autophosphorylation of wild-type GRK4a,, which is required for full kinase activity.
However, this lag is not observed in GRK4a A486V, which has an increased rate of

Pharmacol Ther. Author manuscript; available in PMC 2022 December 07.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Yang et al.

Page 12

autophosphorylation of a number of residues. These kinetic differences between wild-type
GRK4a and GRK4a A486V may be related to their structural differences. The precise
effect of GRK4 polymorphisms on its enzymatic activity needs further studies.

In addition to the inherent increase in GRK4 expression in the kidneys and arteries in
primary hypertension, environmental factors such as cold stress, fine particulate matter
exposure, and infection also increase the expression of GRK4 (Lu et al., 2018; Sun et al.,
2020; Wang et al., 2014; Ye et al., 2018). Reactive oxygen species (ROS), may be the vital
link between environmental factors and GRK4. For example, long-term exposure of fine
particulate matter (PM, 5) in SD rats increases ROS production, renal GRK4 expression, and
blood pressure (Lu et al., 2018). The elevated GRK4 expression with long-term exposure
to PM> 5 is due to oxidative stress because inhibition of ROS production by tempol, an
antioxidant, decreases renal GRK4 expression, alleviates the hyperphosphorylation of renal
DR, increases sodium excretion, and lowers the blood pressure of PM5 5-exposed SD rats
(Lu et al., 2018). In utero exposure to PM, 5 and other stressors, such as cold stress and
infection, plays an important role in early life-induced hypertension in offspring that may
be related to up-regulation of GRK4 expression, at least in arteries and kidneys (Sun et al.,
2020; Wang et al., 2014; Ye et al., 2018).

Besides ROS, the increase in GRK4 expression caused by environmental and disease
factors may be also a consequence of alterations of some transcription factors and

signaling molecules. The GRK4 core promoter resides in the first 1851 bp upstream of

its transcription start site (Hasenkamp et al., 2008), suggesting that the DNA-protein and/or
protein-protein interaction patterns at this region may affect the transcription and expression
of GRK4. The regulatory regions of the GRK4 promoter are independent of cell type and
differentiation state (Hasenkamp et al., 2008). The transcription factor c-Myc, by binding

to the promoter of GRK4, positively regulates GRK4 protein expression in human renal
proximal tubule cells (Gildea et al., 2013). In the PM> 5 regulation of GRK4 expression,
c-Myc is the key signal between ROS and increased GRK4 transcription (Lu et al., 2018; Ye
et al., 2018). trans-Activator C/EBP family members, including CCAAT/enhancer-binding
protein (C/EBP) a., C/EBPp, or C/EBPS, also increase GRK4 promoter activity in renal

cell lines HEK293T and COS7 cells and osteoblast-like osteosarcoma cell line SaOs-2
(Hasenkamp et al., 2008).

In addition to the regulation of the promoter of GRK4, other regions are also regulated by
certain proteins and microRNAs. For example, in the cerebellum, FMRP, an RNA-binding
protein, decreases the translation of GRK4 by an interaction between its C-terminal region
and the G4RIF domain of GRK4 mRNA (Maurin et al., 2015). A ubiquitous calcium-
binding protein calmodulin (CaM) interacts with the GRK4 subfamily, including GRK4, but
not the GRK1-like- and the GRK2-like subfamilies, by binding to the C-terminal-or amino-
terminal domain (Pronin, Satpaev, Slepak, & Benovic, 1997; Sallese et al., 1997; Sallese

et al., 2000). Some miRNAs, such as miR430a and miR218a, have also been implicated

in the regulation of GRK4 by targeting the 3" untranslated region of GRK4 (Guo et al.,
2019), suggesting that miRNAs, a class of endogenously-initiated non-coding RNAs, may
post-transcriptionally control GRK4 expression via either translational repression or mRNA
degradation.
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The process of intracellular trafficking may be also involved in the regulation of GRK4. Our
previous studies showed that GRK4 is regulated by sorting nexin (SNX), an intracellular
transport protein, which is involved in DR endocytosis and trafficking through the
endosomes (Li et al., 2015a, b; Villar et al., 2013). SNX5 directly interacts with GRK4

and prevents GRK4 from targeting the phosphorylation sites of the D1R, which is enhanced
after D4R activation (Villar et al., 2013). By contrast, depletion of SNX5 markedly increases
the ability of GRK4 to phosphorylate constitutively D1R in human renal proximal tubule
cells, consistent with the in vivo studies showing that renal SNX5 depletion increases blood
pressure, causes insulin resistance, and decreases D1R-mediated sodium excretion (Li et al.,
2015a, b; Li et al., 2018; Villar et al., 2013).

GRKs may be regulated by sex steroids, estrogens, progestins, and androgens. Estrogen,
via estrogen receptor a and {8, has beneficial effects on the regulation of blood pressure
(Colafella & Denton, 2018; Mercuro et al., 2010; Somani, Pawelczyk, De Souza, Kris-
Etherton, & Proctor, 2019; Zheng, Ji, Maric, Wu, & Sandberg, 2008). A few studies have
found that GRKSs, such as GRK2 and GRKG®, are regulated by estrogens (Abraham et al.,
2018; Ansonoff & Etgen, 2001; Miyoshi, Otsuka, & Shimasaki, 2013) but there is no study
on the ability of GRK4 to regulate estrogens or their receptors. In fact, previous studies have
shown that there is no difference on GRK4-mediated regulation of blood pressure between
male and female hGRK4y WT mice and hGRK4+y 142 V or hGRK4-y 486 V transgenic
mice, or male and female WKY rats and SHRs (Diao et al., 2017; Felder et al., 2002; Wang
etal., 2007; Wang et al., 2016).

6. GRK4 and human essential hypertension

6.1. GRK4 polymorphisms and hypertension in humans

Loci in chromosome 4 are associated with hypertension. The GRK4 locus on human
chromosome 4p16.3, correlates with essential hypertension and salt sensitivity (Allayee et
al., 2001; Casari et al., 1995; Zeng et al., 2008).

Several studies have shown that the three GRK4 gene variants (R65L, A142V, and A486V)
are positively associated with essential hypertension in several ethnic groups, including
African-Brazilian-, Caucasian and Black American-, Caucasian-Australian-, Chinese-,
Italian-, and Japanese-populations (Table 3) (Bengra et al., 2002; Gu et al., 2006; Kimura et
al., 2012; Sanada et al., 2016; Speirs et al., 2004; Wang et al., 20064a, b). A meta-analyses
confirmed the association between the GRK4 SNPs and hypertension risk among different
populations (Liu & Xi, 2012; Zeng et al., 2008; Zhang, Sun, Liu, & Yang, 2015). Not
included in the meta-analysis are recent studies of the association of new GRK4 SNPs

and hypertension (GRK4 rs1644731) (Jiang et al., 2021), risk of both hypertension and
diabetes (GRK4rs1557213) (Du et al., 2021), or cardiovascular disease risk and diabetes
(GRK4rs60314379) (Cheng et al., 2021) in Han Chinese population.

About 50% of subjects with hypertension are salt-sensitive (Elijovich et al., 2016). The
association between GRK4 variants and salt sensitivity or impaired urinary sodium excretion
has been studied in both hypertensive patients and normotensive subjects (Table 3).
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The positive association of GRK4 gene variants and hypertension are contrasted by other
reports showing no such association (Martinez Cantarin et al., 2010; Rana et al., 2007;
Staessen et al., 2008). For example, a study in a family-based random sample of a white
population found that GRK4 A142V polymorphism did not contribute to increased blood
pressure but the genetic variation in the DRD1 promoter associated with impaired renal
sodium handling and blood pressure; no other GRK4 genotypes were studied (Staessen et
al., 2008). Another study based on a large, community-based sample in White Americans
also showed no association between GRK4 A142V or GRK4 A486V and hypertension
(Rana et al., 2007). A study in African Americans aged 18-49 years even showed a negative
association between GRK4 variants and hypertension, in which the GRK4 A486V variant
was negatively associated with hypertension in the non-obese group (Martinez Cantarin et
al., 2010). The reasons for these diverse outcomes are still unknown. Some factors, including
ethnicity, age, salt sensitivity, failure to study all the GRK4 variants that are associated with
hypertension, and gene-gene interaction should be taken into account.

The role of gene-gene interaction in phenotypes has attracted increasing attention. For
example, Pereira et al found that there is an epistatic interaction between GRK4 variants
R65L and A142V, and angiotensinogen that affects blood pressure and cardiovascular risk
(Pereira Da Silva et al., 2020). In an African population from Ghana, the combination,

that is most predictive of hypertension, is GRK4 R65L and angiotensin-converting enzyme
(ACE), with an estimated prediction success of 70.5% (Williams et al., 2004). Moreover,
the multi-gene interaction is also involved in the salt sensitivity of blood pressure. Sanada
et al reported that among Japanese participants, GRK4 R65L, A142V, or A486V impaired
a dopaminergic agonist-induced natriuretic effect, and a genetic model of the three GRK4
variants predicted the presence of salt-sensitive hypertension in 94.4% of cases. By contrast,
the single-locus model with only GRK4 A142V was 78.4% predictive and a 2-locus model
of GRK4 A142V and CYP11B2 C-344 T was 77.8% predictive of low-renin hypertension
(Sanada et al., 200643, b). A study in Korean children aged between 8 and 9 years also
showed that the risk of obesity, a well-known pathogenic factor in hypertension, increased
with GRK4 A486V, ACE, and SLC12A3 variants in boys, whereas it increased with GRK4
A486V and CYP11B2 variants in girls, as sodium intake increased (Lee et al., 2015).

Potential role of GRK4 in pharmacogenomics of hypertension

Recently, precision medicine, defined as personalized medicine enhanced by different
technologies such as genome-wide association studies, has attracted great attention in
the treatment of hypertension (Padmanabhan & Dominiczak, 2021). The presence or
absence of GRK4 gene variants has been shown to be valuable in guiding therapeutic
antihypertensive strategies. Common variants of GRK4 can predict the blood pressure
response to antihypertensive medicines, such as angiotensin receptor blockers (ARBS),
[B-adrenergic blockers, low salt diet, and diuretics. In addition, studies have also shown
the association between GRK4 variants and the blood pressure response to lifestyle
modification, such as reduction of dietary salt intake. The role of GRK4 variants in
hypertension and response to antihypertensive treatment in humans is summarized in Table
3.
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7. Conclusions

In summary, genetic studies have shown a correlation between hypertension and GRK4
variants. Increasing evidence shows that GRK4, via several molecular mechanisms, plays

a vital role in regulating the expression and function of blood pressure-related receptors,
consequently affecting renal sodium handling, arterial function, and blood pressure (Fig. 2).
The downregulation of increased GRK4 activity restores the normal blood pressure-related
receptor function. Moreover, pharmacogenomics studies show that GRK4 variants can
predict the blood pressure response to antihypertensive medicines. Thus, further studies
targeting GRK4 or identifying additional GRK4 variants may provide new therapeutic

antihypertensive strategies in the future.
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Fig. 1.

Schematic representation of GRK4 domain architecture.

Top: GRKA4 has three primary domains: RGS domain; catalytic domain; and plasma
membrane targeting domain. The numbers below the schematic diagram represent relative
amino acid residues in GRK4. The positions of the GRK4 gene variants (amino acid
substitutions R65L, A142V, and A486V) associated with hypertension are shown in red.
The established and purported functional domains of GRK4 are also depicted in different
colors.

Bottom: The four GRK4 splice variants (GRK4a, GRK4B, GRK4y, and GRK456) are
distinguished by the presence or in-frame deletion of exon 2 (GRK4p), exon 15 (GRK4vy),
or both (GRK48). The red colored rectangles show the presence of exon 2 and/or exon 15
while the black-dotted triangles show the deletion of exon 2 and/or exon 15.
Abbreviations: GPCR, G protein-coupled receptor; GRK4, G protein-coupled receptor
kinase 4; PIP,, phosphatidylinositol bisphosphate; RGS, regulator of G-protein signaling.
(For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 2.

Glg?K4-mediated regulation of blood pressure via the kidneys and arteries.

GRK4 regulates blood pressure by modulating GPCRs and non-GPCRs in the kidneys and
arteries by several mechanisms: 1) renal or arterial GRK4 increases the phosphorylation

of D4R, AdipoR1, and ETBR impairs receptor-mediated inhibition of the sodium pump
(Na*/K*-ATPase) and attenuates receptor-induced vasorelaxation, subsequently leading to
hypertension; 2) renal GRK4 promotes HDAC1 egress from the nucleus into the cytoplasm,
which up-regulates AgtrI expression and the ability of AT4R to increase the activity of the
sodium pump (Na*/K*-ATPase), which results in an increase in renal sodium reabsorption
and extracellular fluid volume, and consequently hypertension; 3) in the arteries, GRK4
increases NF-xB activity with more NF-xB binding to the AT{R promoter, which increases
Agtrl expression and AT4R protein abundance, intracellular calcium concentration, ROS
production, and PKC activity, enhancing vasoconstriction and consequently hypertension.
Abbreviations: AT1R, angiotensin Il receptor type 1; AdipoR1, adiponectin receptor 1;
cGMP, cyclic guanosine monophosphate; D1R, dopamine D receptor; ETBR, endothelin
receptor type B; GRK4, G protein-coupled receptor kinase 4; HDACL, histone deacetylase
type 1; KCa: calcium-activated K* channel; NF-xB, nuclear factor kappa B; NO: nitric
oxide; PKC: protein kinase C; ROS, reactive oxygen species.
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