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Abstract

Background

Following rapidly rising COVID-19 case numbers, England entered a national lockdown on

6 January 2021, with staged relaxations of restrictions from 8 March 2021 onwards.

Aim

We characterise how the lockdown and subsequent easing of restrictions affected trends in

SARS-CoV-2 infection prevalence.

Methods

On average, risk of infection is proportional to infection prevalence. The REal-time Assess-

ment of Community Transmission-1 (REACT-1) study is a repeat cross-sectional study of

over 98,000 people every round (rounds approximately monthly) that estimates infection

prevalence in England. We used Bayesian P-splines to estimate prevalence and the time-

varying reproduction number (Rt) nationally, regionally and by age group from round 8

(beginning 6 January 2021) to round 13 (ending 12 July 2021) of REACT-1. As a compara-

tor, a separate segmented-exponential model was used to quantify the impact on Rt of each

relaxation of restrictions.
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Results

Following an initial plateau of 1.54% until mid-January, infection prevalence decreased until

13 May when it reached a minimum of 0.09%, before increasing until the end of the study to

0.76%. Following the first easing of restrictions, which included schools reopening, the

reproduction number Rt increased by 82% (55%, 108%), but then decreased by 61% (82%,

53%) at the second easing of restrictions, which was timed to match the Easter school holi-

days. Following further relaxations of restrictions, the observed Rt increased steadily,

though the increase due to these restrictions being relaxed was offset by the effects of vacci-

nation and also affected by the rapid rise of Delta. There was a high degree of synchrony in

the temporal patterns of prevalence between regions and age groups.

Conclusion

High-resolution prevalence data fitted to P-splines allowed us to show that the lockdown

was effective at reducing risk of infection with school holidays/closures playing a significant

part.

Author summary

Throughout the COVID-19 pandemic in England there has been a high rate of testing.

However, the case data obtained from this mass testing is prone to many biases due to

changing testing rates and behaviours. The REal-time Assessment of Community Trans-

mission-1 (REACT-1) study instead tests random subsets of the population of England for

SARS-CoV-2, providing a relatively unbiased signal of infection prevalence over time.

Here we present the temporal analysis of rounds 8–13 of REACT-1, running from January

to July 2021. During this period a national lockdown was introduced in England, followed

by the staged relaxation of restrictions. We find that the lockdown was highly effective at

reducing levels of infection prevalence in England, with prevalence declining until mid-

May. However, as restrictions were gradually relaxed the reproduction number, R,

increased to greater than 1 (the threshold for epidemic growth) and infection prevalence

once more entered a phase of growth. Analysis of the step-changes in R after each restric-

tion relaxation highlighted the significant effect that school holidays/closures likely had

on R over this period. Additionally, we found that increases in R were likely offset by the

high rates of vaccination that were achieved by July 2021.

Introduction

Throughout the SARS-CoV-2 pandemic, non-pharmaceutical interventions (NPIs) have been

crucial in controlling the spread of the virus, and have been highly effective [1–3]. NPIs aim at

reducing the number of social contacts an individual makes, therefore severing possible links

of transmission. A wide variety of NPIs have been introduced globally including stringent

restrictions such as lockdowns [1] and school closures [4]. Since the development of effective

vaccines [5,6], vaccination has been at the forefront of public health interventions in many

populations. However, NPIs will remain highly important and valuable tools in the future and

it is crucial to understand their effect on transmission in planning for possible future waves of

severe SARS-CoV-2 variants and future emerging pathogens.

PLOS COMPUTATIONAL BIOLOGY Trends in SARS-CoV-2 infection prevalence during England’s roadmap out of lockdown

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010724 November 23, 2022 2 / 16

email react.access@imperial.ac.uk. Summary

statistics, code and data, including the weighted

daily number of positive tests and daily total

number of tests, are available at the github

repository: mrc-ide/reactidd (https://doi.org/10.

5281/zenodo.6557251). Additional summary

statistics and results from the REACT-1

programme are also available at https://www.

imperial.ac.uk/medicine/research-and-impact/

groups/react-study/real-time-assessment-of-

community-transmission-findings/. REACT-1 study

materials are available for each round at https://

www.imperial.ac.uk/medicine/research-and-

impact/groups/react-study/for-researchers/react-1-

study-materials/. Computer code supporting the

paper is available at https://github.com/mrc-ide/

reactidd and also on zenodo (DOI:10.5281/zenodo.

7085123).

Funding: The REACT-1 study was funded by the

Department of Health and Social Care in England.

SR, CAD acknowledge support: Medical Research

Council (MRC) Centre for Global Infectious Disease

Analysis, National Institute for Health Research

(NIHR) Health Protection Research Unit (HPRU),

Wellcome Trust (200861/Z/16/Z, 200187/Z/15/Z),

and Centres for Disease Control and Prevention

(US, U01CK0005-01-02). GC is supported by an

NIHR Professorship. HW acknowledges support

from an NIHR Senior Investigator Award and the

Wellcome Trust (205456/Z/16/Z). PE is Director of

the MRC Centre for Environment and Health (MR/

L01341X/1, MR/S019669/1). PE acknowledges

support from Health Data Research UK (HDR UK);

the NIHR Imperial Biomedical Research Centre;

NIHR HPRUs in Chemical and Radiation Threats

and Hazards, and Environmental Exposures and

Health; the British Heart Foundation Centre for

Research Excellence at Imperial College London

(RE/18/4/34215); and the UK Dementia Research

Institute at Imperial (MC_PC_17114). We thank

The Huo Family Foundation for their support of our

work on COVID-19. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1010724
mailto:react.access@imperial.ac.uk
https://doi.org/10.5281/zenodo.6557251
https://doi.org/10.5281/zenodo.6557251
https://www.imperial.ac.uk/medicine/research-and-impact/groups/react-study/real-time-assessment-of-community-transmission-findings/
https://www.imperial.ac.uk/medicine/research-and-impact/groups/react-study/real-time-assessment-of-community-transmission-findings/
https://www.imperial.ac.uk/medicine/research-and-impact/groups/react-study/real-time-assessment-of-community-transmission-findings/
https://www.imperial.ac.uk/medicine/research-and-impact/groups/react-study/real-time-assessment-of-community-transmission-findings/
https://www.imperial.ac.uk/medicine/research-and-impact/groups/react-study/for-researchers/react-1-study-materials/
https://www.imperial.ac.uk/medicine/research-and-impact/groups/react-study/for-researchers/react-1-study-materials/
https://www.imperial.ac.uk/medicine/research-and-impact/groups/react-study/for-researchers/react-1-study-materials/
https://www.imperial.ac.uk/medicine/research-and-impact/groups/react-study/for-researchers/react-1-study-materials/
https://github.com/mrc-ide/reactidd
https://github.com/mrc-ide/reactidd
https://doi.org/10.5281/zenodo.7085123
https://doi.org/10.5281/zenodo.7085123


On 6 January 2021, following record high numbers of cases, England entered a national lock-

down [7]. Over the following months, the restrictions were gradually eased with phased reopen-

ings [8]. The first restriction easing (step 1a) on 8 March saw the return of face-to-face teaching in

schools (previously schools were closed for most students in England) and colleges and allowed

limited contact with individuals from different households outdoors (up to 2 people). The second

easing (step 1b) occurred on 29 March and expanded the allowed outdoor social contacts with

individuals from different households (up to 6 people). On 14 April the third restriction easing

(step 2) occurred allowing indoor non-essential retail and outdoor hospitality to reopen. The

dates of step 1b and step 2 aligned closely with the Easter holidays that saw many schools closed

for the first two weeks of April. The fourth easing (step 3) on 17 May allowed indoor hospitality to

reopen for groups of up to 6 people. The final easing of restrictions was scheduled to occur on 21

June and removed nearly all domestic restrictions, but due to rising cases was postponed to 19

July [9]. More detailed descriptions of the changes at each step are given in Table 1 [8].

The REal-time Assessment of Community Transmission—1 (REACT-1) study is a repeat

cross-sectional study that estimated the prevalence of SARS-CoV-2 infections in England

approximately every month from May 2020 to March 2022 [10]. Due to the random sampling

procedure, the study reduces many of the biases present in symptomatic universal testing pro-

grams [11]. Here we present the inferred trends in infection prevalence and the time-varying

reproduction number Rt during the period of the roadmap out of the third lockdown in

England, from 6 January to 12 July 2021 both nationally and for sub-groups (regions and

approximate age-quartiles). We use prevalence to describe the effect that each step down in

restrictions had on the reproduction number.

Methods

Ethics

The REACT-1 study received research ethics approval from the South Central-Berkshire B

Research Ethics Committee (IRAS ID: 283787).

REACT-1 study protocol

The REACT-1 study protocol has been described in detail elsewhere [12]. During each round

of the study a random subset of the population (over 5 years old) of England, was chosen from

Table 1. Summary table of changes in restrictions over the period of rounds 8–13 of the REACT-1 study [8].

Restriction step Date Main changes

Lockdown 06/01/2021 • Stat at home rule announced limiting the reasons people can leave their homes

• All primary schools, secondary schools and colleges close, moving to remote learning

• All non-essential retail, hospitality, sports facilities and entertainment venues close

• People advised to work from home unless they cannot reasonably do so

Step 1a 08/03/2021 • Face-to-face education in schools and colleges to resume

• Practical courses at English universities can resume

• People allowed to leave home for recreation and exercise outdoors one-to-one with people not part of their household

Step 1b 29/03/2021 • Outdoor gatherings of either 6 people (rule of 6) or 2 households to be allowed

• Outdoor sports facilities to be allowed to reopen

• ’Stay at home’ rule will end but people should continue to work from home where they can

Step 2 12/04/2021 • Non-essential retail allowed to reopen

• Outdoor attractions and settings including outdoor hospitality venues, zoos and theme parks allowed to reopen

• Wider social contact rules (e.g rule of 6) will still apply in all settings

Step 3 17/05/2021 • Indoor hospitality will be allowed to reopen. However customers will have to order eat and drink while seated.

• Other indoor locations such as cinemas and children’s play areas will also be allowed to reopen

• Rule of 6 or 2 households to apply indoors, but not outdoors where gatherings will be allowed for up to 30 people

https://doi.org/10.1371/journal.pcbi.1010724.t001
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the national health service (NHS) general practitioner’s list and invited to participate in the

study. Individuals who agreed to participate provided a self-administered throat and nose

swab (parent/guardian administered for those aged 5–12 years old) that underwent reverse

transcription polymerase chain reaction (rt-PCR) testing to determine the presence of SARS-

CoV-2. There was a round of the study approximately monthly from May 2020 to March 2022,

with rounds 8 to 13 of the study running from 6 January to 12 July 2021 with between 98,233

and 167,642 swab tests performed each round (S1 Table). There was a steady decline in the

percentage of individuals responding to the initial invitation, decreasing from 22.0% in round

8 to 11.7% in round 13. During the first 11 rounds the study protocol aimed to achieve approx-

imately equal sample sizes from each lower tier local authority (LTLA, N = 315), whereas in

rounds 12 and 13 the study protocol changed so that sample sizes were representative of each

LTLA’s population size. Participants were assigned individual weights using rim weighting

[13] by: sex, deciles of the IMD, LTLA counts and ethnic group. This ensured the results of

any analysis were more representative of the population of England as a whole even between

rounds in which the study protocol changed. Positivity in the study was defined as rt-PCR

tests with an N-gene Ct value less than 37 or with both N- and E-gene detected.

Bayesian P-spline model

A Bayesian Penalised spline (P-spline) model was fitted to the daily weighted prevalence in

order to obtain continuous estimates of the expected infection prevalence. The Bayesian P-

spline model has been described in detail elsewhere [14]. In short, the entire time-series is split

into equal sized knots of approximately 5 days (high enough density to prevent underfitting),

with 3 further knots defined beyond both the beginning and end of the time series in order to

reduce edge effects. Fourth-order basis splines (b-splines) are defined across all knots. The P-

spline model consists of a linear combination of these b-splines,

gðPtÞ ¼
XN

i¼1
biBi;t;

where g() is the link function (logit function for binomial data), Pt is the prevalence on day t,

Bi,t is the value of the ith b-spline on day t, bi is the ith b-spline coefficient, and the summation

is over all N b-splines. Overfitting is prevented through the inclusion of a second-order ran-

dom-walk prior distribution on the b-spline coefficients, bi = 2bi−1−bi−2+ui, where the random

error ui is normally distributed, ui~N(0, ρ). The first and second b-spline coefficients are given

an uninformative constant prior distribution, b1, b2~Constant. The prior distribution’s param-

eter ρ penalises changes in the first derivative of the link function, effectively penalising

changes in the growth rate. The parameter ρ was given an uninformative inverse gamma prior

distribution, ρ~IG(0.001,0.001).

We fit the model to the national daily weighted number of positive tests and weighted total

number of tests assuming a binomial likelihood. Fitting was performed using a No-U Turns

Sampler (NUTS) [15] implemented in STAN [16]. An analogous model was fit to data for each

region of England (North West, North East, Yorkshire and The Humber, West Midlands, East

Midlands, East of England, London, South West, South East) and for four approximate age-

quartiles (5–17, 18–34, 35–54, 55+ years). However, in this analogous model we assume a con-

stant value for ρ estimated from the model fit to the national data. Continuous estimates of the

time-varying reproduction number, Rt, were estimated from the national and regional preva-

lence estimates [14] under the assumptions that Rt was constant over the previous two week

period and that the generation time (the average time between infections of a primary case and

one of its secondary cases) followed a gamma distribution with shape parameter = 2.29, and

rate parameter = 0.36 [17], equivalent to a mean of 6.36 days and a standard deviation of 4.20
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days. As a sensitivity analysis we also estimated Rt using a generation time following a gamma

distribution with shape parameter = 2.20, and rate parameter = 0.48, equivalent to a mean of

4.58 days and a standard deviation of 3.09 days. These parameters were estimated for the Delta

variant’s generation time [18] and so show how our Rt estimates during the period when the

Delta variant emerged might have been biased. Continuous estimates of the instantaneous

exponential growth rate were estimated from the estimates of prevalence by age group [14].

We chose not to estimate independent reproduction numbers for individual age groups

because of their interconnected transmission dynamics [19].

Segmented-exponential model

In order to quantify the effect of the various levels of restrictions on the reproduction number,

we fit a Bayesian segmented-exponential model. The period of the study was split into six dis-

tinct periods with breakpoints at 6 January, 8 March, 29 March, 14 April and 16 May 2021 –

the dates of key restriction changes–with an additional time-delay parameter, τ. The preva-

lence on day t+1 was then determined by the equation:

Pðt þ 1Þ ¼ PðtÞ � erðtÞ

where the growth rate on day t, r(t), given by:

rðtÞ ¼ r0; t < 6 Janþ t

¼ r1; 6 Janþ t � t < 8 Mar þ t

¼ r2; 8 Mar þ t � t < 29 Mar þ t

¼ r3; 29 Mar þ t � t < 14 Apr þ t

¼ r4; 14 Apr þ t � t < 16 Mayþ t

¼ r5; t � 16 Mayþ t

The parameters r0, r1, r2, r3, r4 and r5 are the growth rates during each period of time

between changes in restrictions with a time offset parameter, τ, introducing a delay between

changes in restrictions and a corresponding change in the growth rate. The resulting 6 growth

rate parameters were assumed to have an uninformative constant prior distribution. The time-

delay parameter was given a uniform prior distribution from 0 to 14 days, τ~U(0,14). The ini-

tial prevalence on the first day for which we have data (30 December 2020) was also given an

uninformative constant prior distribution from 0 to 1.

We fit the model to the daily weighted number of positive tests and weighted total number

of tests assuming a binomial likelihood for national data and for subgroups (9 regions and

approximate age quartiles). Model fitting was again performed using NUTS [15] as imple-

mented in STAN [16].

A further model was also fitted to just the national data. The model is the same as the model

described above, but also allowed for changes to the daily growth rate based on the proportion

of individuals in England vaccinated with 1 dose (more than 21 days before), the proportion

vaccinated with 2 doses (more than 14 days before) [20] and the proportion of cases associated

with the Delta variant [21]. This refined model could not be fit to subgroups due to smaller

sample sizes and data availability for vaccination rates/ Delta variant proportions. The
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prevalence on day t+1 in this model is given by:

Pðt þ 1Þ ¼ PðtÞ � erðtÞ � ð1 � V1ðtÞ � V2ðtÞ þ g1V1ðtÞ þ g2V2ðtÞÞ � ð1 � DðtÞ þ �DðtÞÞ

As before, r(t) takes a constant value over each period of time between restrictions. How-

ever, there are now two extra bracketed terms that modify its effect, with the first adjusting for:

the proportion of the population who had received their second vaccine dose (more than 14

days before) on day t, V2(t); and the proportion who had only received one vaccine dose (more

than 21 days before), V1(t). Hence, the parameters γ1 and γ2, which are given uniform prior

distributions γ1~U(0,1) and γ2~U(0,γ1), reduce the apparent daily growth of prevalence depen-

dent on the proportion vaccinated.

The second bracketed term in the equation allows adjustment based on the proportion of

positive samples that were determined to be the Delta variant, D(t). The parameter, which is

given a uniform prior distribution, �~U(1,5), increases the apparent daily growth of prevalence

as Delta increases in proportion. The proportion of Delta was reported weekly, and daily val-

ues were calculated assuming a linear relationship between each pair of weeks. The parameters

γ1, γ2 and � effectively adjust the intrinsic daily growth rate r for vaccination or the emergence

of Delta. The apparent daily growth rate, rA(t), that is the growth rate that is actually observed

can be calculated through the relationship:

erAðtÞ ¼ erðtÞ � ð1 � V1ðtÞ � V2ðtÞ þ g1V1ðtÞ þ g2V2ðtÞÞ � ð1 � DðtÞ þ �DðtÞÞ

Estimates of all growth rates are converted into estimates of the reproduction number, R,

again assuming a gamma-distributed generation time with shape parameter = 2.29, and rate

parameter = 0.36 [17] through the equation R ¼ 1þ r
b Þ

n�
[22].

Results

Trends in infection prevalence

Infection prevalence exhibited a u-shape during the period of this study (Fig 1). Within rounds

8 to 13 inclusive, we estimated prevalence to be highest nationally in January 2021 with a value

of 1.54% (1.44%, 1.64%) on 6 January (first official day of round 8). Infection prevalence pla-

teaued until mid-January, after which prevalence fell sharply, reaching a minimum (Fig 2C) of

0.09% (0.06%, 0.11%) on 13 May (20 April, 21 May). After this date, national infection preva-

lence increased steadily, reaching a value of 0.74% (0.59%, 0.91%) on 12 July (last day of round

13).

Although initial prevalence varied between regions, subsequent trends were more consis-

tent. There was a high level of variation in the modelled infection prevalence in January with

infection prevalence on 6 January highest in London at 2.85% (2.51%, 3.22%) and lowest in

Yorkshire and The Humber at 0.80% (0.63%, 0.99%) (Figs 2A and S1). However, regional

trends in infection prevalence showed a large degree of synchrony, with infection prevalence

in most regions decreasing and reaching a minimum (Fig 2C) at approximately the same time

as the national estimate, with only an indication that the South East reached its minimum ear-

lier (with wide credible intervals). There was less variation regionally at the end of the study

period (12 July) with infection prevalence highest in Yorkshire and The Humber at 1.25%

(0.76%, 1.97%) and lowest in the South East at 0.44% (0.25%, 0.73%) at that time.

Modelled infection prevalence varied by age group (Figs 2B and S2) with the youngest age

group, 5–17 year olds, having the highest infection prevalence at the beginning and end of the

study period at 2.38% (2.04%, 2.77%) and 1.33% (0.93%, 1.86%) respectively. In contrast, the

oldest age group, 55+ year olds, had the lowest infection prevalence at 1.06% (0.94%, 1.18%)
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on 6 January and 0.34% (0.20%, 0.54%) on 12 July. Trends in infection prevalence again

showed a large degree of synchrony between age groups with infection prevalence reaching a

minimum (Fig 2C) at approximately the same time. However, infection prevalence was

observed to begin decreasing from 6 January in 5–17 year olds, whereas in the other age groups

infection prevalence only began decreasing in mid-January.

Trends in reproduction number and growth rate

National estimates of the time-varying reproduction number, Rt, showed clear temporal fea-

tures (Fig 3). Temporary increases in Rt were seen in February and in March, with a gradual

increase in Rt observed from mid-April onwards. Rt plateaued at a high of approximately 1.25

for the entirety of June, before declining slightly into July. Under the assumption of a shorter

generation time, more appropriate for the Delta variant (see Methods), Rt showed the same

temporal patterns though but was slightly lower in value (S3 Fig). This suggests our Rt esti-

mates may be slightly inflated during the period when Delta was the main variant. Regional

trends in Rt were broadly similar, but London saw clearer temporal features (S4 Fig). In June

Rt was greatest in London, reaching 1.56 (1.29, 1.85) on 16 June before rapidly decreasing to

0.88 (0.63, 1.21) on 12 July, the lowest regional Rt on this date. Similar trends in Rt were again

observed when a shorter generation time, more appropriate for the Delta variant, was used (S5

Fig). Estimates in the instantaneous growth rate between age groups showed similar overall

patterns (Fig 4). However, during March there was a clear increase in growth rate followed by

a decrease into April for 5-17- and 18–34-year-olds; this was not observed in 35–54 and 55

+ year-olds which showed little variation in growth rate over this period.

Fig 1. Smoothed estimates of infection prevalence in England. Modelled infection prevalence in England from 6 January to 12 July 2021 estimated using a

Bayesian P-spline model fit to rounds 1–13 of REACT-1 data (only shown for rounds 8–13). Dashed lines show the date of key restriction changes in England.

Estimates of infection prevalence are shown with a central estimate (solid line) and 50% (dark shaded region) and 95% (dark shaded region) credible intervals.

Daily weighted estimates of swab positivity (points) are shown with 95% confidence intervals (error bars). Dashed lines show the date of key restriction changes

in England.

https://doi.org/10.1371/journal.pcbi.1010724.g001
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Quantifying the effect of non-pharmaceutical interventions

In order to quantify the effects of the NPIs we fitted a segmented-exponential model to daily

infection prevalence. We found a time delay between a change in NPIs and a corresponding

change in the reproduction number, R, of 8 (7, 10) days (S2 Table). Before the introduction of

the lockdown, R was estimated at 1.08 (1.00, 1.19), falling to 0.76 (0.75, 0.78) after it was intro-

duced, corresponding to a multiplicative change of 0.71 (0.63, 0.78) (Fig 5A, S3 Table). After

Fig 2. Differences in smoothed estimates of infection prevalence by region and age group. (A) Regional infection prevalence from 6 January to 12 July 2021

estimated using a Bayesian P-spline model fit to all 13 rounds of REACT-1 (only shown for rounds 8–13) assuming a constant second-order random-walk

prior distribution (value set to estimate from national model fit). In the legend Yorkshire is short for Yorkshire and The Humber. (B) Infection prevalence

estimates by age group from 6 January to 12 July 2021 estimated using a Bayesian P-spline model fit to all 13 rounds of REACT-1 (only shown for rounds 8–13)

assuming a constant second-order random-walk prior distribution (value set to estimate from national model fit). All estimates of infection prevalence are

shown with a central estimate (solid line) and 50% credible interval (shaded region). Full data and 95% credible intervals are shown in supplementary Figs 1

and 2. Dashed lines show the date of key restriction changes in England. (C) The inferred date of minimum prevalence from 6 January to 12 July 2021 for all

models fit to national prevalence (green), regional prevalence (blue) and prevalence by age group (red) with median (point) and 95% credible intervals (line)

shown.

https://doi.org/10.1371/journal.pcbi.1010724.g002
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step 1a R increased to 1.39 (1.20, 1.57), an increase by a factor of 1.82 (1.55, 2.08). However,

after step 1b R dropped below one to 0.39 (0.28, 0.57), a multiplicative reduction by a factor of

0.28 (0.18, 0.47). After step 2 and step 3 R increased to 1.07 (1.03, 1.11) and 1.28 (1.24, 1.30)

respectively reflecting multiplicative growth by factors of 2.71 (1.84, 3.85) followed by 1.20

(1.13, 1.26).

Regional patterns in multiplicative changes (S6 Fig and S3 Table) were consistent with the

national trends with the exception of the South West which showed an increase in R after the

lockdown was introduced, though this likely reflects inaccuracy in the R estimate for the

period prior to the lockdown for which we have little data.

Patterns for each age group were also consistent with the national trends (S6 Fig, and S3

Table), with the exception of there being no significant reduction in R brought about by the

introduction of lockdown for 5–17 year olds. There was some variation between age groups

with step 1a leading to a greater multiplicative increase in R for 18–34 year olds at 2.40 (1.78,

3.19) compared to 35–54 year olds at 1.06 (0.66, 1.57). The time-delay parameter showed far

greater variation for subgroup analysis with some sub groups having credible intervals includ-

ing the upper bound of the prior distribution.

Correcting for vaccine effectiveness and delta

Including additional effects in the segmented-exponential model that account for the propor-

tion vaccinated (one or two doses) and the proportion of infections caused by Delta (Fig 5B),

produced similar estimates of R for each period (though it was no longer constant for each

period). Estimates of the intrinsic R for the Alpha variant (the estimated R had vaccination

and Delta not influenced transmission) were similar to the actual estimates of R for the periods

Fig 3. Trends in the time-varying reproduction number. Rolling two-week average (averaged over prior two weeks) reproduction number as inferred from

the Bayesian P-spline model fit to all data assuming a gamma distributed generation time with shape parameter = 2.29, and rate parameter = 0.36. Estimates of

the reproduction number are shown with a central estimate (solid line) and 50% (dark shaded region) and 95% (light shaded region) credible intervals. The red

line shows the probability that R>1 over time. Vertical dashed lines show the dates of key changes in restrictions. Horizontal dashed line shows R = 1 the

threshold for epidemic growth.

https://doi.org/10.1371/journal.pcbi.1010724.g003
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of time before step 2 (S3 Table), reflecting very little effect due to single-dose vaccinations

being detected. The multiplicative increase in intrinsic R due to step 2 and step 3 were 2.85

(1.61, 4.04) and 1.49 (1.02, 1.75) respectively. The estimates of the intrinsic R after step 2 were

larger than estimates for the actual observed R, but with wider credible intervals.

Discussion

We have presented the trends in infection prevalence and Rt in England from January to July

2021. Accurate measurements of infection prevalence are of interest to both the individual,

reflecting the risk of a social contact being infected with SARS-CoV-2, and the population as a

whole, determining what restrictive measures are needed to reduce the burden of SARS-CoV-

2 within the population. The third national lockdown introduced on 6 January was found to

be effective at keeping Rt below one, but by June, after numerous restrictions had been eased

Rt was greater than one and the pandemic was again in a phase of growth. Transient increases

in Rt were observed approximately at the time of step 1a, step 2 and step 3 of the restriction

Fig 4. Trends in the instantaneous growth rate by age group. Instantaneous growth rate as inferred from the

Bayesian P-spline models fit to data for each age group. Estimates of the instantaneous growth rate are shown with a

central estimate (solid line) and 50% (dark shaded region) and 95% (light shaded region) credible intervals. Estimates

are colored by whether their value is greater than 0 (red) or less than 0 (green). Vertical dashed lines show the dates of

key changes in restrictions. The horizontal dashed line shows growth rate = 0 the threshold for epidemic growth. The

right hand axis gives the corresponding doubling / halving times for a given growth rate.

https://doi.org/10.1371/journal.pcbi.1010724.g004
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easing and during February. This temporary increase in Rt in England during February has

not been previously reported. A decrease in Rt was seen at the time of step 1b through to step

2. However, this coincided with the Easter holidays, a national holiday that resulted in many

schools being closed for two weeks (some schools closed for three weeks) with many work-

places closed over a long weekend; changes in behaviour during this period could be identified

by temporary reductions in the mean number of social contacts [23]. There was a large degree

of synchrony in the trends between regions over the entire period with no observed differences

even during the emergence of the far more transmissible Delta variant which was introduced

Fig 5. Estimated discrete changes in the reproduction number. (A) Inferred R over time (black line, left-axis) from

the segmented-exponential model fit to rounds 8 to 13 of REACT-1. Also shown is the multiplicative growth in R due

to each step change in restrictions (points, right-axis) and their 95% credible intervals (error bars). (B) Inferred R over

time (red, left-axis) from the segmented-exponential model including vaccine and Delta fixed effects fit to rounds 8 to

13 of REACT-1. Also shown is the intrinsic R (R if vaccine and Delta effects excluded) over time (blue, right-axis). All

estimates of R are shown with a central estimate (solid line) and 50% (dark shaded region) and 95% (light shaded

region) credible intervals. Vertical dashed lines show the dates of key changes in restrictions. Horizontal dashed line

shows R = 1 the threshold for epidemic growth.

https://doi.org/10.1371/journal.pcbi.1010724.g005
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earlier in the North West and London [24,25]. The regional synchrony in prevalence trends

during Delta’s emergence contrasts higher levels of asynchronous behaviour seen during the

emergence of the Omicron variant in England [10]. This suggests that the changing levels of

restrictions more heavily influenced the observed trends in infection prevalence over this

period. Differences in the trends of age-group specific growth rates may highlight the effect the

different restrictions had; step 1a, saw a large increase in growth rate for 5–17 and 18–34 year

olds, two age-groups which contain school-aged/college-aged individuals.

Potential changes in the reproduction number at the time of key changes in restrictions

were quantified using a segmented-exponential model. Step 1a in which schools were

reopened led to a large increase in R. The effect of school closures on SARS-CoV-2 transmis-

sion has been well documented [26,27] though some studies have suggested measures of the

effect are largely inflated by other correlated changes [28]. We are unable to rule this out using

our dataset as step 1a also relaxed some rules on socialising between households. It is also pos-

sible that behaviours changed due to lockdown fatigue, compounding any sudden increases in

R. This could explain why we measure an effect larger than other previously reported estimates

for school closures [26], though our estimates are consistent with predictions based on social

contact surveys in England for the same period of time as the study [29].

A large decrease in R was observed between step 1b and step 2 (approximately the Easter

holidays) to a value lower than that observed before schools opened, most likely highlighting

the combined effect of school closures and some work closures. Step 2 and step 3 led to clear

increases in R reflecting the greater levels of social contacts driving increased transmission

rates. However, even accounting for potential confounding effects due to vaccination and the

emergence of Delta, the suggested intrinsic R values obtained were still comparable to the R

value between step 1a and step 1b, when we may have expected it to be greater. This can poten-

tially be explained by a reduction in R due to seasonality [30], or the depletion of susceptible

individuals in the population. Another potential explanation is that the estimate pre-Easter

was inflated due to other temporary confounding effects.

Though REACT-1 should provide a relatively unbiased sample, it is possible that there are

unknown biases that we are unable to account for. We attempted to account for the changes in

sampling procedure between round 11 and 12 by using weighted values for our analyses, but

the change may have introduced a bias in our estimates between these two rounds. Steadily

decreasing participation rates over the study may also reflect an unknown time-dependent

bias. Though, despite these unknowns, it seems likely that the REACT-1 data continued to suf-

fer from less bias than routine surveillance [11].

During England’s roadmap out of lockdown, though restrictions changed on specific days,

behaviour changed more gradually [23]. The Bayesian P-spline model allows for these gradual

changes with smooth changes in the growth rate. The model is highly informative, providing

smooth estimates of prevalence and Rt, but does not allow the effect of restriction changes to

easily be quantified, and possible step changes in growth rate due to restriction changes would

be smoothed out. The segmented exponential model allows the effect of each change in restric-

tion to easily be quantified, assuming that the growth rate only undergoes step changes at the

time of restriction changes. The estimated growth rates (and associated Rs) are averages over

the periods between restrictions. This may bias the model if there are any significant changes

in growth rate between restriction easings; a gradual increase in growth rate over a long period

would be identified as step changes at the date of any restriction changes. Due to the limited

nature of the data, the model assumed a constant time delay between a restriction changing

and R changing. A constant delay is valid if it is just due to the delay between incidence and

infection prevalence, but it is also possible that behavioural changes, which may vary between

restrictions, also had an influence on the delay. We found a time delay of 8 days which is
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approximately consistent with the delay observed between incidence and prevalence in previ-

ous studies [31]. Additional constant effects were included in the model to adjust for vaccina-

tion and Delta’s emergence, whilst considering the effect of restriction changes. However, it is

likely vaccination effects were not constant, as vaccines were initially prioritised for older indi-

viduals less likely to contribute to transmission.
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