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ABSTRACT
Candida albicans is a commensal yeast fungus of the human oral, gastrointestinal, and genital 
mucosal surfaces, and skin. Antibiotic-induced dysbiosis, iatrogenic immunosuppression, and/or 
medical interventions that impair the integrity of the mucocutaneous barrier and/or perturb 
protective host defense mechanisms enable C. albicans to become an opportunistic pathogen 
and cause debilitating mucocutaneous disease and/or life-threatening systemic infections. In this 
review, we synthesize our current knowledge of the tissue-specific determinants of C. albicans 
pathogenicity and host immune defense mechanisms.
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Introduction

As one of the largest eukaryotic kingdoms, fungi have 
a variety of life cycle patterns with adaptations in meta-
bolism and morphogenesis that enable them to adjust 
to the changing ecosystems [1]. Despite being estimated 
to have between 1.5 and 5 million fungal species, only 
a few hundred of those can cause clinical disease in 
humans [2]. The phylum Ascomycota contains some of 
the most successful human pathogens; these include 
virulent fungi that can infect individuals without 
immune compromise such as Histoplasma, 
Blastomyces, Coccidioides, and Paracoccidioides species 
as well as opportunistic fungi that cause disease pri-
marily in immunosuppressed individuals such as 
Aspergillus, Fusarium, Scedosporium, and Candida 
species.

Candida species are responsible for the majority of 
human infections caused by fungal pathogens. 
Members of these species include the most frequent 
cause of opportunistic infections, Candida albicans, 
the drug-resistant Candida glabrata, the new global 
public health threat Candida auris, and other emerging 
species such as Candida tropicalis, Candida parapsilosis, 
and Candida krusei [3,4]. In this review, we focus on 
C. albicans and the reader is referred to excellent over-
views of non-albicans Candida species elsewhere [4–8]. 
Existing as a commensal in a large proportion of the 
human population, C. albicans colonizes the oral, gas-
trointestinal, and genital tracts asymptomatically [9,10]. 
However, upon perturbation of barrier integrity and/or 
host immune responses, the fungus can migrate 

through the epithelium and access deep-seated anato-
mical niches to cause infection. Medically important 
infections caused by C. albicans can broadly be classi-
fied into two subtypes: mucosal and systemic 
(Figure 1). Mucocutaneous surfaces primarily affected 
by C. albicans are the vaginal (vulvovaginal candidiasis 
[VVC]), the oral (oropharyngeal candidiasis [OPC]), 
the esophageal (esophageal candidiasis [EPC]) and, 
less often, the nails (onychomycosis). Skin candidiasis 
is exceedingly uncommon and may rarely occur in 
a small proportion of patients with certain inborn 
errors of immunity (see below). Mucosal candidiasis, 
particularly in the form of VVC, can occur in people 
with intact immune functions, although immunocom-
promised individuals are at higher risk for increased 
frequency, severity and/or recurrence of mucosal infec-
tions. Systemic candidiasis affects sterile body sites such 
as the bloodstream and can involve the central nervous 
system (CNS), liver, spleen, heart, and/or kidneys. It 
can also involve the intra-abdominal compartment with 
or without bloodstream spread [4]. Systemic candidia-
sis is associated with high mortality despite the admin-
istration of antifungal therapy [4].

To effectively cause mucosal and/or systemic disease 
and withstand the subsequent antifungal host response 
and antifungal drug treatment, C. albicans employs 
several virulence traits principal of which are: a) tem-
perature adaptation; b) adhesion and invasion; c) nutri-
ent acquisition; d) immune evasion; and e) drug 
tolerance. In this review, we will focus on C. albicans 
pathogenicity related to these five traits tracking the 
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fungus route from being a mucosal commensal to 
becoming an opportunistic pathogen causing mucosal 
and/or systemic disease. We will also highlight the roles 
of the innate and adaptive immune systems and of the 
mucocutaneous barrier in preventing and curtailing 
disease and we will briefly discuss key antifungal drug 
targets and the countermeasures employed by 
C. albicans to achieve antifungal drug tolerance and 
resistance.

C. albicans: From commensal to opportunistic 
pathogen

C. albicans is a ubiquitous fungal organism residing in 
the mucosa of humans while also living in certain 
environmental reservoirs [11]. Human colonization of 
the mouth, vagina, and gut typically develops during 
infancy, primarily during vaginal delivery or 

breastfeeding [12,13]. In mice, which are not naturally 
colonized by C. albicans, colonization resistance relies 
on the presence of intact endogenous microbiota [14] 
and antimicrobial peptides (AMP) such as CRAMP, 
a peptide related to the human AMP cathelicidin LL- 
37 [15,16].

Recently, it was shown that immune selection by 
intestinal IgA against C. albicans filaments suppresses 
harmful fungal effectors while improving the competi-
tive fitness of C. albicans yeast as a commensal [17]. 
Within the gut, C. albicans helps shape the composition 
of the healthy microbiota by inhibiting multiple domi-
nant genera of gut bacteria [18] and local inflammation 
[19]. The presence of C. albicans in the gut is linked to 
an increase in splenic IgG-producing B cells and sys-
temic antifungal IgG conferring protection against can-
didemia [20–22]. In mice, multiple passages of 
C. albicans resulted in fungal adaptation toward 

Figure 1. Commensal sites of C. albicans in the human body and clinical manifestations of C. albicans infection. Taking advantage of 
its commensal niches in the oral and genital mucosal surfaces and gastrointestinal tract, C. albicans can cause invasive disease 
(yellow star) and mucosal disease (blue star) in several tissues. Illustration created with BioRender.com.
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colonization and improved protection against subse-
quent nonspecific infections in a lymphocyte- 
independent manner [23].

C. albicans carriage is asymptomatic in most indivi-
duals and disease typically arises when perturbation of 
host homeostasis and/or endogenous microbiota 
occurs. It was recently shown that administration of β- 
lactam antibiotics causes the release of bacterial pepti-
doglycan subunits—including tracheal cytotoxin 
among others—that induces the invasive hyphal fungal 
program in the gut [24]. Such antibiotic-induced per-
trubations, immune system abnormalities (see below), 
changes in the microbiome, and/or changes in muco-
cutaneous barrier integrity [25,26] enable C. albicans to 
become an opportunistic pathogen in the context of 
expression of an array of virulence determinants 
(Table 1).

Fungal virulence determinants in C. albicans

Plasticity in switching between different morphogenic 
states

C. albicans displays a range of cellular growth states 
that help it establish presence and persistence in differ-
ent mammalian tissues [27]. These cell phenotypic var-
iations are associated with different yeast-like or 
filament-like morphologies and colony features as well 
as distinct genetic profiles [27]. Especially important in 
the pathogenic life cycle of C. albicans is its ability to 
change morphology to and from the yeast and hyphal 
forms to breach mucosal barriers and establish invasive 
disease. Typically thought of as the commensal form, 
the yeast, allows colonization of superficial commensal 
niches [28,29]. By contrast, the hyphal form is typically 
thought of as the invasive form of the fungus allowing 
C. albicans to penetrate host barriers and to gain access 
into deep-seated tissues [30]. Several environmental 
stimuli affect the morphological state of C. albicans 
including host temperature, pH, nutrient availability, 
or quorum sensing mechanisms [31–34]. Of interest, 
both C. albicans yeast and hyphal morphotypes can be 
found in different anatomical areas across the mouse 
gut [35].

The importance of the morphogenic transition from 
yeast to hyphae is shown by the fact that nonfilamen-
tous C. albicans strains are avirulent [36]. However, the 
evolutionary success and ability to cause life- 
threatening human disease of other non-albicans 
Candida species that are unable to filament such as 
C. glabrata and C. auris indicates that filamentation is 

not a prerequisite for pathogenesis in Candida species. 
In fact, hyphae-locked C. albicans strains are also hypo-
virulent in vivo, indicating that the transition between 
the yeast and filamentous forms is most critical for 
effective virulence, rather than each of the morphogenic 
states itself [37]. In addition, both C. tropicalis and 
C. parapsilosis strains engineered to exhibit hyper- 
filamentation phenotypes due to constitutively expres-
sion of the transcriptional regulator UME6 showed 
a dramatic reduction in organ fungal burden during 
in vivo infection [38]. Notably, a recent report showed 
that metabolic adaptability and improved fitness led to 
enhanced fungal proliferation, which increased the 
virulence of filament-deficient strains in a mouse 
model of systemic candidiasis, when low fungal inocula 
were used. Interestingly, filament-deficient strains 
remained attenuated during intraperitoneal mouse 
infection, highlighting the tissue-specific cues that 
may affect the role of C. albicans morphogenic state 
and its virulence [39]. The ability of C. albicans to 
produce filaments in vivo during systemic candidiasis 
in mice correlates with the ability of the tissue to con-
trol infection. Thus, C. albicans produces filaments in 
the mouse kidney during systemic candidiasis whereas 
filamentation is not observed in the liver or spleen; this 
tissue-specific propensity to filament correlates with the 
ability of spleen and liver to control the infection as 
opposed to the kidney that is unable to control fungal 
proliferation and inexorably loses function [40]. Taken 
together, these observations underscore the critical con-
tribution of the yeast-to-hyphae switch in C. albicans 
virulence and reinforce the importance of cell-intrinsic 
and tissue-specific environmental factors in the deter-
mination of the C. albicans morphotype under various 
niches and conditions.

Adhesion, invasion, and host cell damage1 

The importance of adhesion and invasion factors for 
the success of C. albicans as a pathogen is highlighted 
by the different types of surfaces, ranging from host 
mucosal tissues to medical devices and instruments, 
which C. albicans can colonize. In tissue, C. albicans 
yeast cells adhere to the epithelium and/or endothelium 
and trigger hyphal elongation with subsequent active 
penetration of host cells. The process is mediated by 
adhesin and invasin members of the Als and Hwp1 
families (reviewed in detail elsewhere) [41–43].

During mucosal infection, the interaction between 
epithelial cells and fungal ligands leads to induced 
endocytosis and active penetration by C. albicans. 
During systemic infection, active penetration can give 

1. In all subheadings, the PDF proof does not have a line to separate the previous from the next subsection. please add a line of 
separation to make it easy for the reader to discern when a segment changes-throughout the paper
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Table 1. Key C. albicans-associated virulence factors.
Immune resistance and adaptation

Adhesion/ 
invasion

Associated genes Function
ALS1 Adhesin
ALS3 Adhesin
SSA1 AMP binding protein
HWP Hyphal-associated GPI-linked protein
AlA1 Fibronectin-binding adhesin
MNT1 and MNT2 Involved in O-glycosylation
INT1 Integrin-like protein involved in adhesion

Phenotypic 
switch

Associated genes Function
CPH1 Transcription factor
EFG1 Transcription factor
INT1 Filamentation inducer
TUP1 Filamentation inducer
CZF1 Hyphal growth
TEC1 Filamentation inducer

Proteases Associated genes Function
Secreted aspartyl proteinases 

(SAP1-10)
Secreted proteases

Phospholipases (PLB1-4) Phospholipases that cause disruption of host membranes
Lipases (LIP1–10) Lipases

Nutrient 
acquisition

Associated genes Function
RBT5 Heme-binding protein
CSA1-2 Heme-binding proteins
PGA7 Heme-binding protein
ZRT1 Zinc transporter
PRA1 Zinc acquisition

Environmental adaptation
Biofilm 

formation
Associated genes Function
BCR1 Transcription factor
TEC1 Transcription factor
EFG1 Transcription factor
MKC1 Maintains cellular integrity and cell wall biogenesis

pH sensing Associated genes Function
PHR1-2 pH regulated genes that contribute to cell wall assembly and morphogenesis
RIM101 pH response pathway
DFG16 Plasma membrane receptor
RIM21 Plasma membrane receptor

Thigmotropism Associated genes Function
CCH1 Calcium channel
MID1 Calcium channel
RSR1 Hyphal orientation

Stress response Associated genes Function
GPP1-2 Glycerol biosynthesis
SOD Superoxide dismutase
CTA1 Catalase
YNB1 Nitrosative stress response
HOG1 Osmotic, oxidative and thermal stress response
HSP genes Heat shock and oxidative stress

Drug resistance
Associated genes Function
CDR1 and CDR2 Transporter of the ATP binding cassette superfamily
TAC1 Involved in the regulation of CDR1
MRR1 Multidrug resistance regulator involved in the control of MDR1
FKS Encodes the β-(1,3)-d-glucan synthase involved in echinocandin resistance
MSH2 DNA mismatch repair ATPase
HSP90 Heat shock chaperone
UPC2 Transcription factor associated with azole resistance
ERG3 Sterol desaturase associated with azole and AMB resistance
ERG11 Cytochrome P450 protein involved in demethylation of lanosterol, which upon modification it 

confers resistance to azoles
ERG6 Methyltransferase, which converts zymosterol to fecosterol and is important for azole and AMB 

resistance
FCY2 Cytosine permease involved in 5-FC resistance
FCY1 Cytosine deaminase involved in 5-FC resistance

Immune evasion
Associated genes Function
PRA1 Complement binding protein
CRZ1 Transcription factor. Crz1-dependent pathway activation induces lactate-induced β-glucan masking
ACE Transcription factor. Ace2 activation is involved in the network of lactate-induced β-glucan masking
XOG1 Exoglucanase involved in immune evasion
ECE1 Expressed in association with hyphae. Protein precursor of candidalysin
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access to blood vessels via which fungal cells reach 
distant body sites. Thereafter, endothelial penetration 
initiates colonization and disseminated disease [44]. 
Induced endocytosis is mediated by the adhesins and 
invasins Als3 and Ssa1, which bind host cell N-cadherin 
on endothelial cells and E-cadherin on oral epithelial 
cells [45]. In oral epithelial cells, induced endocytosis 
activates platelet-derived growth factor BB (PDGF BB) 
and neural precursor cell expressed developmentally 
down-regulated protein 9 (NEDD9) signaling [46]. In 
addition, Als3 and Ssa1 interact with epidermal growth 
factor receptor (Egfr) and Her2 (also known as Erbb2) 
and both receptors function cooperatively to induce 
C. albicans hyphae endocytosis [47]. Adhesion of 
C. albicans to epithelial cells is followed by hyphal 
formation, which can then actively penetrate the 
plasma membrane of epithelial cells [48,49]. The for-
mation of hyphae is accompanied by the expression of 
hypha-associated proteins with known damage and 
immune activation capabilities [50]. Moreover, secre-
tion of hydrolases by C. albicans hyphae facilitates 
active penetration into epithelia contributing to extra-
cellular nutrient acquisition [51]. C. albicans expresses 
three different classes of secreted hydrolases: protei-
nases, phospholipases, and lipases. Secreted aspartic 
proteinases (Saps) comprise ten members of which 
some are secreted (Sap1–8) and some remain bound 
to the cell surface (Sap9–10) [52]. Saps have been 
shown to play pleiotropic roles in vitro and in vivo 
including inducing damage to epithelial cells thus pro-
moting fungal virulence, recruitment of neutrophils, 
and induction of pro-inflammatory responses such as 
IL-1β and TNF-α [53–56]. Phospholipases are extracel-
lularly secreted and act via disruption of host cell 
membranes [57]. Lipases consist of 10 members 
(Lip1–10) and promote virulence in a mouse model of 
systemic candidiasis [58,59].

Candidalysin is a newly discovered hyphae-derived 
peptide toxin that has recently been shown to be 
a major virulence determinant of C. albicans. Hyphal 
filaments express ECE1, which encodes the Ece1p pro-
tein. Ece1p is processed by Kex2p and Kex1p to gen-
erate mature candidalysin that is then secreted. At high 
concentrations, candidalysin interacts with cell mem-
branes to form pore-like structures resulting in mem-
brane damage [60,61]. The resultant calcium influx and 
oxidative stress induced in host cells result in rapid 
necrotic—rather than apoptotic—cell death [62]. 
Additionally, Als3-mediated endocytosis of hyphal fila-
ments leads to the formation of an endocytic vacuole 
with a high concentration of candidalysin potentiating 
the damage on oral epithelial cells [63,64]. A possible 
mechanism of immune protection against prolonged 

candidalysin damage involves neutralization of the 
toxin by albumin, which acts as an anti-toxin through 
hydrophobic interactions [65]. Notably, besides being 
essential for epithelial cell damage, candidalysin is also 
important for activation of mucosal and tissue-specific 
systemic immune responses (see below).

Metabolic adaptation and nutrient acquisition
In most settings, glucose is the preferred carbon 

source for C. albicans [66]. However, in most anatomi-
cal sites of colonization, fungal growth occurs under 
glucose-limiting conditions. Under those circum-
stances, C. albicans adapts by upregulating alternative 
carbon utilization pathways, using carboxylic acids 
such as lactate, amino acids, and N-acetylglucosamine 
(GlcNAc) [67]. C. albicans mutant strains in these 
pathways have attenuated virulence [68,69].

Tissues can be a limiting source of nutrients to the 
fungus. In addition, the host can withhold trace nutri-
ents from microbes via nutritional immunity [70,71]. 
Thus, C. albicans has evolved strategies for acquisition 
of scarcely available micronutrients. Under zinc limita-
tion, C. albicans produces a zinc-binding protein, 
encoded by PRA1, which scavenges zinc from host 
tissues [72]. Interestingly, competition for scarce 
micronutrients also influences the host immune 
response. Secretion of Pra1 disrupts host defense by 
blocking the complement component C3 and subse-
quent fungal clearance [73]. Zinc limitation in 
C. albicans induces a hyper-adherent phenotype termed 
Goliath cells [74,75]. In addition, dynamic changes in 
copper assimilation during systemic infection contri-
bute to pathogenesis. Up-regulation of the copper 
efflux pump, Crp1, and the copper importer, Ctr1, is 
observed in a sequential, temporally regulated, manner 
during renal candidiasis and both factors are essential 
for fungal virulence [76,77]. During invasive infection, 
iron homeostasis is also perturbed triggering changes in 
the renal iron landscape. Thus, in the kidney medulla 
iron accumulates, whereas in the renal cortex leukocyte 
infiltrates form iron exclusion zones around fungal 
lesions [71]. Under low iron conditions, C. albicans 
FTR1 acts as a high-affinity iron permease to promote 
iron uptake from ferritin and transferrin and is essen-
tial for virulence during systemic candidiasis [78]. 
Moreover, the adhesin and invasin Als3 was shown to 
promote iron uptake from ferritin in the context of 
C. albicans interactions with oral epithelial cells [79].

Stress resistance
The multitude of stressors imposed on C. albicans by 

host immune cells and the various microenvironment 
cues require the induction of differential stress resis-
tance responses by C. albicans. For example, to escape 
oxidative killing by immune cells, C. albicans possesses 
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six superoxide dismutases (Sods), which are all involved 
in the detoxification of reactive oxygen species (ROS) 
by converting O2

− into molecular oxygen and hydrogen 
peroxide [80]. Accordingly, Sod-deficient C. albicans 
strains have reduced pathogenicity [81]. Additional 
fungal antioxidant proteins and DNA damage repair 
genes help attenuate oxidative stress [82,83].

Other stressors include pH changes, thermal and 
osmolarity shifts, nitrosative stress, and antifungal 
drug treatment [84–86]. Many of the fungal stress 
responses are modulated by heat shock proteins 
(Hsps), particularly Hsp90. Hsp90 is a ubiquitous and 
conserved ATP-dependent molecular chaperone that 
acts to stabilize diverse signal transducers. C. albicans 
Hsp90 enables fungal virulence and drug resistance. 
This effect is mediated via modulation of the mitogen 
activated kinase Mck1, the stress activated protein 
kinase Hog1/Sty1, and/or the protein phosphatase cal-
cineurin [87]. Additional effects of Hsp90 disruption 
include reduction of tolerance to stress responses and 
induction of morphological transition from yeast to 
hyphal growth [87].

Masking of cell wall components for immune 
evasion

The first step in the development of an immune 
response to C. albicans is the recognition of fungal 
pathogen-associated molecular patterns (PAMPs) by 
host epithelial and immune cell pattern recognition 
receptors (PRRs) (Figure 2). The C. albicans cell wall 
is composed of chitin, β-glucan, and mannoproteins 
[88], which are recognized by host cell PRRs and are 
important for induction of protective antifungal 
immune responses.

To avoid activating immune pathways that trigger 
these effector responses, C. albicans cells can minimize 
their PAMP exposure by masking cell wall components 
in response to metabolic cues. These protective 
responses circumvent the immune system by exploiting 
host signals to promote immune evasion [89]. Some of 
these signals include changes in oxygen availability, 
carbon source, or hormone levels [90–96]. The archi-
tecture of the fungal cell wall can also be altered by 
environmental stress during infection favoring immune 
recognition, as is the case for pH or iron changes 
[97,98]. For example, high iron decreases the levels of 
mannans and chitin and increases the levels of β-(1,3)- 
glucan by preventing activation of the fungal mitogen- 
activated protein kinase (MAPK) Choline/ethanola-
mine kinase 1 (Cek1), an effect mediated by lactate- 
induced Crz1 [98]. These changes reduce the suscept-
ibility of C. albicans to cell wall-perturbing antifungal 
agents but also reduce survival upon phagocytosis by 
macrophages. Remarkably, treatment with sub- 

therapeutic doses of the antifungal drug caspofungin 
also causes exposure of C. albicans β-glucan both 
in vitro and in vivo and elicits pro-inflammatory cyto-
kine secretion by primary macrophages [99]. This 
unmasking is modulated by changes in the regulatory 
gene network responsible for the cell wall architec-
ture [100].

To avoid clearance within phagosomes, C. albicans 
activate programs to survive the nutrient-poor, acid 
environment. To adapt to this nutrient-poor niche, 
fungal cells induce metabolic starvation pathways, 
including gluconeogenesis, fatty acid degradation, and 
also downregulate translation [101]. To induce filamen-
tation, yeast cells produce ammonia, which promotes 
neutralization of the acidic phagosomal pH and yeast- 
to-hyphae transition [102,103].

Initiation of host responses against C. albicans – 
the role of PRR systems

Central to the initiation of antifungal immune 
responses are the members of the C-type lectin (CLR) 
superfamily. Since the discovery of the role of 
DECTIN-1 in the recognition of fungal β-glucan 
[104,105], the characterization of other members of 
the CLR family, including—but not limited to— 
DECTIN-2 [106], DECTIN-3 [107], and MINCLE 
[108] has uncovered the importance of CLR-mediated 
signaling in innate immune sensing and control of 
pathogenic fungi, including C. albicans [109,110].

Fungal sensing via CLRs is the first step in the 
activation of the CLR–spleen tyrosine kinase (SYK)– 
caspase recruitment domain-containing protein 9 
(CARD9) signaling pathway [109,110]. Following fun-
gal ligand recognition by the corresponding CLR, its 
hemITAM or ITAM— depending on the CLR—is 
phosphorylated and SYK is activated, which leads to 
assembly of the CARD9-BCL10-MALT1 complex. This 
engagement activates the canonical nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF- 
κB) subunits c-Rel and p65 and induces innate and 
adaptive immune responses and cytokine secretion. 
Noncanonical NF-κB activation can also be induced 
in a SYK/NF-κB-inducing kinase (NIK)-dependent 
manner [110]. SYK-deficient mice are susceptible to 
systemic candidiasis (and other fungal infections) and 
SYK-deficient neutrophils are unable to control several 
Candida species associated with defects in ROS produc-
tion, cytokine production, neutrophil extracellular trap 
(NET) formation, phagocytosis, and neutrophil swarm-
ing [111,112]. SYK integrates signals from multiple 
CLR-dependent and CLR-independent signaling path-
ways, thus, SYK activation requires a delicate balance 
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whereby a suboptimal response can cause immunode-
ficiency, whereas an excessive response can lead to 
hyper-inflammatory disease and hematological malig-
nancy [113,114].

The critical contribution of the CLR–SYK–CARD9 
signaling pathway in human antifungal host defense is 
clearly portrayed by the observation that CARD9 defi-
ciency is the only— among the >400 known to date— 

Figure 2. Recognition of C. albicans by immune cells is mediated by distinct pattern recognition receptor signaling pathways. 
Extracellular recognition of fungal ligands occurs via C-lectin receptors (CLRs) or by some of the Toll-like receptors (TLRs) such as 
TLR1, TLR2, TLR6, or TLR4. Recognition leads to the activation of intracellular signaling pathways dependent on several adaptor 
molecules inducing NF-κB activation and cytokine secretion. In addition, CLRs can activate AP-1 via MAPK also leading to cytokine 
secretion. Some TLRs (TLR3, TLR7, TLR9) recognize nucleic acids derived from C. albicans within the endosome. Within the cytosol, 
recognition is mediated by NOD-like Receptors (NLRs) with resultant inflammasome activation and IL-1β processing. Recognition by 
TLRs and CLRs and secretion of pro-IL-1β and pro-IL-18 triggers inflammasome assembly, activation of pro-caspase 1 to generate 
caspase-1, and cleavage of these two cytokines into their mature IL-1β and IL-18 forms. Additional cytosolic recognition may occur 
via RIG-I-like receptors. Illustration created with BioRender.com. TLR, Toll like receptor; MyD88, Myeloid differentiation factor 88; 
IRAK1, Interleukin 1 receptor associated kinase 1; TAK1, transforming growth factor-β-activated kinase 1; TRAF, Tumor necrosis factor 
receptor-associated factor; TAB, TGF-beta-activated kinase; NEMO, nuclear factor-κB essential modulator; IκB kinase; CLYD, cylin-
dromatosis tumor suppressor; RLR, RIG-I-like receptor; CLR, C-lectin receptor; Mincle, macrophage inducible Ca2+-dependent lectin 
receptor; FcγR, Fc receptors: SYK, Spleen tyrosine kinase; ITAM, immunoreceptor tyrosine based activation motif; PLCγ2 
Phospholipase C gamma 2; PKCδ, Protein kinase C delta; CARD9, caspase recruitment domain-containing protein 9; Malt1, mucosa- 
associated lymphoid tissue lymphoma translocation 1; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; DC- 
SIGN, Dendritic cell-specific intercellular adhesion molecule-3-Grabbing non-integrin; CR3, Complement receptor 3; MAPK, mitogen- 
activated protein kinase; ERK, Extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase; AP-1, activator protein-1; ASC, 
Apoptosis-associated speck-like protein containing a CARD; NLRP3, NLR family pyrin domain containing 3; NLRC4, NLR family CARD 
domain containing 4.
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primary immunodeficiency disorder (PID) that pro-
motes fungal-specific infection susceptibility without 
predisposition to bacterial, viral, or parasitic infections 
or noninfectious complications. In fact, CARD9 defi-
ciency is the only known inherited condition that 
underlies susceptibility to both mucosal and systemic 
candidiasis, with the latter exhibiting a unique predilec-
tion for the CNS [115]. Aspergillosis—primarily extra-
pulmonary—, phaeohyphomycosis, and deep-seated 
dermatophytosis also occur in CARD9-deficient 
patients [116–119]. Critical CARD9-dependent fungal 
surveillance immune functions include Th17 cell differ-
entiation, neutrophil recruitment to the CNS, pro- 
inflammatory cytokine and chemokine production, 
and phagocyte fungal killing [120–123]. The advent of 
the SYK inhibitor fostamatinib in clinical practice for 
the treatment of various inflammatory and neoplastic 
conditions may result in opportunistic mucosal and/or 
systemic fungal infections, as indicated by the early 
description of mucosal candidiasis and skin fungal dis-
ease in fostamatinib-treated individuals [114,124,125].

CARD9 relays signals from several upstream CLRs 
in a fungus- and tissue-specific manner, without 
a single CLR deficiency phenocopying CARD9 defi-
ciency. For example, a few DECTIN-1–deficient 
patients who carry the p.Y238* CLEC7A mutation in 
homozygosity [126], which abolishes DECTIN-1– 
dependent signaling, were reported to develop recur-
rent VVC (RVVC) and onychomycosis. In addition, 
a single immunocompromised DECTIN-2–deficient 
patient carrying a homozygous deletion resulting in 
a frameshift and early stop codon in DECTIN-2 was 
recently reported to develop fatal invasive pulmonary 
aspergillosis [127]. As mentioned earlier, the C. albicans 
cell wall structure is dynamically altered during infec-
tion and therefore immune recognition often requires 
the concerted action of several PRRs to mount effective 
immune responses; among others, such interactions 
have been characterized between different CLRs, 
between CLRs and TLRs, and between TLRs and the 
complement C5a anaphylatoxin [4,128–130].

Toll-like receptors (TLRs) are expressed on both 
hematopoietic and non-hematopoietic cells and also 
participate in C. albicans sensing. Upon fungal PAMP 
recognition, MYD88 is recruited to the TLR and 
a signaling cascade is initiated that culminates in pro- 
inflammatory cytokine and chemokine production in 
a NF-κB dependent manner. MYD88 is required for 
activation of Langerhans cells and induction of the 
Th17 response during skin Candida infection (see 
below) [131]. Moreover, Myd88−/− mice are susceptible 
to systemic fungal infections—including systemic can-
didiasis—however MYD88-deficient patients do not 

develop candidiasis or other fungal disease, likely due 
to compensatory effects of other PRRs, primarily of 
CLRs [132,133].

TLR2 recognizes C. albicans phospholipomannans 
and TLR2 deficiency impairs neutrophil chemotaxis, 
phagocytic activity, and cytokine and chemokine pro-
duction resulting in reduced survival during systemic 
candidiasis in mice [134,135]. However, other studies 
have shown a dispensable role for TLR2 during sys-
temic candidiasis, which may be explained by the 
differential dependence of different C. albicans strains 
on TLR2 recognition [136]. Indeed, C. albicans strain- 
specific differential dependence on PRR recognition 
has also been documented for DECTIN-1 and TLR4, 
which recognizes C. albicans O-linked mannans 
[132,137–141]; in the setting of candidiasis in vivo, 
these differences underlie a wide variety of outcomes 
ranging from conferring survival benefit to promoting 
lethal immunopathology. In mice, TLR1 deficiency 
increased whereas TLR6 deficiency ameliorated 
intestinal inflammation and C. albicans burden in 
a colitis model [142]. In humans, polymorphisms in 
TLR1, TLR4, and TLR6 have been suggested to confer 
greater susceptibility to systemic candidiasis in 
acutely ill patients in the intensive care unit (ICU) 
in some studies [143–145]. C. albicans DNA sensing 
by TLR9 promotes IL-12p40 production [146], and 
TLR9—together with the mannose receptor and 
NOD2—has also been shown to recognize 
C. albicans chitin leading to the production of the 
anti-inflammatory cytokine IL-10 [147]. Moreover, 
the endosomal TLR7 and TLR3 have been implicated 
in C. albicans RNA sensing leading to the production 
of type I interferons and pro-inflammatory chemo-
kines [148–150].

NOD-like receptors (NLRs) are cytoplasmic PRRs 
that enable the formation of inflammasomes, which 
are multiprotein complexes that process pro-IL-1β/pro- 
IL-18 into their mature forms. The NLRP3 inflamma-
some complex is formed by NLRP3, the adaptor pro-
tein ASC, and the effector caspase-1, although non- 
canonical caspase-8-dependent pro-IL-1β processing is 
also operational in C. albicans [151]. The morphologi-
cal switch of C. albicans contributes to NLRP3 activa-
tion in a TLR2/DECTIN-1/SYK-dependent manner 
[152–154]. Mice deficient in NLRP3, ASC, or caspase- 
1 have increased fungal proliferation and decreased 
survival during systemic candidiasis [152,154]. 
Moreover, the NLR family member NLRP10 was criti-
cal for survival during systemic candidiasis in mice via 
promoting Th1 and Th17 responses, while being dis-
pensable for pro-inflammatory cytokine production 
[155]. In addition, the NLRC4 inflammasome is 
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important for the control of mucosal candidiasis 
in vivo. Specifically, NLRC4 is upregulated in oral 
mucosal tissues following C. albicans infection, particu-
larly in the stromal compartment, it mediates—together 
with NLRP3—the induction of IL-1β, and NLRC4- 
deficient mice had reduced secretion of CRAMP, IL- 
17A, and IL-1β, and impaired ability to control mucosal 
fungal proliferation [156].

Other receptors that have been implicated in the 
initiation of immune responses against C. albicans 
include: a) the RIG-I-like receptor family receptor 
MDA5 (IFIHI), which plays a major role in viral RNA 
sensing [157], is induced in response to C. albicans 
hyphae, and may be dysfunctional during mucosal 
and systemic candidiasis in susceptible patients [158], 
and b) EphA2, a receptor tyrosine kinase present in 
epithelial cells, which mediates fungal β-glucan recog-
nition and induces pro-inflammatory responses during 
OPC [159]. In addition, expression of EphA2 on neu-
trophils is important for immunity during OPC via 
MEK-ERK signaling and subsequent priming of nicoti-
namide adenine dinucleotide phosphate (NADPH)- 
subunit p47phox and ROS production, which results 
in fungal killing [160].

Following initial sensing by the innate immune sys-
tem, host immune responses are deployed during 
mucocutaneous and systemic candidiasis; these 
responses are tissue-specific, compartmentalized, and 
distinct in the various forms of the infection. The 
cellular and molecular basis of these responses is briefly 
outlined in the next section.

Mucocutaneous candidiasis

OPC and EPC
Candidiasis of the mouth—primarily affecting the 

tongue, buccal mucosa, and gingivae—, throat, or eso-
phagus is predominantly caused by C. albicans and is 
uncommon in healthy individuals. HIV/AIDS is 
a major risk factor for OPC and EPC, typically in 
patients with diminished CD4 T cell counts (<200 
cells/mm3), whereas certain topical or systemic immu-
nosuppressive agents also predispose to the infection 
such as corticosteroids [161], TNF-α inhibitors [162], 
and IL-17-targeted biologics (see below) [163]. Other 
local factors that contribute to OPC susceptibility 
include denture wearing and salivary hypofunction; 
salivary flow acts as a mechanical clearance mechanism 

by preventing adherence of C. albicans to oral epithelial 
cells and saliva contains potent AMPs with C. albicans- 
inhibitory properties (see below) [164].

The critical pathway mediating oral mucosal 
immune protection is IL-17 signaling [165]. Following 
the initial seminal reports of mice deficient in IL-17RA, 
IL-17RC, or the IL-17 receptor adaptor ACT1 being 
highly susceptible to OPC, subsequent studies in 
patients confirmed the critical contribution of this sig-
naling axis in mucosal anti-Candida host defense [166– 
168]. Thus, patients with autosomal recessive complete 
deficiencies in IL-17RA, IL17RC, or ACT1/TRAF3IP2 
develop fully penetrant, severe, treatment-refractory 
mucosal infections by Candida species, termed chronic 
mucocutaneous candidiasis (CMC) [169–172]. A single 
kindred carrying a heterozygous dominant-negative 
mutation in IL17F that impaired cellular responses to 
both IL17F and IL17AF was also reported to result in 
CMC, yet with incomplete penetrance [172]. Other 
inborn errors of immunity manifesting with CMC 
also map to defects in IL-17 signaling featuring varying 
degrees of decreased frequencies of circulating Th17 
cells and/or impaired IL-17 cellular responses, further 
illustrating its importance for mucosal antifungal pro-
tection (Table 2) [173–178]. More recently, the use of 
IL-17 pathway-blocking monoclonal antibodies (mAbs) 
in patients with psoriasis and inflammatory bowel dis-
ease (IBD) has been associated with the development in 
some patients with mild, treatment-responsive OPC, 
but not CMC. Notably, the mean frequency of OPC 
in these patients is low (~1-10%), with a greater risk 
observed in patients receiving mAbs that target IL- 
17RA or combined IL-17A, IL-17F, and IL-17AF, fol-
lowed by mAbs that target IL-17A, followed by mAbs 
that target IL-12p40 or IL-23p19 [163]. The resistance 
of these patients to CMC likely reflects the incomplete 
blockade of mucocutaneous IL-17 signaling by the 
administered mAbs [179,180]. Collectively, these data 
indicate that a complete absence of IL-17R responses 
promotes susceptibility to CMC in humans, whereas an 
mAb-induced blockade regimen that spares a fraction 
of mucosal IL-17R responses does not.2 

At the cellular level, CD4+ T cells, CD8+ T cells, γδ 
T cells, and type 3 innate lymphoid cells (ILC3) are the 
major sources of IL-17 during oral candidiasis 
[181,182]. Initial innate Th17 responses are regulated 
by Langerin-expressing dendritic cells (DCs) and are 
deployed by rapidly proliferating tissue-resident natural 

2. In Table 2, in the PDF Proof (not in here), there are words that belong in the above sentence that are shown in the sentence 
below. Eg in IL-12p40 deficiency NTM and infections are separately by a line and they shouldn't. Same for LAD-1 where gram- 
negative and bacteria, periodontitis are separately by a line. Also there is an indent in the genes listed for SCID in the PDF and in 
the genes listed for CGD. they should all be listed without an indent.
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Th17 (nTh17) cells post-C. albicans challenge [182– 
184]. The development of C. albicans-specific Th17 
cells following OPC involves antigen presentation and 
T cell priming by tissue-resident DCs in an Flt3L- 
dependent manner aided by monocyte-derived DCs in 
a CCR2-dependent manner [185]. C. albicans-specific 
IL-17-producing tissue-resident memory T cells (TRM) 
are efficient in maintaining prolonged colonization in 
a mouse model of C. albicans commensalism [186,187].

Of note, data from mice and humans suggest that 
the lack of IL-17 production by a certain lymphoid cell 
subset, may be compensated by other IL-17-producing 
lymphoid cells. For example, Tcrb−/− and Tcrgd−/− mice 
eventually control OPC whereas Rag1−/− mice that lack 
both αβ and γδ T cells are highly susceptible to the 
infection [188]. In agreement, patients with idiopathic 
CD4 lymphocytopenia who have diminished CD4+ 

T cells and patients with loss-of-expression mutations 
in the CD4 gene who also lack Th17 cell-derived IL-17 
production do not manifest CMC [189–191]. 

Collectively, these data indicate that the susceptibility 
of HIV/AIDS patients to OPC may reflect defects in IL- 
17 production by both Th17 and non-Th17 cellular 
sources at the oral mucosa, as suggested by studies in 
SIV-infected non-human primates [192–194].

Mechanistically, IL-17 mediates a robust mucosal 
immune response to protect against C. albicans by 
acting on IL-17R-expressing epithelial cells to induce 
the production of potent AMPs such as β-defensins and 
S100A8/A9 [165,168,195]. Accordingly, Defb3−/− mice 
were susceptible to OPC [165]. Histatins are another 
important family of AMPs, which have been shown to 
prevent C. albicans colonization on epithelial cell sur-
faces, to protect the basal epithelial cell layer from 
apoptosis, and to alter C. albicans mitochondrial func-
tion resulting in fungal cell death [196–198]. IL-17 
signaling also promotes the production of neutrophil- 
recruiting CXC chemokines (e.g. CXCL1, CXCL5) and 
has been shown to be indispensable for neutrophil 
recruitment in the C. albicans-infected oral mucosa in 

Table 2. Inborn errors of immunity underlying inherited susceptibility to C. albicans infections.
Primary 
immunodeficiency 
disorder

Associated 
gene

Mode of 
inheritance Clinical presentation of infection

Mucosal candidiasis
APECED AIRE AR or AD CMC
DOCK8 deficiency DOCK8 AR CMC, viral infection (molluscum, HSV)
ZNF341 deficiency ZNF341 AR CMC, bacterial infections 

(sinopulmonary and skin bacterial infections)
JNK1 haploinsufficiency MAPK8 AD CMC, superficial skin bacterial infections
IRF8 deficiency IRF8 AR CMC, disseminated NTM infection
RORγt deficiency RORC AR CMC, disseminated NTM infection
IL-12p40 deficiency IL12B AR CMC, intracellular bacterial and NTM 

infections
IL12Rβ1 deficiency IL12RB1 AR CMC, intracellular bacterial and NTM infections
IL-17RA deficiency IL17RA AR CMC, bacterial infections (superficial staphylococcal skin infections, bacterial pneumonias)
IL-17RC deficiency IL17RC AR CMC
IL-17F deficiency IL17F AR CMC
ACT1 deficiency TRAF3IP2 AR CMC, bacterial infections (superficial staphylococcal skin infections, bacterial pneumonias)
Job’s syndrome STAT3 AD CMC, onychomycosis, pulmonary mold infections, skin and pulmonary bacterial infections
STAT1 gain-of-function STAT1 AD CMC, bacterial and NTM infections, viral infections, endemic fungal infections
SCID IL7RA 

IL2RG 
RAG1-2 
JAK3

AR CMC, bacterial infections, disseminated viral infections, PJP

EDA-ID KBKG 
IKBA

AR CMC, NTM infections

Systemic candidiasis
CGD CYBA 

CYBB 
NFC1 
NFC2

AR or 
X-linked

invasive mold infections, systemic candidiasis (rare), invasive bacterial infections (Staphylococcus, 
Nocardia, Serratia)

LAD-1 ITGB2 AR Systemic candidiasis, pyogenic bacterial infections (staphylococcal skin infections and gram 
negative 
bacteria, periodontitis)

Complete MPO 
deficiency

MPO AR Systemic candidiasis

Mucosal and systemic candidiasis
CARD9 deficiency CARD9 AR CMC, Candida meningitis, colitis, endophthalmitis, and osteomyelitis, aspergillosis (including 

extrapulmonary), phaeohyphomycosis, protothecosis

AD, autosomal dominant; AR, autosomal recessive; APECED, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy; HSV, herpes simplex virus; 
NTM, nontuberculous mycobacteria; CMC, chronic mucocutaneous candidiasis; PJP, Pneumocystis jirovecii pneumonia; SCID, severe-combined immunode-
ficiency disorder; EDA-ID, anhidrotic ectodermal dysplasia with immunodeficiency: CGD chronic granulomatous disease; LAD-1, leukocyte adhesion 
deficiency type-1; MPO, myeloperoxidase; AIRE, autoimmune regulator; CARD9, caspase recruitment domain-containing protein 9; STAT, signal transducer 
and activator of transcription; DOCK8, dedicator of cytokinesis 8. 
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some—but not all—studies, potentially reflecting 
microbiome variations in the mouse colonies used in 
these different settings [195,199]. Mice lacking the 
CXCL1/CXCL5-targeted chemokine receptor CXCR2 
were highly susceptible to OPC due to impaired neu-
trophil recruitment to the C. albicans-infected oral 
mucosa [200]. Besides IL-17R signaling, IL-1R signaling 
promotes mobilization of granulocytes from the bone 
marrow and neutrophil recruitment into the oral 
mucosa during OPC via endothelial cell production of 
granulocyte colony-stimulating factor (G-CSF) in 
response to keratinocyte-derived IL-1α [201].

IL-22 is another cytokine produced by type 17 innate 
and adaptive lymphoid cell subsets during OPC and 
plays an important role in antifungal resistance as 
shown by experiments in Il22r−/− mice, in wild-type 
mice administered IL-22-targeted mAbs, and in mice 
deficient in both IL-17R and IL-22R, which exhibit 
further increase in fungal proliferation compared to 
mice deficient in either IL-17R or IL-22R [199,202]. 
Mechanistically, IL-22 acts on its receptor on oral 
basal epithelial cells to provide survival and regenera-
tion signals to the IL-17R-expressing oral suprabasal 
epithelial cell layer enabling its responsiveness to IL- 
17A [199]. In humans, no inborn errors of IL-22 
immunity have thus far been reported to cause CMC. 
Patients with loss-of-function mutations in the IL-22 
receptor subunit IL-10RB, who lack IL-22 (and IL-10, 
IL-26, IL-28, and IFNL1) responses, do not develop 
CMC but manifest with very early onset IBD 
[203,204]. These data collectively indicate that IL-22 
deficiency appears to be tolerated in humans and that 
impaired IL-22 responses may act synergically with 
defective IL-17 responses to cooperatively impair 
mucosal anti-C. albicans host defense.

On the fungal front, as described above, C. albicans 
adherence to oral epithelial cells is achieved via the Als 
and Hwp families of adhesins/invasins [41–43,205]. 
Fungal recognition activates NF-κB and a biphasic MAPK 
innate response in oral epithelial cells. Triggered by 
C. albicans cell wall recognition and independent of fungal 
morphology, the first step in the signaling cascade involves 
NF-κB and MAPK/c-Jun activation. The second MAPK 
phase occurs in response to a greater C. albicans burden 
and filament formation, with c-Fos and MKP1 activation 
leading to induction of pro-inflammatory responses [206]. 
This complex response helps oral epithelial cells to discri-
minate between colonizing and invading C. albicans. 
During OPC, candidalysin acts as a driver of protective 
IL-17 responses as well as of IL-36 induction via synergistic 
interactions between IL-1α and EGFR signaling in oral 
epithelial cells [183,207]. In addition, in a PAMP- 
independent manner, candidalysin induces EGFR 

phosphorylation leading to secretion of neutrophil- 
targeted chemokines [208]. In candidalysin-exposed 
epithelial cells, blockade of IL-1α/IL-1R resulted in 
decreased IκBα phosphorylation, reduced induction of 
IκBζ, and impaired production of granulocyte- 
macrophage colony-stimulating factor (GM-CSF) and neu-
trophil-recruiting IL-8/CXCL8. Combined blockade of 
EGFR and IL-1R further suppressed pro-inflammatory 
cytokine production in candidalysin-exposed cells [209].

Although type 17 immunity is undoubtedly critical for 
protective mucosal anti-Candida host defense in mice and 
humans, we recently reported that, in certain settings, addi-
tional, IL-17R/IL-22-independent mechanisms can also 
promote mucosal fungal infection susceptibility. We stu-
died mice and humans with Autoimmune polyendocrino-
pathy–candidiasis–ectodermal dystrophy (APECED), also 
known as Autoimmune polyglandular syndrome type 1 
(APS-1), a monogenic autoimmune disorder characterized 
by loss-of-function mutations in the autoimmune regulator 
(AIRE) gene [210]. APECED patients feature selective 
infection susceptibility to CMC with a frequency of ~80- 
90%, associated with serum autoantibodies against IL-17F 
(frequency, ~20-85% depending on the cohort), IL-17A 
(frequency, ~35%), and IL-22 (frequency, ~70-90% 
depending on the cohort) [211–214]. However, the associa-
tion between these autoantibodies and CMC in APECED is 
incompletely penetrant, and several patients who carry 
these autoantibodies do not develop CMC, while several 
other patients who lack these autoantibodies manifest CMC 
[211–214]. These data indicate that additional factors must 
contribute to susceptibility to CMC in APECED patients.

Indeed, we probed oral mucosal immune responses 
in Aire-deficient mice, which exhibited selective infec-
tion susceptibility to CMC despite the fact that they 
rarely develop type 17 cytokine-targeted autoantibodies 
(frequency, <10%) and they mount intact IL-17R/IL-22 
mucosal immune responses during OPC [215]. These 
data indicate that impaired type 17 immunity is not the 
primary driver of OPC susceptibility in Aire-deficient 
mice. Instead, the OPC susceptibility in Aire-deficient 
mice was driven by the overproduction of interferon-γ 
(IFN-γ) by oral mucosal CD4+ and CD8+ T cells, which 
were both necessary and sufficient to promote infection 
in this setting via disrupting the oral epithelial barrier. 
Accordingly, genetic or pharmacological inhibition of 
IFN-γ or JAK-STAT signaling rescued the epithelial 
barrier defects and reversed OPC susceptibility in Aire- 
deficient mice [215]. Moreover, we found corroborative 
evidence of excessive type 1 and intact type 17 immune 
responses in the oral mucosa of APECED patients 
[215]. Taken together, these data indicate that, in cer-
tain settings, aberrant type 1 mucosal responses rather 
than impaired type 17 mucosal responses may promote 
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mucosal fungal susceptibility and that T cell-driven 
immunopathology rather than impaired host resistance 
may underlie mucosal candidiasis. Together, these find-
ings point to a novel conceptual framework for classi-
fying CMC molecular subtypes across a spectrum of 
defective type 17 mucosal defense and/or immuno-
pathology-promoting type 1 mucosal inflamma-
tion [188].

More studies are needed to further evaluate the 
relative contribution of these pathways in the initiation, 
persistence, and/or recurrence of CMC in additional 
APECED children and adults and to determine whether 
aberrant type 1 mucosal responses may contribute to 
CMC in other conditions with excessive type 1 inflam-
mation such as a) trisomy 21 in which circulating Th17 
cells are intact and b) STAT1 gain-of-function in which 
several patients develop CMC despite normal circulat-
ing Th17 cells and intact production of IL-17 by circu-
lating T cells following fungal-specific stimulation and 
in which JAK-STAT inhibitors ameliorate CMC [216– 
218]. Of note, in a different setting, autoreactive T cells 
were shown to promote chronic mucosal fungal infec-
tion in mice leading to excessive inflammation, epithe-
lial injury, and esophageal squamous cell carcinoma 
development, which is a feature of certain CMC- 
manifesting immune dysregulatory PIDs such as 
APECED and STAT1 gain-of-function [216,219–221].

VVC
VVC will occur at least once in ~75% of the 

women worldwide during their reproductive years 
with 6-10% of them developing >4 recurrent infec-
tions per year, a condition termed RVVC [222,223]. 
VVC, caused predominantly by C. albicans but also 
by C. glabrata, C. parapsilosis, C. krusei, and 
C. tropicalis, is a debilitating condition with substan-
tial prevalence, economic burden, and morbidity 
[222]. VVC is associated with aberrant vaginal 
inflammation triggered by the presence of Candida 
in the setting of local immune dysregulation, hormo-
nal changes, vaginal microbiome alterations, and/or 
damaged mucosa [223,224]. Accordingly, uncon-
trolled diabetes mellitus, sexual activity, increased 
estrogen states such as during pregnancy and oral 
contraceptive or hormone replacement therapy, and 
antibiotic use are among the most common risk 
factors for VVC [222,225]. Although beta-lactams 
are more frequently implicated in the development 
of VVC relative to other classes of antibiotics, the 
mechanisms by which specific antibiotics perturb the 
local microbiome to enable vaginal fungal coloniza-
tion and infection remain elusive [225,226].

Notably, although HIV/AIDS patients are highly 
susceptible to OPC and EPC, they are not at a greater 

risk for developing VVC and, congruently, lymphocyte 
depletion does not impair fungal control during experi-
mental VVC in mice [227–229]. In addition, although 
IL-17R responses are induced after infection, the con-
trol of fungal proliferation is not reliant on the IL-17 
signaling axis during VVC, and patients receiving IL-17 
pathway-targeted mAbs have not been reported to be at 
a significant risk for VVC [163,230]. Taken together, 
these observations highlight the differential oral and 
vaginal mucosa-specific host immune requirements 
for anti-Candida protection.

Vaginal epithelial cells avert C. albicans adhesion to 
and invasion of the mucosa via shedding of the super-
ficial epithelial layer into the vaginal lumen and coating 
of epithelial cells with mucin [231]. Upon fungal sen-
sing, vaginal epithelial cells activate early mitochondrial 
signaling characterized by a protective type I interferon 
response that is shared between C. albicans and non- 
albicans Candida species (i.e. C. glabrata, 
C. parapsilosis, and C. tropicalis). This is followed by 
a subsequent damage response that is specific to 
C. albicans and is directed by the secretion of candida-
lysin [232]. Moreover, similar to oral epithelial cells, 
vaginal epithelial cells employ NF-κB activation and 
a biphasic MAPK response to discriminate between 
C. albicans yeast and hyphal morphotypes, albeit with 
delayed c-Jun activation and differential pro- 
inflammatory responses characterized by reduced 
secretion of IL-6, CCL20, and G-CSF [206,233]. In 
addition, RNA-seq analysis of patient samples indicated 
that target genes of the PDGF BB and ERBB2 pathways 
were up-regulated during VVC whereas target genes of 
the NEDD9 pathway were not, in contrast to their 
induction in oral epithelial cells [46].

Investigations in mouse models and humans with 
VVC including studies of intravaginal challenge with 
live C. albicans in healthy adult women [234] have 
established that neutrophils drive immunopathology 
and underlie VVC symptoms while they are ineffective 
in mediating fungal clearance in the vaginal microen-
vironment. In mice with VVC, neutrophil depletion 
ameliorated inflammation without increasing vaginal 
fungal load [235]. C. albicans virulence factors that 
trigger neutrophil recruitment in the vagina include 
candidalysin and Sap1 through Sap6. [56,236– 
239,236240]. The transepithelial migration of neutro-
phils into the vagina is promoted via the CXCL1- 
CXCR2 chemokine axis and via estradiol receptor 
alpha-dependent epithelial expression of CD44 and 
CD47, both of which are modulated differentially by 
estrogen and progesterone [241,242]. Notably, recent 
studies have shed light on the mechanisms of neutro-
phil dysfunction within the vaginal milieu, termed 

100 J. P. LOPES AND M. S. LIONAKIS



“neutrophil anergy”; specifically, vaginal heparan sul-
fate was shown to act as a competitive ligand for Mac-1 
on neutrophils, which inhibits their Candida binding 
and killing properties [243,244].

Integral to the immunopathogenesis of VVC is also 
inflammasome-primarily NLRP3-activation, and IL-1β 
production, associated with C. albicans-derived candida-
lysin and Saps [238,245–247]. Nlrp3−/− mice have reduced 
neutrophil infiltration, alarmin production, and pro- 
inflammatory cytokine secretion in vaginal lavage fluid 
during VVC, and NLRP3 and caspase-1 are upregulated 
in women with VVC compared to asymptomatic women 
who were either C. albicans-colonized or non-colonized 
[238,248]. Correspondingly, the presence of the 12/9 gen-
otype upon examination of a variable number tandem 
repeat polymorphism in the NLRP3 gene was associated 
with increased susceptibility to RVVC and a greater pro-
duction of IL-1β in the vagina [249]. Moreover, 
a polymorphism in the SIGLEC15 gene, a lectin expressed 
by immune cells that binds sialic acid-containing struc-
tures, was associated with RVVC and correlated with 
increased IL1B and NLRP3 expression after Candida sti-
mulation [250]. Additional polymorphisms in PRR 
(TLR2, CLEC7A) and cytokine (IL4) genes have also 
been associated with the development of RVVC [251– 
253]. Importantly, IL-22 curtails NLRP3 inflammasome 
activation and neutrophil recruitment during VVC by 
inducing the NLRC4 inflammasome, which promotes 
the production of the IL-1 receptor antagonist (IL-1Ra) 
[254]. In a mouse model of VVC, recombinant IL-1Ra 
reduced NLRP3-driven inflammation and protected 
against C. albicans [254], as did boosting of the protective 
effects of IL-22 via engaging the aryl hydrocarbon recep-
tor with indole-3-aldehyde, thus providing potential 
translational avenues for therapeutic intervention 
[255,256]. In addition, an IL22 polymorphism that led 
to greater levels of IL-22 and decreased levels of pro- 
inflammatory cytokines in the vagina correlated with 
increased resistance to RVVC, as did an IDO1 poly-
morphism, which was associated with greater vaginal 
IDO1 expression, increased kynurenine levels, and higher 
IL-22 and decreased pro-inflammatory cytokine 
levels [253].

In the past decades, several groups have worked 
toward developing an anti-Candida vaccine, and VVC 
has been a major infection manifestation targeted for 
protection [257]. Promising preclinical data have been 
generated using vaccine candidates that target 
C. albicans β-glucan or Sap2 [258,259]. Yet, the most 
promising vaccine candidate to date, which has demon-
strated efficacy in both preclinical models and in 

human clinical trials, is NDV-3A, which is based on 
the N-terminal portion of the C. albicans Als3 protein 
(rAls3p-N) with an alum adjuvant. In a mouse model 
of VVC, immunization with NDV-3A led to produc-
tion of high-titer anti-rAls3p-N serum IgG and vaginal 
IgA antibodies, decreased neutrophil influx, and 
enhanced C. albicans killing by neutrophils, and pro-
tected against vaginal fungal proliferation in a manner 
dependent on both T and B lymphocytes [260]. In 
a Phase I clinical trial, administration of NDV-3A in 
healthy volunteers was safe and resulted in IgG and IgA 
antibody responses and in IFN-γ and IL-17A cellular 
responses [261]. In a Phase II, randomized, double- 
blinded, placebo-controlled clinical trial, administration 
of NDV-3A to women with RVVC was safe, highly 
immunogenic, and efficacious resulting in reduced fre-
quency of symptomatic episodes of VVC, particularly 
in <40 year-old women [262]. Higher serum anti- 
rAls3p-N IgG titers—particularly of the IgG2 subclass 
—were observed in vaccinated women who did not 
experience VVC recurrence relative to those who 
recurred pointing to a potential surrogate immunolo-
gical marker of vaccine efficacy [263].

Cutaneous C. albicans infections3 

At the steady state, the human skin is colonized by 
diverse fungal species, predominantly Malassezia, 
whereas the abundance of Candida species increases 
dramatically in human skin with immune dysregulation 
and/or broad-spectrum antibiotic exposure [264–266]. 
The emerging multidrug-resistant C. auris is an effi-
cient long-term colonizer of the mouse, porcine, and 
human skin—but not of the gastrointestinal tract in 
contrast to C. albicans [5,267,268]. C. albicans—but 
also C. tropicalis, C. parapsilosis, and other Candida 
species—can cause clinical mucocutaneous disease in 
the forms of onychomycosis, paronychia, diaper rash, 
balanitis—often in uncontrolled diabetes mellitus, or 
other cutaneous infections [269,270].

The outer layer of the epidermis—the stratum cor-
neum—is a cornified envelope composed of dead ker-
atinocytes, keratin, and lipids including ceramides with 
ultra-long-chain acyl moieties, which create a dense 
physical barrier against potential pathogens such as 
C. albicans. Mice deficient in ceramide synthase 3 
have a defective cornified lipid envelope and disrupted 
cutaneous barrier function and are susceptible to 
C. albicans skin infection [271]. Underneath the stra-
tum corneum, the granular, spinous, and basal layers of 
the skin epidermis contain live keratinocytes to which 
C. albicans adheres via interactions of fungal phospho-
glycerate mutase (Gpm1) with epithelial cell vitronectin 

3. as mentioned above, subsegments are separated well here but not on the PDF proof.

VIRULENCE 101



[272]. CLR- and TLR-expressing keratinocytes consti-
tutively express IL-17R via which they respond to IL-17 
to generate AMPs for achieving fungal clearance (see 
below). Moreover, melanocytes located in the basal 
layer of the epidermis synthesize melanin, which has 
antimicrobial properties, and recognize C. albicans via 
TLR4 to increase melanization and exert an inhibitory 
fungal effect [273,274].

Cutaneous nerve fibers in the epidermis and dermis, 
particularly those expressing the neuropeptide calcito-
nin gene-related peptide (CGRP) which is known to 
mediate pain signaling, have also been shown to parti-
cipate in protective cutaneous responses against 
C. albicans through direct antifungal properties of 
CGRP, and by promoting keratinocyte proliferation 
and regulating IL-23 production by dermal DCs (see 
below) [275]. Sensory neurons are activated by 
C. albicans and their mechanical ablation or chemical 
denervation of TRPV1+ neurons impaired IL-23 and 
IL-17 responses and increased susceptibility to cuta-
neous C. albicans infection, which was rescued by the 
addition of CGRP [276]. In fact, activation of TRPV1+ 

neurons was shown to be sufficient to promote protec-
tive IL-17 responses during cutaneous C. albicans (and 
Staphylococcus aureus) infection, including eliciting 
anticipatory type 17 responses in adjacent uninfected 
skin [277]. The recent demonstration that MrgprD- 
expressing nonpeptidergic neurons promote cutaneous 
immune homeostasis and exert immunomodulatory 
functions during cutaneous S. aureus infection raises 
the possibility of their potential role during skin fungal 
challenge [278].

As with the oral mucosa, IL-23 produced by DCs 
and IL-17A produced by CD4+ T cells, CD8+ T cells, γδ 
T cells, and ILC3 are critical for protection against 
cutaneous C. albicans infection in vivo; instead, IL-22 
is dispensable [279]. Three major DC subtypes exist in 
the skin: Langerhans cells are the only MHCII- 
expressing cell subset in the epidermis whereas 
CD11b+ DCs and CD103+ DCs constitute the dermal 
DC subsets [280]. Importantly, the morphology of 
C. albicans and the DC subset determine T-helper cell 
differentiation and fungal control in the skin [281,282]. 
Thus, yeast cells promote Th17 cell responses—which 
are critical for cutaneous fungal control— via DECTIN- 
1-and TLR/MYD88-mediated expression of IL-6 by 
Langerhans cells in the epidermis, whereas hyphae 
induce Th1 cell responses—which are dispensable for 
cutaneous fungal control—but not Th17 cell responses 
[131,281,283]. Thus, as opposed to Langerhans cells, 
CD11b+ DCs, which also express DECTIN-1, are not 
required for Th17 cell responses because DECTIN-1 
ligation by hyphae does not occur in the dermis. 

Instead, CD103+ DCs, which lack DECTIN-1 expres-
sion, suppress Th17 cell development likely through the 
induction of the inhibitory cytokines IL-12 and IL- 
27 [282].

Although CD11b+ and CD103+ DCs are not 
required for Th17 cell differentiation, they are both 
important for the production of IL-17A by CD8+ 

T cells in the epidermis, which protects from 
C. albicans skin invasion [284]. Mice deficient in 
Langerhans cells (or in both Langerhans cells and 
CD103+ dermal DCs) do not exhibit defects in IL-23 
production or fungal growth control during cutaneous 
candidiasis. Instead, CD11b+ dermal DCs are both 
necessary and sufficient for IL-23-mediated, IL-17- 
driven cutaneous protection against C. albicans. 
Specifically, IL-17-secreting dermal γδ T cells, particu-
larly of the Vγ4 T cell receptor (TCR), constitutively 
express IL-23R and respond to IL-23 produced by 
CD301b+ dermal DCs to promote C. albicans clearance 
[276].

In a different mouse model of skin fungal abscess 
formation caused by injection of C. albicans hyphae 
into the deep dermis, a two-step process of initial 
fungal containment followed by fungal elimination 
ensues that depends on Nuclear factor of activated 
T cells (NFAT) signaling, which promotes IL-2 produc-
tion by DCs and subsequent IFN-γ generation by NK 
cells. IFN-γ then acts to a) counteract the effects of 
TGF-β thus limiting myofibroblast differentiation and 
collagen deposition and to b) promote the generation 
of plasmin, which mediates collagen capsule digestion, 
skin ulceration, and elimination of C. albicans [285].

Candida skin colonization has also been associated 
with certain skin inflammatory diseases such as atopic 
dermatitis and psoriasis [286,287]. Recently, cutaneous 
recall responses to C. albicans were shown to promote 
psoriasiform skin inflammation in mice in a DECTIN- 
1-, Th17 cell-, neutrophil NET-, and Langerhans cell- 
dependent manner [288]. These findings support the 
notion that colonization and/or infection by C. albicans 
may predispose to or amplify psoriasis via the expan-
sion of fungus-reactive Th17 cells.

Candidemia and systemic candidiasis

In addition to infections at barrier surfaces, C. albicans 
—together with emerging non-albicans Candida species 
—are a leading cause of life-threatening nosocomial 
bloodstream infections [289–291]. Certain underlying 
immunosuppressive conditions such as neutropenia 
and/or corticosteroid administration and medical inter-
ventions such as the use of central venous catheters or 
broad-spectrum antibiotics and chemotherapy- or 
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abdominal surgery-induced gastrointestinal barrier dis-
ruption are major risk factors for candidemia and sys-
temic candidiasis, especially in ICU patients [4]. 
Myeloid phagocytes including neutrophils, inflamma-
tory monocytes, tissue-resident macrophages, and 
CD11b+ DCs are responsible for host defense against 
systemic candidiasis, whereas T and B lymphocytes and 
CD103+ DCs are dispensable; the only lymphoid cell 
subset that contributes to systemic anti-Candida immu-
nity is innate NK cells [4,109,292–294].

Neutrophils represent the first line of innate defense 
against systemic candidiasis and neutropenic patients 
are at heightened risk for development of and suffering 
from poor outcomes after systemic candidiasis [4,295]. 
Early neutrophil recruitment and swarming at the site 
of infection is critical for effective fungal control 
though the precise host molecular signals that underlie 
early protective neutrophil responses remain poorly 
understood [296–299]. The organ-specific ability to 
rapidly recruit neutrophils correlates with fungal con-
trol in mice; thus, the spleen and liver rapidly recruit 
neutrophils and effectively control C. albicans, whereas 
the kidney exhibits sluggish neutrophil recruitment and 
is unable to curtail fungal proliferation [40]. During 
systemic candidiasis, candidalysin contributes to 
NLRP3 inflammasome activation with subsequent cas-
pase-1-dependent IL-1β secretion and renal neutrophil 
recruitment [300,301]. In the C. albicans-infected CNS, 
neutrophil recruitment is also facilitated by candidaly-
sin—while Saps are dispensable—which activates 
CARD9+ microglial cells to sequentially produce IL-1β 
and CXCL1 in a p38- and c-Fos-dependent manner for 
recruiting protective CXCR2+ neutrophils 
[121,302,303]. Recently, protection from C. albicans 
invasion of the CNS was surprisingly shown to also 
depend on meningeal IgA-secreting plasma cells that 
originate from the gut, are positioned adjacent to dural 
venous sinuses, and facilitate C. albicans entrapment in 
peri-sinus areas to restrict fungal spread in brain tissue 
[304]; whether meningeal IgA is impaired in CARD9 
deficiency remains unknown. Immunization of mice 
with NDV-3A results in greater CXCL1 levels and 
improved neutrophil influx into infected tissues leading 
to decreased fungal burden after systemic C. albicans 
infection [305]. Future clinical studies will be needed to 
determine whether and how this vaccine may protect 
humans from systemic candidiasis.

Depending on the size of C. albicans structures, 
recruited neutrophils employ different mechanisms to 
restrict the fungus [306]. These effector functions 
include phagocytosis and intracellular killing of 
C. albicans yeast cells via oxidative and non-oxidative 
cytotoxic mechanisms, degranulation of antimicrobial 

molecules and formation of NETs to counteract large 
extracellular fungal hyphae, generation of both pro- 
and anti-inflammatory cytokines and chemokines, and 
sequestration of trace elements [307–310]. Mechanisms 
of NET formation include β-glucan recognition by 
complement receptor 3 (CR3) in opsonized 
C. albicans whereas for unopsonized C. albicans, 
DECTIN-2 recognition and signaling via SYK and pro-
tein kinase delta (PKCδ) result in neutrophil elastase 
nuclear translocation, histone citrullination, and 
NETosis, while protein arginine deiminase 4 (PAD4) 
is dispensable [311–313].

One of the most important antifungal immune effec-
tor mechanisms in neutrophils is the generation of ROS 
via the sequential assembly of the NADPH oxidase 
complex at the phagosomal membrane and myeloper-
oxidase (MPO) activation [314]. NADPH oxidase- 
dependent potassium flux resulting in activation of 
neutrophil phagosomal proteases is thought to mediate 
oxidative burst-mediated fungal (including C. albicans) 
killing [315]. In mouse neutrophils, which differ from 
human neutrophils in their MPO and α-defensin con-
tent and activity [316], ROS generation was shown to 
be dependent on DECTIN-1 recognition leading to 
calcineurin and NFAT signaling and Mac-1/Vav/ 
PKCδ activation [317]. The importance of ROS in 
antifungal defense is highlighted by human PIDs that 
impede ROS production and predispose to systemic 
fungal infections. For example, chronic granulomatous 
disease, caused by mutations in 4 out of 5 subunits of 
the NADPH oxidase complex—with the exception of 
p40phox—that abrogate oxidative burst, carries a ~40% 
lifetime risk of pulmonary aspergillosis [318,319], 
whereas systemic Candida infections occur less fre-
quently (<5-10%) and often involve atypical anatomical 
niches such as the lymph nodes. Similarly, humans with 
complete MPO deficiency infrequently (~5%) suffer 
from systemic candidiasis, typically in the presence of 
additional predisposing factors such as diabetes melli-
tus [320]. Collectively, these observations highlight the 
critical contribution of compensatory non-oxidative 
mechanisms in Candida clearance.

Neutrophil non-oxidative fungal killing mechan-
isms include AMPs, hydrolases, and nutritional 
immunity. Two recently recognized molecular signals 
that mediate neutrophil granulogenesis, degranula-
tion, and non-oxidative C. albicans killing include 
the endoplasmic reticulum transmembrane protein 
Jagunal homolog 1 (JAGN1) and the chemokine 
receptor CXCR1 [321,322]. In fact, the mutant 
CXCR1 allele CXCR1-T276 was shown to impair 
neutrophil degranulation and C. albicans killing and 
was associated with an increased risk of disseminated 
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candidiasis in infected patients [321]. Moreover, 
using neutrophils from patients with various PIDs 
two independent signaling mechanisms were charac-
terized that control phagolysosomal function and 
oxidative or non-oxidative burst-dependent killing 
in response to opsonized and unopsonized 
C. albicans yeast cells [323]. Specifically, killing of 
opsonized C. albicans occurs in a DECTIN-1-inde-
pendent and SYK-dependent manner and relies on 
the NADPH oxidase system, Fcγ receptors, and pro-
tein kinase C (PKC). By contrast, killing of unopso-
nized C. albicans yeast cells by human neutrophils 
occurs independently of the NADPH oxidase system 
and relies on CR3, CARD9, and phosphoinositide- 
3-kinase (PI3K) [323].

Although crucial for fungal control, neutrophil- 
mediated immunity may also come at the cost of 
immunopathology and tissue injury, particularly in 
the renal tubules within which neutrophils and 
C. albicans invade [324]. The molecular mediators 
that underlie pathogenic neutrophil effects have been 
uncovered in the mouse model of systemic candidiasis. 
For example, excessive neutrophil recruitment during 
the late phase of infection is CCR1-dependent exerting 
detrimental effects on renal function and host survival 
[296,299,325]. Moreover, leukotriene B4-dependent 
neutrophil accumulation in the C. albicans-infected 
lung results in pulmonary capillaritis and hemorrhage 
and hypoxia [326]. Furthermore, the tyrosine kinase 
Tec, the suppressor of TCR signaling (Sts) phospha-
tases, the lectin galectin-3, the endoribonuclease 
MCPIP1, and IL-17C are also implicated in neutrophil- 
mediated immunopathology in C. albicans-infected tis-
sues [327–330]. By contrast, DCs expressing dendritic 
cell natural killer lectin group receptor-1 (DNGR-1) 
inhibit renal CXCL2 expression and decrease neutro-
phil recruitment to ameliorate neutrophil-induced tis-
sue damage during systemic candidiasis [331]. In 
addition, IL-17R signaling on renal tubular epithelial 
cells (RTECs) activates the Kallikrein-kinin system and 
protects RTEC from caspase-3-dependent apoptosis 
and ameliorates renal damage following systemic can-
didiasis [332]. Thus, although neutrophils play a critical 
role in defense against systemic candidiasis, their pro-
longed and/or excessive recruitment and activation 
may exert damaging effects. Additional studies are 
needed to delineate the complex tissue-specific regula-
tory networks that control the spatial and temporal 
regulation of neutrophil accumulation and function 
and to define the relevance of these pathways in 
humans with systemic candidiasis, in whom neutro-
phil-associated immunopathology has been observed 

in the settings of hepatosplenic candidiasis during neu-
trophil recovery and of renal candidiasis [333–335].

Besides neutrophils, mononuclear phagocytes also 
promote protective host defense during systemic candi-
diasis [293]. Specifically, inflammatory Ly6Chi mono-
cytes, which migrate in infected tissues and differentiate 
into macrophages and monocyte-derived DCs, as well 
as tissue-resident macrophages, and DCs contribute to 
fungal clearance through both direct anti-Candida 
effector functions such as phagocytosis, fungal killing, 
cytokine production, antigen presentation, and inflam-
masome activation, and via boosting ROS generation 
and/or the candidacidal activity of neutrophils 
[112,336,337]. Inflammatory monocytes traffic into 
the C. albicans-infected kidney and CNS in a CCR2- 
dependent manner, can directly inhibit C. albicans 
growth, and are critical for fungal clearance in these 
tissues and host survival [338]. Inflammatory mono-
cytes also promote the candidacidal activity of neutro-
phils. Specifically, splenic inflammatory monocytes 
produce IL-15 in a type I interferon-dependent manner 
and activate CCR5-recruited NK cells to produce GM- 
CSF, which in turn boosts the Candida killing capacity 
of renal neutrophils [337,339]; this NK function was 
shown to rely on IL-17R signaling [340]. Besides 
inflammatory monocytes, CD11b+ DCs depend on 
SYK signaling to generate IL-23, which represents 
another local renal molecular mechanism for augment-
ing GM-CSF production by NK cells and enhancing 
neutrophil candidacidal activity [112]. IL-23 also pro-
vides survival signals to neutrophils within the 
C. albicans-infected kidney acting in a partially auto-
crine, IL-17-independent manner to inhibit apoptosis 
and protect from infection [341]. Last, CD169+ renal 
macrophages represent another tissue-resident mono-
nuclear phagocyte subset that contributes to priming 
neutrophil ROS production via IFN-γ and control of 
C. albicans renal proliferation [292].

In addition, renal tissue-resident macrophages form 
direct contacts with C. albicans yeast and hyphal forms 
within the first few hours following infection and exhibit 
candidacidal activity [324]. The chemokine receptor 
CX3CR1 is fundamental for control of C. albicans growth 
in the kidney and host survival by promoting renal 
macrophage accumulation, direct macrophage- 
C. albicans interactions, and macrophage killing. 
Mechanistically, CX3CR1 modulates macrophage survi-
val by inhibiting caspase-3-dependent apoptosis asso-
ciated with AKT activation [324]. In humans, the 
dysfunctional CX3CR1-M280 allele was associated with 
increased risk for developing candidemia and poor out-
come after infection [324]. Mechanistically, individuals 
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homozygous for the CX3CR1-M280 allele were shown to 
exhibit a defect in CX3CL1-mediated monocyte survival 
due to impaired AKT and ERK activation and had low 
blood monocyte counts at the steady state [342]. By con-
trast, CX3CR1-expressing macrophages are dispensable 
for OPC and VVC control in mice and humans [343]. 
However, in the gut, CX3CR1-expressing mononuclear 
phagocytes modulate the composition of and respond to 
gut fungal communities in a CLR/SYK-dependent man-
ner and patients with IBD carrying the CX3CR1-M280 
polymorphism have reduced antifungal antibody 
responses [344]. CX3CR1-expressing gut macrophages 
also respond to gut C. albicans to promote the expansion 
of germinal center-dependent B lymphocytes for the 
development of antifungal IgG responses that protect 
from systemic fungal challenge; this response is abrogated 
in the setting of CARD9 deficiency [20].

Upon encountering C. albicans, macrophages up- 
regulate signaling pathways involved in phagocytosis 
and inflammation [345]. The tetraspanin CD82 pro-
motes clustering of DECTIN-1 in the phagocytic cup 
and DECTIN-1-dependent SYK signaling and mediates 
macrophage fungal killing and pro-inflammatory cyto-
kine responses. Accordingly, Cd82−/− mice fail to con-
trol fungal growth and exhibit greater susceptibility 
in vivo and polymorphisms in the CD82 gene are asso-
ciated with development of candidemia in patients 
[346]. To facilitate engulfment of long hyphal filaments, 
macrophages can fold fungal hyphae in a process that 
involves hyphal sensing by DECTIN-1 and β2-integrin 
and polymerization of the actin–myosin filaments of 
the phagosome [347]. To avoid rupture of the phago-
some and maintain its integrity, macrophages increase 
the phagosome surface area by lysosome biosynthesis 
and fusion which is modulated by the transcriptional 
regulator TFEB [348]. C. albicans-mediated neutraliza-
tion of the phagosome and yeast-to-hyphal transition 
trigger NLRP3-dependent lytic pyroptosis in macro-
phages [349–351]. CLR/SYK-mediated negative regula-
tion of macrophage function during systemic 
candidiasis also occurs. Specifically, the E3-ubiquitin 
ligase CBLB targets DECTIN-1, DECTIN-2, and SYK 
for ubiquitination and degradation in macrophages 
(and DCs) and leads to impaired inflammasome activa-
tion, oxidative burst, and fungal killing and increased 
mortality during systemic candidiasis [352,353]. In 
addition, down-regulation of the CLR FcεRII (CD23) 
by engaging JNK1 signaling downstream of DECTIN-1 
ligation in macrophages (and DCs) compromises 
FcεRII-mediated nitric oxide production and increases 
mortality during systemic candidiasis [354]. Thus, tar-
geting CBLB and FcεRII may have therapeutic implica-
tions for systemic candidiasis.

Furthermore, recent studies have underscored the 
importance of modulating host metabolism in influen-
cing phagocyte-mediated responses to systemic 
C. albicans infection. For example, CLR-mediated 
metabolic reprogramming of monocytes and macro-
phages mainly via induction of glucose metabolism 
and increased glycolysis is important for protection 
against systemic candidiasis [355]. To avoid clearance, 
C. albicans perturbs host glucose homeostasis by 
depleting glucose and triggering rapid macrophage 
death, which depend on glycolysis for energy [356]. 
Moreover, glutathione reductase (Gsr)-mediated redox 
regulation is necessary for C. albicans clearance by 
neutrophils and macrophages. Gsr−/− mice had 
increased kidney fungal burden, enhanced cytokine 
and chemokine responses, greater neutrophil infiltra-
tion in the infected kidney and heart, and increased 
mortality during systemic candidiasis. Mechanistically, 
Gsr deficiency led to defective phagocytosis, respiratory 
burst, and fungicidal activity in neutrophils and 
increased levels of pro-inflammatory cytokines and 
MAPK and SYK activities in macrophages [357]. In 
addition, restoration of glucose uptake in neutrophils 
by pharmacological inhibition of glycogen synthase 
kinase 3 beta (GSK3β) rescued ROS production and 
candidacidal function of neutrophils from uremic 
mice and patients with chronic kidney disease [358].

The ability of cells to exhibit immunological memory 
was thought of as an exclusive feature of the adaptive 
immune system, however activation of monocytes and 
macrophages can also result in enhanced responsiveness 
to subsequent triggers via a process termed trained immu-
nity, which is mediated by epigenetic reprogramming 
[359]. First described in the setting of C. albicans infection 
in 2012, trained immunity promotes T and B lymphocyte- 
independent protection against systemic candidiasis fol-
lowing a first exposure to a non-lethal infectious dose. 
This protection is conferred by monocytes and macro-
phages via DECTIN-1/Raf-1/NF-κB activation after expo-
sure to β-glucan [360,361]. Trained monocytes and 
macrophages exert enhanced pro-inflammatory 
responses and exhibit a metabolic shift toward aerobic 
glycolysis via AKT/mTOR/HIF-1α signaling [361].

In summary, the delineation of the molecular basis of 
antifungal host defense mechanisms against life- 
threatening systemic candidiasis holds promise for the 
identification of genetic variants in immune-related 
genes, which—either alone or in combination—may 
explain patient-specific susceptibility to infection. 
Besides the aforementioned genetic variation in the 
CXCR1, CX3CR1, CD82, and TLR gene loci 
[145,321,324,346], additional population studies have 
revealed increased susceptibility to systemic candidiasis 
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in patients with certain genetic variants in the TNF, IL10, 
IL12B, CCL8, CD58, TAGAP, LCE4A-C1orf68, PSMB8, 
SP110, and STAT1 genes; strikingly, the combinatorial 
presence of certain genetic variants has been reported to 
lead to up to ~20-fold increases in host susceptibility to 
candidemia [144,362–365]. Collectively, these findings 
may eventually help devise personalized immunoge-
netics-based strategies that could allow for risk stratifica-
tion, intensified diagnosis, targeted vaccination, 
antifungal prophylaxis, and/or prognostication of patients 
in the ICU, which may improve their outcomes.

Therapeutic interventions and drug resistance 
mechanisms

Factors contributing to the high morbidity and mortal-
ity of systemic candidiasis in patients include the poor 
performance of fungal diagnostics (reviewed elsewhere 
[366]) and the suboptimal efficacy of antifungal drugs 
in vivo. Currently available classes of antifungal drugs 
that are used to treat C. albicans infections include the 
polyenes, 5-flucytosine (5-FC), the azoles, and the echi-
nocandins [367]. Terbinafine is an allylamine antifun-
gal drug that inhibits ergosterol biosynthesis by 
targeting squalene epoxidase and blocking the 

conversion of squalene to squalene epoxide [368]. 
However, its use is restricted to the treatment of ony-
chomycosis and cutaneous fungal infections due to its 
limited systemic bioavailability [369], and thus will not 
be further discussed here (Figure 3).

The oldest class of antifungal drugs available in the 
clinic are polyenes. Polyenes bind to ergosterol, a cell 
membrane sterol that is unique to fungi. Upon binding, 
polyenes form pores in the fungal cell membrane caus-
ing osmotic cell lysis. Besides pore formation, the mode 
of action of amphotericin B (AMB) also involves oxi-
dative damage to fungal cells [370] and ergosterol 
sequestration, leading to extra-membranous aggregates 
[371]. The most recognizable member of the polyene 
family is AMB, which remains one of the most potent 
and broad-spectrum antifungal agents for the treatment 
of mucosal and systemic fungal infections, whereas 
nystatin, another polyene, is solely used topically for 
the treatment of OPC [372,373]. Nephrotoxicity is 
a common and limiting adverse effect to AMB, 
although the lipid drug formulations cause less renal 
damage [374]. The recent advent of the cochleated 
formulation of AMB shows promise for efficacious 
oral drug delivery without its nephrotoxic effects 
[375]. Despite the widespread use of AMB over 

Figure 3. Milestones in antifungal drug development and fungal targets of the currently available antifungal agents. In the upper 
panel, the timeline depicts the date of discovery of the first indicated antifungal compound within each class of antifungal drugs and 
the date of FDA approval for the most common antifungal drugs with anti-Candida activity. In the lower panel, a C. albicans budding 
yeast is depicted and the targets of antifungal drugs are shown. Illustration created with BioRender.com. AMB, amphotericin B.
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decades, resistance of C. albicans to AMB is very 
uncommon and, when present, it is associated with 
mutations in the ERG3 or ERG6 genes of the ergosterol 
biosynthesis pathway, which result in decreased levels 
of ergosterol thus impeding the binding of AMB to the 
fungal cell membrane [376,377].

5-FC is a pyrimidine analog that is taken up by 
C. albicans and converted to 5-fluorouracil, which 
interferes with fungal DNA and RNA synthesis. The 
rapid development of C. albicans resistance to 5-FC 
when used as monotherapy, caused by mutations in 
cytosine permease and cytosine deaminase that 
decrease uptake or conversion of the drug to 5-fluor-
ouracil, respectively, and the hematological, hepatic, 
and gastrointestinal adverse effects of the drug limit 
its use in the clinic [378]. Thus, 5-FC is typically admi-
nistered in combination with AMB or triazoles in the 
setting of certain difficult-to-treat infections such as 
candidal endocarditis or meningitis [379].

The azoles target Erg11p/Cyp51 and inhibit the bio-
synthesis of ergosterol leading to the accumulation of 
toxic sterols on the fungal cell membranes such as 14α- 
methylergosta-8,24(28) dienol and increased levels of 
endogenous ROS [380,381], both of which contribute 
to fungal growth arrest. Azoles are divided into two 
subgroups based on their chemical structure: the imi-
dazoles such as clotrimazole, ketoconazole, and mico-
nazole, and the triazoles, which include fluconazole, 
itraconazole, voriconazole, posaconazole, and isavuco-
nazole. The topical application of imidazoles is used for 
the treatment of mucosal candidiasis, whereas the tria-
zoles are commonly used to treat mucosal and systemic 
infections by C. albicans, although triazole-specific 
toxicities and drug-drug interactions occasionally 
restrict their clinical use [382]. The emergence of 
azole resistance poses therapeutic challenges [383]. It 
is observed more often during treatment of patients 
with CMC compared to those with candidemia due to 
the recurrent nature of these infections and the 
repeated exposures to azoles [384–386]. The molecular 
mechanisms of azole resistance in C. albicans include: 
mutations in the ERG11 gene that result in ERG11 
overexpression; gain-of-function mutations in the 
ergosterol biosynthesis pathway regulator UPC2 gene 
that also lead to increased ERG11 expression; mutations 
in the ERG3 or ERG6 genes that cause accumulation of 
toxic sterols; overexpression of drug efflux pumps 
including the ABC transporters CDR1 and CDR2 and 
the MFS transporter MDR1 caused by gain-of-function 
mutations in the transcription factors TAC1 and MRR1; 
genomic plasticity in the forms of aneuploidy, trisomy, 
loss of heterozygosity, and isochromosome formation; 
as well as enzymatic changes involved in the 

sphingolipid synthesis pathway [387,388]. Addition of 
a tetrazole group by substitution of the triazole metal- 
binding group has resulted in decreased drug-drug 
interactions and improved tolerability due to the 
greater specificity for the fungal ERG11 over the 
human CYP51 [389]. The tetrazole compounds VT- 
1161/oteseconazole and VT-1598 exhibit superior 
in vitro and in vivo activity against clinical C. albicans 
(including azole-resistant) strains from patients with 
CMC [390,391], and oteseconazole was safe and effica-
cious for the treatment of recurrent VVC in a Phase II 
randomized, double-blind, placebo-controlled clinical 
trial [392].

The most recently introduced class of antifungal drugs 
in the clinic, the parenterally used echinocandins, consist 
of the well-tolerated caspofungin, micafungin, and ani-
dulafungin, which inhibit β-(1,3)-glucan synthase, an 
enzyme involved in the generation of β-(1,3)-glucan; in 
the absence of β-(1,3)-glucan, loss of fungal cell wall 
rigidity and cell lysis ensue [393]. The increasing inci-
dence of echinocandin-resistant C. albicans clinical 
strains in recent years is concerning [394]. The most 
common mechanism of resistance relates to mutations 
in hotspot regions of the β-(1,3)-glucan synthase gene 
FKS [395], and are typically associated with prior echi-
nocandin exposure [396,397]. In addition, although more 
prevalent in C. glabrata [398], mutations in the mismatch 
repair gene MSH2 can also result in echinocandin resis-
tance in C. albicans; MSH2 mutations often confer cross- 
resistance to azoles and, alarmingly, may occur without 
prior exposure to echinocandins [399]. Recently, ibrex-
afungerp, an oral antifungal drug that belongs to a novel 
class of glucan synthase inhibitors termed triterpenoids, 
has shown significant activity against C. albicans (and 
multidrug-resistant C. glabrata and C. auris). 
Ibrexafungerp maintains its efficacy at low pH conditions 
which are often encountered in the vaginal mucosa and 
was recently FDA-approved for the treatment of VVC in 
women [400,401].

Another promising antifungal drug currently in 
Phase II clinical trials is the first-in-class fosmanogepix, 
an inhibitor of the fungal enzyme Gwt1, which is 
involved in glycosylphosphatidylinositol-anchored 
mannoprotein biosynthesis, trafficking, and anchoring 
to the cell membrane and outer cell wall [402]. 
Fosmanogepix exhibits a broad spectrum in vitro activ-
ity against C. albicans (including echinocandin- 
resistant) strains, other yeast, and mold fungi and has 
shown significant in vivo efficacy in mouse and rabbit 
models of OPC and disseminated C. albicans infections 
[403–405]. Although developing antifungal drugs is 
hindered by the evolutionary proximity between eukar-
yotic fungi and humans, additional novel antifungal 
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agents are in different phases of development and pro-
mising candidates such as turbinmicin have recently 
emerged via metabolomic screens from the microbiome 
of marine animals [406–408]. For a more detailed 
review of the new antifungal agents in clinical develop-
ment the reader is refered to [409].

Outlook

The co-evolution of C. albicans with humans has estab-
lished a complex balance between commensalism and 
pathogenicity for this yeast fungus. In recent decades, 
advances in modern medicine have enabled this patho-
biont to become one of the most common human 
pathogens causing life-threatening healthcare- 
associated infections, the prevalence of which continues 
to be significant. Understanding the virulence traits of 
C. albicans, the tissue-specific mechanisms of anti- 
Candida host defense, and its mechanisms of resistance 
to the armamentarium of available antifungal drugs 
should enable the development of better strategies for 
the diagnosis and treatment of affected individuals, 
which may help improve patient outcomes.
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