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Abstract

The complexity of entire T cell receptor (TCR) repertoires makes their comparison a difficult

but important task. Current methods of TCR repertoire comparison can incur a high loss of

distributional information by considering overly simplistic sequence- or repertoire-level char-

acteristics. Optimal transport methods form a suitable approach for such comparison given

some distance or metric between values in the sample space, with appealing theoretical

and computational properties. In this paper we introduce a nonparametric approach to com-

paring empirical TCR repertoires that applies the Sinkhorn distance, a fast, contemporary

optimal transport method, and a recently-created distance between TCRs called TCRdist.

We show that our methods identify meaningful differences between samples from distinct

TCR distributions for several case studies, and compete with more complicated methods

despite minimal modeling assumptions and a simpler pipeline.

Author summary

T cells are critical for a successful adaptive immune response, largely due to the expression

of highly diverse receptor proteins on their surfaces. These T cell receptors (TCRs) recog-

nize peptides that may be foreign invaders such as viruses or bacteria. Because of this,

immunologists are often interested in comparing different sets (or repertoires) of these

TCRs in hopes of identifying groups of particular interest, such as TCRs that are respond-

ing to a particular vaccination using pre- and post-vaccination samples. Current methods

of comparing TCR repertoires either rely on statistical models which may not adequately

describe the data, use summary statistics that may lose information, or are difficult to

interpret. We present a complementary method of comparing TCR repertoires that

detects significantly different TCRs between two given repertoires using a distance rather

than a model, summary statistics, or dimension reduction. We demonstrate that our

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010681 December 7, 2022 1 / 28

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Olson BJ, Schattgen SA, Thomas PG,

Bradley P, Matsen IV FA (2022) Comparing T cell

receptor repertoires using optimal transport. PLoS

Comput Biol 18(12): e1010681. https://doi.org/

10.1371/journal.pcbi.1010681

Editor: Andrew J. Yates, Columbia University

Medical Center: Columbia University Irving Medical

Center, UNITED STATES

Received: March 14, 2022

Accepted: October 24, 2022

Published: December 7, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1010681

Copyright: © 2022 Olson et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and corresponding GitHub

repository https://github.com/matsengrp/transport.

https://orcid.org/0000-0003-1951-8822
https://orcid.org/0000-0002-6860-5079
https://orcid.org/0000-0001-7955-0256
https://orcid.org/0000-0003-0607-6025
https://doi.org/10.1371/journal.pcbi.1010681
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010681&domain=pdf&date_stamp=2022-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010681&domain=pdf&date_stamp=2022-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010681&domain=pdf&date_stamp=2022-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010681&domain=pdf&date_stamp=2022-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010681&domain=pdf&date_stamp=2022-12-07
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1010681&domain=pdf&date_stamp=2022-12-07
https://doi.org/10.1371/journal.pcbi.1010681
https://doi.org/10.1371/journal.pcbi.1010681
https://doi.org/10.1371/journal.pcbi.1010681
http://creativecommons.org/licenses/by/4.0/
https://github.com/matsengrp/transport


method can identify biologically meaningful repertoire differences using several case

studies.

Introduction

T cell receptors (TCRs) are protein complexes found on the surfaces of T cells, important

white blood cells to the adaptive immune response. Through the ability of their TCRs to bind

to foreign invaders like viruses or bacteria, T cells are able to recognize and neutralize these

invasions, ultimately allowing for robust and long-lasting immunological protection. The

DNA sequences coding for TCRs arise by a complex stochastic recombination process called

V(D)J recombination, which includes insertions and deletions in a region known as the com-

plementarity determining region 3, or CDR3. Even after a series of productivity-based filters

ensuring functionality and limiting self-reactivity [1], this process yields an astronomical

diversity in the circulating pool of TCR sequences. Thus, proper analysis of TCR repertoires as

well as the immune context surrounding them presents a formidable but necessary challenge

to computational biologists.

The arrival of high-throughput sequencing has given scientists the ability to sample TCR

repertoires with unprecedented depth, paving the way for immense progress within the field of

computational immunology. Often, this reduces to a situation wherein a researcher wishes to

compare two TCR repertoire datasets and extract meaningful differences between them. For

example, the pair of datasets could be samples of an individual’s TCR repertoire before and

after a vaccination, and the researcher might wish to determine the responding TCRs in the

post-vaccination repertoire.

Most current methods of repertoire comparison involve reducing the TCR sequences into

simpler summaries and then comparing these summaries [2–10]. As comparing full CDR3

sequences can be highly involved, one approach is to simply compare CDR3 length distribu-

tions [11, 12]. These approaches fail to capture other interesting aspects of the germline-

encoded regions such as gene similarity, as well as the relative importance of the CDRs and

framework regions for TCR binding specificity. Alternatively, one can project a TCR reper-

toire onto a simpler space and compare values within the resultant embedding. For example,

several studies have examined the distributions of kmer occurrences to classify TCR reper-

toires [13–15]. However, the space of kmer distributions is still very high-dimensional and dis-

cards important positional information within TCR sequences. Other approaches instead look

at t-SNE projections of repertoires [16], but this still incurs a loss of information and loses

immunological meaning. Yet another line of work analyzes clone frequency between samples,

without a means of assessing sequence similarity between the clones [17–19].

The more focused problem of inferring specificity from one or more samples of TCR

sequence has been approached by tracking individual clones or comparing to a probabilistic

model, as follows. Tracking distributions of clonotypes over multiple timepoints [20] typically

requires at least three longitudinal datasets per individual. A recent technique addresses this

issue by detecting TCRs within a single repertoire that are significantly enriched according to

some baseline generative model [21]. While this is a substantial advance, the method depends

on the underlying generative model being accurate.

Another line of work uses experimentally-inferred antigen-associated TCRs as labeled data;

this is a different setting than the one approached in this paper. For example, machine learning

techniques can be used to build predictive models using these labeled training data [22–24].

These can be limited by the amount of publicly-available data, and rely on models that can be
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difficult to interpret. Another approach is to cluster sequences based on amino acid similarity

with the goal of grouping TCRs that respond to the same epitope [25–28].

We wished to develop a procedure that performs comparisons between two empirical rep-

ertoires in a fast, interpretable, and precise manner. Thinking of a sample TCR repertoire as

an empirical distribution of observed sequences, the problem reduces to comparing two dis-

crete probability distributions using some measure of statistical divergence. There are many

methods for comparing discrete distributions, but many of these methods are hardly appropri-

ate for TCR datasets, which comprise a very sparse sample from the very vast space of possible

TCRs. One way to assuage this sparsity is to equip the sample space of TCR sequences with

some metric which provides distributional comparison. While several such metrics on proba-

bility distributions have been established, we focus on a particular class of methods known as

optimal transport, which boasts favorable theoretical and computational properties along with

an intuitive interpretation. Moreover, while classical optimal transport methods are computa-

tionally intensive and often scale at least cubically with the number of statistical parameters, a

recent extension uses “Sinkhorn distances” that regularize the underlying optimization prob-

lem to get tractable approximations with high accuracy [29].

In this report we apply the Sinkhorn approach along with TCRdist, a recently-developed

distance between TCRs [30], to formulate a nonparametric approach to the comparison of

TCR repertoires. We motivate our methods using the intuition underlying optimal transport,

and demonstrate that our methods are able to identify clusters of TCR sequences that consti-

tute biologically meaningful differences between repertoires using multiple case studies. We

also describe and validate a randomization test to assess whether our identified TCRs are sig-

nificantly enriched in a target repertoire with reference to a source repertoire.

Materials and methods

An optimal transport formulation of TCR repertoire comparison

Optimal transport compares two probability distributions in terms of the total amount of

“work” required to transform one probability distribution into the other. In this context, work

is defined as the product of the probability mass (i.e., the normalized frequency of a value’s

occurrence) between objects in the joint sample space and the distance between them (accord-

ing to some specified distance function). To illustrate, one might think of these distributions as

soldiers on a battlefield: one can compare two distributions of soldiers by the minimal amount

of overall work (total amount of marching among all soldiers) that is required to move them

from one configuration to another [31]. In this analogy, each unit of probabilistic “mass” cor-

responds to a single distinct soldier, and higher probabilistic mass at a given location corre-

sponds to a larger number of soldiers at that location. The strength of the optimal transport

approach for this application is that it quantifies not only the minimal total amount of trans-

port needed given a particular mapping of mass in one distribution to the other, it also returns

a description of how the transport is performed. In our soldier example, this would be the par-

ticular marching orders for each soldier concerning how they should be dispatched into the

second configuration.

Returning now to TCRs, we can consider each TCR to be a soldier. The “marching dis-

tance” is defined by TCRdist [30], so that the result of an optimal transport analysis of two rep-

ertoires is a mapping of TCRs in one repertoire to another in which similar TCRs are matched

to one another. (Note that we can match part of one TCR to another TCR by assigning a frac-

tion of the probability mass between them, so there is no difficulty in having repertoires of dif-

ferent sizes.) TCRs that have no close relative in another repertoire must travel a long distance,

which can be easily identified from the optimal mapping. That is, large values of the optimal
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transport matrix hint at some discrepancy between the underlying TCR distributions. This

will in turn allow us to identify regions of “TCR space” that are differentially occupied between

the two repertoires (Fig 1). This concept will underlay our methodology to detect notable

regional differences between two TCR repertoires.

In the remainder of this section, we briefly review discrete optimal transport and how it can

be leveraged to compare TCR repertoires. We then derive a score to detect which individual

TCRs appear to be enriched in a target repertoire with respect to a source repertoire using the

optimal transport matrix. Using these scores, we develop a procedure to extract clusters of dif-

ferentially-expressed TCRs, as well as a procedure to infer sequence motifs that characterize

these clusters. We also describe a randomization test to obtain statistical significance estimates

for these scores. We conclude this section with a discussion of the repertoire datasets that are

analyzed in the Results section.

Discrete optimal transport

Suppose we have two discrete probability distributions described by vectors r = (r1, . . ., rn)>,

the probability masses assigned to objects x1, . . ., xn, respectively, and c = (c1, . . ., cm)>, the

Fig 1. A schematic of TCR distribution comparison. Each symbol represents a TCR in an abstract space in which

distance is defined via TCRdist [30], and the two regions represent two population repertoires of interest. Each

repertoire is given its own color (here orange and green). The purple arrow shows that there are regions of these TCR

distributions for the green repertoire that do not have a close equivalent in the orange repertoire, which will be

identified by our optimal transport methods.

https://doi.org/10.1371/journal.pcbi.1010681.g001
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probability masses assigned to objects y1, . . ., ym, respectively, so that r and c contain nonnega-

tive entries, and both sum to one. We can consider the set of admissible couplings [32],

encoded as joint probability matrices whose row-sums correspond to r and whose column-

sums correspond to c:

Uðr; cÞ≔ fP 2 Rn�m
þ

: P1m ¼ r & PT1n ¼ cg; ð1Þ

where 1k ¼ ð1; . . . ; 1Þ
T
2 Rk

. In other words, we are considering all joint probability distribu-

tions whose marginal distributions correspond to r and c. For a given matrix P, we can inter-

pret the entry pij as the amount of mass “assigned” or “transported” between the object xi
(which has ri total mass) and object yj (which has cj total mass).

By formalizing this in the language of measure theory we will be able to provide a rigorous

specification of our methods below. Let Sk ¼
n
a 2 ½0; 1�k :

Pk
i¼1

ai ¼ 1
o

be the standard k-

simplex. Let δx(�) denote the Dirac delta measure centered on a point x, which evaluates to 1 if

the input is x and 0 otherwise [33]. Consider discrete probability measures mð�Þ ¼
Pn

i¼1
ridxi
ð�Þ

and nð�Þ ¼
Pm

j¼1
cidyi
ð�Þ on respective sample spaces X and Y, with fx1; . . . ; xng � X ,

fy1; . . . ; ymg � Y, where r = (r1, . . ., rn)> 2 Sn and c = (c1, . . ., cm)> 2 Sm denote the same vec-

tors as above.

For a given distance matrix D 2 Rn�m
, such that Dij is the distance between xi and yj, the

classical “Kantorovich” optimal transport problem seeks the solution of

LDðr; cÞ≔ min
P2Uðr;cÞ

hD;Pi ð2Þ

where hA;Bi≔
Pn

i¼1

Pm
j¼1

aijbij for A;B 2 Rn�m. That is, we compute the optimal transport

matrix P which minimizes the sum of entrywise products of distance and probability mass.

We interpret this as the total amount of “work” to move the mass of one distribution to

another. Hence, this distance between probability distributions is often referred to as the

Earth-mover’s distance (EMD), and is also known as the Wasserstein metric. It is important to

note that we are working with two notions of distance: the distance defined on the sample

space between two objects and represented by the matrix D, and the overall distance between

the two full probability distributions defined by the EMD.

Unfortunately, computing the EMD of two discrete distributions scales as Oðk3 logðkÞÞ,
where k = max(m, n), when no restrictions are placed on the metric d that parametrizes the

distance matrix D. Cuturi (2013) overcomes this by regularizing the entropy of the couplings

P which drive the minimization [29]. In particular, they introduce the Sinkhorn distance

dlDðr; cÞ≔ hD;P
li ð3Þ

where

Pl ¼ arg min
P2Uðr;cÞ

hD;Pi �
1

l
hðPÞ

� �

ð4Þ

and hðPÞ≔ �
Pd

i¼1

Pd
j¼1

pi;j logðpi;jÞ is the Shannon entropy of P. This regularization serves

two main purposes. First, we can interpret the regularization term as an invocation of the prin-

ciple of maximum entropy, which encodes the intuition that we should choose a distribution

with the fewest assumptions (i.e., the most entropy) when considering a set of viable candidate

distributions. In addition, the regularization introduces smoothing into the transport plan

between r and c which leads to an approximate but much faster solution (the tuning parameter

λ controls this speed-accuracy tradeoff). Cuturi (2013) shows that the regularization term
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constrains the optimization region of admissible couplings U to a new region Uα such that

Uaðr; cÞ ¼ fP 2 Uðr; cÞ : KLðPjjrcTÞ � ag; ð5Þ

where KL denotes Kullback-Leibler divergence. We recall this derivation in Appendix A.

Thus, we can interpret the Sinkhorn distance as the result of minimizing the work to move

one distribution to another while maintaining a relatively simple coupling, in the sense that its

KL-divergence to the independent joint distribution (whose coupling is exactly rcT) is small.

Applying optimal transport to TCR repertoire comparison

For our purposes, the sample spaces X and Y discussed above will denote the same set of pos-

sible TCRβ sequences we can observe in a sample TCRβ repertoire. We can use any encoding

of those sequences that is compatible with a distance on TCRβ sequences. Because we are

using TCRdist, we will use an encoding that corresponds with its input: we define this set X to

be all valid pairs t of TRBV genes and CDR3 amino acid sequences, e.g., t = (TRBV27�01,

CASSLGTGQYEQYF). We use “empirical repertoire”, or simply “repertoire”, to mean a reper-

toire sample R = (t1, . . ., tn) containing n (TRBV, CDR3aa) pairs along with corresponding

abundances ða1; . . . ; anÞ 2 ðZ
þ
Þ
n
. We elected to exclude the J gene identity from our analysis,

as the J gene’s impact on TCR binding/specificity is primarily transmitted through sequence

contained in the CDR3 region. Relating this to the notation of the previous section, we have xi
= ti as the sample points, and ci = ai/∑kak as the corresponding mass coefficients; analogous

quantities are used to define yi and ri for a second repertoire.

For our distance function d, we use a version of TCRdist, a similarity-weighted mismatch

distance between potential pMHC-contacting loops of two given TCRs [30] that can be applied

to paired or single-chain TCR sequence data. Here we focus on single-chain TCRβ repertoire

data, however our approaches extend naturally to comparisons of paired TCR repertoires. If ac
1

and ac
2

are the amino acid sequences of CDR c for TCRs 1 and 2 respectively, then

TCRdistðt1; t2Þ≔
X

c2CDRs

X

i2p

wðcÞAAdist ððac
1
Þi; ða

c
2
Þi; cÞ ð6Þ

where:

• CDRs≔ {CDR1β, CDR2β, CDR2.5β, CDR3β}

• wðcÞ≔
3; c ¼ CDR3b

1; else

(

• AAdistða1; a2; cÞ≔

0; a1 ¼ a2

4; exactly one of a1 or a2 is `� 0

minð4; 4 � BLOSUM62ða1; a2ÞÞ; else

8
><

>:

• BLOSUM62 is a widely-used substitution matrix for amino acids that was estimated using

log odds scoring of frequencies from a large alignment database (called BLOCKS) [34].

These formulas are justified in the methods section of the paper defining TCRdist [30].

Fig 2 illustrates a simple example of this setup with two TCR repertoires spread out in an

abstract space, where the distance between TCRs is defined by TCRdist. The three orange

TCRs spanning in the upper-right of the image belong to some repertoire R1, and the four pur-

ple TCRs spanning the bottom of the image belong to some other repertoire R2. Their respec-

tive abundances are displayed in the adjacent circles. The dotted lines between TCRs represent
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the TCRdist values between them, with a few distances shown in green for t2,3 (the rest are

omitted for brevity).

Effort and loneliness

Let bP be an estimate of the optimal transport matrix (such as the Sinkhorn approximation Pl)
between repertoires R1 and R2, with corresponding distance matrix D. Define the “effort”

matrix as the Hadamard product of bP and D,

E≔ bP �D ¼ ðbP ijDijÞ1�i�n;1�j�m 2 R
n�m: ð7Þ

For any ti 2 R1, tj 2 R2, define

PairedEffortðti; tjÞ≔ Eij �
bPij TCRdistðti; tjÞ ð8Þ

which can be interpreted as the entrywise amount of “effort” or “work” used in the optimal

transport matrix to move the mass at TCR ti to TCR tj.

Fig 2. An illustration of our optimal transport formulation of TCR repertoire comparison. (A) A schematic of two

TCR repertoires R1 ¼ ft1;1; t1;2; t1;3g and R2 ¼ ft2;1; t2;2; t2;3; t2;4g residing in an abstract space defined by TCRdist. The

circle adjacent to each TCR displays its clonotype abundance. TCRdist values are shown (in green) from t2;3 to each of

the TCRs in R1, although a TCRdist value is defined between each pair. (B) The mathematical objects that describe the

setup illustrated in (A). Here, D is the matrix of pairwise TCRdist values, r is a vector of distribution mass values for

each TCR in R1, c is a vector of distribution mass values for each TCR in R2, and P� is the optimal transport matrix.

https://doi.org/10.1371/journal.pcbi.1010681.g002
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We wish now to define a score that quantifies the isolation of a given TCR in one repertoire

relative to some reference repertoire, where a high score indicates that the TCR is characteris-

tic of its own repertoire but unusual with respect to the reference repertoire. A naive score for

a given TCR t2 2 R2 with respect to all the TCRs in R1 would be

IndividualLonelinessðt2 j R1Þ ¼
X

t12R1

PairedEffortðt1; t2Þ ð9Þ

which reduces to a sum of the column of E that indexes t. A drawback of Eq (9) is that there

might be outlier TCRs in R2 that also look lonely to R1 as a result, and thus would yield a high

loneliness value. We are interested in a more differential version of loneliness: a TCR that is

lonely with respect to a different repertoire R1 but not very lonely with respect to its own reper-

toire R2 (as illustrated in Fig 1). This would suggest that t is indicative of some feature of R2 not

present in R1 (e.g. a vaccination).

Instead, we consider the cumulative individual loneliness around a neighborhood of size δ
around each t:

NeighborhoodLonelinessðt2 j R1; dÞ≔
X

t02Bdðt2Þ

IndividualLonelinessðt0 j R1Þ ð10Þ

where Bdðt2Þ ¼ ft0 : TCRdistðt2; t0Þ < dg. This reduces to a sum of all columns indexing some

TCR in Bdðt2Þ. The neighborhood loneliness Eq (10) will be small when t is an outlier in both

repertoires, since there won’t be many neighboring TCRs t0 in the ball. Further, Eq (10) will be

large for a TCR with many neighbors in R2 but few in R1, since there will be many nearby

TCRs all with relatively high transport values. Because of these properties, we use Eq (10) as

the core scoring mechanism for our methods and analyses presented here, and will simply call

this value loneliness. The expression in Eq (10) relies on a neighborhood radius parameter δ
which requires tuning: setting δ too small will lead to unstable results as there will rarely be

neighbors for a given t, and setting δ too large will assign too many neighbors to each TCR and

grossly inflate the scores. However, we show that Eq (10) consistently behaves better than Eq

(9) as an indicator of lonely groups of TCRs for each sensible radius δ. For example, Eq (10)

does a significantly better job discriminating “spiked-in” epitope-specific TCRs from a back-

ground of naive TCRs in simulation experiments (see S1 Fig and the results section on simula-

tion-based benchmarking).

Clustering

We wish to identify collections of similar TCRs that appear to be enriched in their own reper-

toire relative to a reference repertoire using our loneliness scores defined in Eq (10). Suppose

we have computed loneliness values for TCRs t1, . . ., tm 2 R2 with respect to a source repertoire

R1. We first describe a procedure to identify the “loneliest” cluster in R2, and then show how

iterating this scheme will allow us to compute any remaining lonely clusters.

Start with the loneliest TCR tmax and some step size s (by default, we choose s = 5). In each

iteration i, step out s units of TCRdist from previous radius ri−1, and compute the mean loneli-

ness of all TCRs within ri−1 and ri−1 + s units of tmax:

Si ≔ ft : ri� 1 � TCRdistðtmax; tÞ < ri� 1 þ sg ð11Þ

mi ≔
1

jSij

X

t2Si

NeighborhoodLonelinessðt j R1Þ: ð12Þ
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In the first iteration, we are just looking at the mean loneliness in the TCRdist ball of s units

around tmax. After that, each iteration looks at the mean loneliness of the semi-closed annulus

of width s surrounding the previous region. Once we have have computed values of Eq (12) for

our full set of radii (e.g., r = 0, 5, 10, . . ., 200), we can examine the relationship of mean loneli-

ness vs radius to see if there is a breakpoint rbreakpoint at which loneliness is no longer high. If a

breakpoint is detected, we simply define our cluster as those TCRs which fall within rbreakpoint

units of TCRdist to tmax. This procedure is illustrated in Fig 3.

The above procedure yields a cluster of the “loneliest” TCRs of our full repertoire. To iden-

tify further lonely clusters, we simply identify the loneliest TCR that has not yet been clustered,

and apply the same procedure. We can iterate until a sensible stopping point, such as when a

breakpoint is unable to be estimated (discussed further in the next paragraph). The complete

algorithm for a maximum number of clusters C is formalized in Algorithm 1. To gain intuition

about how the algorithm works, and as a visual confirmation of the assumptions behind the

algorithm, we refer the reader to S2 Fig.

To estimate breakpoints in the above procedure, we perform a segmented regression,

also known as a piecewise regression, of the mean annulus loneliness values mi on the set

of radii ri. Univariate segmented regression assumes that the relationship between the

response and predictor is described by a pair of differing line segments across two separate

intervals separated by a breakpoint ρ, with the line segments coinciding at ρ. For our

response M, the mean annulus loneliness, with a fixed cluster radius r as our predictor, our

Fig 3. A schematic of our clustering procedure in Algorithm 1. Each point is a TCR portrayed in an abstract 2-D

space, where the distance between points is determined by TCRdist. Our procedure starts by identifying the maximally

lonely TCR tmax according to Eq (10). In each iteration, we step out s units of TCRdist, and compute the mean

loneliness of all TCRs within the annulus defined by the current and previous radii (or ball in the first step). By

construction of Eq (10), we expect the loneliness values to steadily decrease as we move away from tmax, until we arrive

at a radius where the loneliness values have stabilized. This “breakpoint radius” thus defines the radius of our cluster.

https://doi.org/10.1371/journal.pcbi.1010681.g003
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model becomes

E½M j r� ¼ b0 þ b1r þ b2ðr � rÞþ ð13Þ

¼
b0 þ b1r; r � r

ðb0 � b2rÞ þ ðb1 þ b2Þr; r > r
:

(

ð14Þ

Here, x+ = x if x> 0, and 0 otherwise. The least squares method yields estimates bb0;
bb1;
bb2,

and br of the corresponding model parameters β0, β1, β2, and ρ. We can then use br as our esti-

mate of the breakpoint radius rbreakpoint, and define our cluster as ft : TCRdistðt; tmaxÞ � brg.

We use the segmented R package to estimate the coefficients of these models for our analy-

ses [35]. Note that a breakpoint may be unable to be estimated if the regression assumptions

are not met well (there is no strong evidence of an “elbow” from the data), the initial break-

point is not close enough to the “true” breakpoint, or there are not enough data to estimate the

model parameters. Nonetheless, we verify the desired behavior of this regression approach to

estimate cluster radii using a set of typical TRB datasets in Appendix A.

Algorithm 1 Computing clusters of lonely TCRs
Input: Repertoires R1 and R2, radius step size s > 0, maximum cluster

count C � 1
Output: Vector of TCR clusters c = [c1, . . ., cC] of R2

1: c = []
2: keep_clustering  True
3: while keep_clustering do
4: Rsub

2
 ft2 2 R2 : t2 is not clusteredg ⊳ get all un-clustered

TCRs
5: tmax  maxt22Rsub

2
NeighborhoodLonelinessðt2; R1Þ ⊳ get loneliest un-

clustered TCR
6: rprev  0
7: rcurrent  s
8: while r � rmax do
9: S  {t: rprev < TCRdist(t, tmax) � rcurrent} ⊳ define
annulus
10: ℓr  meant2SNeighborhoodLoneliness(t; R1) ⊳ compute
mean loneliness over all TCRs in annulus
11: rprev  rcurrent
12: rcurrent  rcurrent + s ⊳ update annulus radii
13: end while
14: estimate breakpoint rbreakpoint of ℓr vs. r
15: if rbreakpoint = NULL then ⊳ we were unable to estimate
a cluster radius, so terminate
16: keep_clustering  False
17: else ⊳ we succeeded in detecting a cluster radius
18: append {t: TCRdist(t, tmax) � rbreakpoint} to c ⊳
append our cluster to the running vector
19: if |c| = C then ⊳ we have detected the maximum # of
clusters
20: keep_clustering  False
21: end if
22: end if
23: end while
24: return c
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Motif inference

Given a cluster of TCRs, we would like to infer a motif describing their sequence homology,

however CDR3 lengths can vary by TCR. One solution is to generate a regular expression that

describes the sequences in the cluster, either manually or through some algorithm. However,

this can be messy/difficult, and raw regular expressions are not always easily interpretable by

eye.

Instead, we appeal to profile-HMMs, which describe the emission probabilities of amino

acids at each position along a sequence while explicilty modeling position-specific insertion

and deletion probabilities [36]. Profile-HMMs are easily used with the HMMer package

(http://hmmer.org/). Estimating a profile-HMM π allows for several benefits.

• We can model an arbitrary cluster of TCR sequences with π without worrying about CDR3

length differences

• We can query other sequences against this profile to assess their homology to the cluster in a

statistically rigorous manner. In particular, for any animo acid sequence σ, we can first com-

pute a log-odds ratio “bit score” comparing the likelihood of observing σ from π to the “null”

likelihood of observing σ from an independent, identically distributed random sequence

model π0. Then, we can compute an E-value which is based on the number of hits expected

to achieve this bit score or greater by chance, i.e. if the search had instead been done using

π0. We further use these E-values to define “hard” motif memberships via the indicator

1ðe < ecritÞ, for some specified critical threshold ecrit.

• We can readily visualize these profiles via enhanced sequence logos that display indel charac-

teristics [37, 38]

As HMMer requires aligned sequences in order to build HMMs, we use MAFFT, a fast and

popular tool that constructs a multiple-sequence alignment of a given set of query sequences

[39], whenever we need such alignments for HMMer.

Significance estimates

We wish to attach significance estimates to our loneliness scores to determine whether high

observed scores are improbable due to chance alone. For this, we perform the following ran-

domization test given repertoires R1 and R2. For each trial j 2 {1, . . ., J}, randomly re-label the

TCRs in R1 and R2 to get trial repertoires ~RðjÞ1 and ~RðjÞ2 (each TCR is independently reassigned,

even if it appears multiple times). Under the null hypothesis that R1 and R2 are samples from

the same (abstract) population repertoire of TCRs, each of these trial repertoires ~RðjÞ1 and ~RðjÞ2

will have the same sampling distribution as R1 and R2. We then compute Eq (10) for each TCR

in ~R2 with respect to ~R1. After J trials, we have obtained null distributions of loneliness scores

for each t 2 R2. We can now compare the observed loneliness ℓobs of a given TCR t to its null

distribution, rejecting the null hypothesis if ℓobs is sufficiently high (e.g., higher than the 1 − α
quantile for a specified level α).

There are a couple of caveats to this approach. First, when we relabel TCRs during a given

trial j, only some of the TCRs from R2 will be present in ~RðjÞ2 . We handle this by maintaining

score distributions only for the TCRs originally present in R2, and appending trial scores for

only those TCRs to their running distributions (thus ignoring the scores of TCRs in ~RðjÞ2 that

originally belonged to R1). After J trials, we downsample these score distributions to the size of

the smallest distribution. If there is a particular minimal sample size we desire for all of the
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score distributions, we could simply add a check in our routine to stop only when this minimal

sample size has been attained (although this would lead to an increased runtime).

Data

The following TCRβ repertoire datasets are used in the above analyses.

The majority of our analyses involve TCRβ repertoires collected from 23 C57BL/6 mice

[40], which form biological replicates for our study. For each mouse subject, three repertoires

were sampled, corresponding to their CD4+, CD8+, and double negative (DN) intraepithelial

lymphocyte (IEL) repertoires. In terms of receptors, the group of cells we call DN are CD4−

CD8αβ− CD8αα+, which are distinct from the class of preselection T cells which are sometimes

also called “DN”.

Thus, there are 23 × 3 = 69 total IEL mouse datasets, to which we collectively refer as the

IEL data. We will typically abbreviate CD4+ as “CD4”, and CD8+ as “CD8”. For brevity, we

will define the collection of datasets for a given IEL type as a subscripted R. For example, RCD4

denotes the collection of 23 CD4+ repertoires. Each repertoire consists of TCR sequences

described by a V gene and CDR3aa pair (i.e., J genes are excluded from the analysis). The

sequence data preprocessing for this study was performed using MIGEC [41]; more details can

be found in [40].

Our second analysis examines TCRβ repertoires collected from six human donors before

and after an immunization with live yellow fever virus (YFV) vaccine [20]. Samples were taken

from each donor at multiple timepoints: 7 days prior to vaccination (−7d), the day of vaccina-

tion (0d), 15 days following vaccination (+15d), and 45 days (+45d) following vaccination.

This yields 6 × 4 = 24 human YFV datasets, to which we will collectively refer as the YFV data.

The processed TCR repertoires from Ref. [20] were downloaded from https://github.com/

mptouzel/pogorelyy_et_al_2018 and filtered to the 1,000 most abundant clones. As for the IEL

data, each repertoire consists of TCR sequences described by a V gene and CDR3aa pair.

Our final analysis examines the ability of the optimal transport framework to discriminate

“spiked-in” epitope-specific TCR sequences from a larger repertoire of naive CD8+ TCR

sequences, by comparing the mixed repertoire to a background repertoire consisting only of

naive CD8+ TCR sequences. The naive CD8+ TCR sequences were randomly selected from a

public dataset released by 10X Genomics [42]. The “spike-in” TCR sequences are specific for

the influenza M158 epitope presented by HLA-A�02:01 and were collected from the literature

and public databases by Schattgen et al [43].

Implementation

Our Python implementation of TCR optimal transport analysis, using the Python Optimal

Transport [44] package, can be found at https://github.com/matsengrp/transport. It uses the

C++ implementation https://github.com/phbradley/pubtcrs/ of TCRdist. The repository

includes straightforward instructions on how to reproduce the analyses in this paper by run-

ning a script.

For the analyses in this paper, we used a neighbor radius of 48.5 and a Sinkhorn regulariza-

tion of 0.01. A TCRdist of 48 might correspond to some combination of 0–4 mismatches in

the CDR3 loop together with 0–12 mismatches in the other CDR loops (depending on the

chemical nature of the amino acid differences). This choice of neighbor radius appears to work

well in practice for single-chain data, rewarding neighborhood density while retaining specific-

ity of sequence features in local neighborhoods. For paired data, a larger radius value of 100–

120 would be more appropriate.
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By default, each independent input TCR sequence is given equal probability mass in the

transport analysis. For input files that have been reduced to unique nucleotide-level clono-

types, as in the present manuscript, this has the effect of ignoring clonal abundance (except

when subsetting to the top expanded clonotypes, as in the YFV analysis). The extent of clonal

abundance (i.e., the numerical sizes of expanded clonotypes) can be noisy and sequencing-

method dependent, which makes this a more conservative approach: significant differences in

TCR landscape density are driven by accumulation of independent rearrangement/selection

events rather than individual clonal expansions. For situations in which one wants to use

clonal abundance, it is straightforward to re-duplicate clonotypes prior to input to the pipeline,

which will assign additional mass proportional to the number of copies of each clonotype.

We found that a majority of the runtime for our approach is devoted to the TCRdist calcu-

lation, even using the C++ implementation (S3 Fig). To establish this, we measured the pair-

wise run times of TCRdist and OT calculation on each of the IEL DN (background) replicates

against every other background replicate, as well as against all CD4 (foreground) replicates.

Across the total 1058 paired calculations, we found that TCRdist run times took an average of

2.42e-01 seconds, while optimal transport calculation had a lower average run time of 1.05e-

01. These measurements were performed on a node running Ubuntu 18.04 (bionic) with 16

Intel Xeon CPU E5–2667 v4 @ 3.20GHz, and 256GB RAM.

Results

We have defined a “loneliness” measure which captures TCRs that are characteristic of their

own repertoire but unusual with respect to a reference repertoire. We have also presented a

procedure to obtain clusters of sequences without equivalents in the reference repertoire based

on these loneliness scores. In this section we apply our loneliness and clustering methodology

to the IEL data and the YFV data, and show that our clusters capture meaningful differences

between repertoires that we know are sampled from distinct populations.

Consistent loneliness dynamics across biological replicates of IEL mice

In this section we examine the behavior of our loneliness scores defined by Eq (10) in the con-

text of the IEL data described above. The IEL data contain TCR repertoires of three distinct

cell types, referred to as CD4, CD8 and DN (“double negative” CD4− CD8αβ− CD8αα+) cells,

from 23 genetically identical mice. These cell types differ in their expression of certain receptor

proteins and their interactions with other cells, which impacts the binding properties of their

corresponding TCR repertoires. Thus, we expect there to be meaningful differences in their

respective TCR sequence distributions. In our analysis, we will focus on identifying TCRs in

the DN repertoire that are characteristic of the DN repertoire, but are unusual with respect to

the CD4 repertoire. This will allow us to use the CD8 repertoire as a useful comparison set

since it will not influence the loneliness scores. Nonetheless, analogous analyses could be per-

formed between any two cell types, with the third cell type available for comparison.

This data set has 23 sampled biological replicates for each cell type, which allows us to

understand the true biological variability of observing a given TCR in a sample. This provides

us with a robust representation of each of the CD4, CD8, and DN population repertoires for

our comparisons. In particular, we can get a sense of the overall differences between the DN

and CD4 TCRβ sequences by combining each of the respective sets of repertoires into two

large, representative datasets. Specifically, we concatenate RDN-1, . . ., RDN-23 to obtain a com-

bined DN repertoire Rcombined-DN, and we concatenate RCD4-1, . . ., RCD4-23 to obtain a com-

bined CD4 repertoire Rcombined-CD4.
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Next, we compute NeighborhoodLoneliness(t; Rcombined-CD4) for each t 2 Rcombined-DN to

score each DN TCR t given the landscape of CD4 TCRs represented by Rcombined-CD4. We also

apply Algorithm 1 to Rcombined-DN with these loneliness scores to compute the top several

lonely clusters. These clusters are constructed to be centered around the most lonely TCRs,

and to encompass the surrounding similarly lonely TCRs within an estimated TCRdist cutoff.

We expect these top clusters to represent significant differences between the CD4 and DN rep-

ertoires, since they should by construction contain the loneliest TCRs that reside in sufficiently

dense regions of the TCR landscape obtained from the combined DN repertoires. We will

refer to these top three loneliest clusters as the OT-Tremont, OT-Revere, and OT-Ida clusters,

respectively. The OT-Tremont and OT-Revere clusters are so named because of their high

similarities to the Tremont and Revere clusters described in Figure 5M of [40]. While the

authors of [40] present detailed motif specifications, the Tremont cluster is dominantly charac-

terized by the GT[VI]SNERLFF CDR3βaa motif, and the Revere cluster consists of a TRBV16

gene paired with a dominant DWG CDR3βaa motif. The OT-Ida cluster represents a novel

TCR motif specification to the best of the authors’ knowledge.

V gene usage and CDR3aa motifs for our three clusters are visualized in Fig 4. Each

CDR3aa motif is visualized with a profile-HMM sequence logo obtained from Skylign [38].

The height of each stack is proportional to the level of conservation at that position, and the

height of each amino acid within a stack is proportional to the probability of observing that

amino acid at that position. The first row of numbers below the sequence logo displays each

position’s occupancy, or the probability of observing a non-gap character at that position (so

that (1−occupancy) gives the position’s deletion probability). The second row displays the

insertion probabilities at the respective positions, so that the kth value represents the probabil-

ity of an insertion between positions k and k + 1. The third row displays the expected insertion

lengths of an insertion following position k, if an insertion exists.

Each cluster has distinctive features which suggest conservation of particular V genes and/

or CDR3 amino acid motifs. The OT-Tremont cluster has the strictest V gene profile, contain-

ing only the TRBV16�01 gene. It also seems to include a conserved subsequence roughly span-

ning positions 5–8 in the sequence logo, as well as positions 11–17 which likely correspond to

a stringent J gene specification. The OT-Revere cluster has a relatively loose V gene profile,

containing 18 TRBV genes total, though the TRBV12–1�01 and TRBV12–2�01 genes comprise

the majority of TRBV genes in this cluster. However, this cluster seems to have notable levels

of conservation across most or all of the CDR3 sequence, with position 8 being the only one

without a clearly dominant amino acid. The OT-Ida cluster has a strict V gene profile, with

over 90% of the sequences consisting of the TRBV12–1�01 or TRBV12–2�01 genes. There is

also evidence of varying levels of conservation throughout the CDR3, with only a few positions

(6, 9, 10) lacking a dominant amino acid.

These automatically-generated clusters are able to capture subsets of the DN repertoires

that are distinguished from the CD4 repertoires (Fig 5). To see how often each cluster is

observed among the different individual DN, CD4, and CD8 repertoires, we can plot fre-

quency polygons of each cluster prevalence empirical distribution (Fig 5A), where the empiri-

cal prevalence of a cluster m within a repertoire R is defined as

dPrevalenceðcÞ≔ bPrT�RðT 2 cÞ ð15Þ

¼
1

jRj

X

t2R

1 t 2 cð Þ: ð16Þ
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We see that each cluster tends to have higher prevalences in DN distributions compared to

CD4 distributions, which indicates that these clusters are enriched in the DN population with

respect to the CD4 population. For the OT-Tremont cluster, the prevalence is almost always

zero for CD4 repertoires yet nonzero for each DN repertoire. For the OT-Revere and OT-Ida

clusters, there are more nonzero prevalences in the CD4 repertoires, but consistently higher

prevalences in the DN repertoires. Interestingly, the OT-Tremont and OT-Revere clusters

tend to have similar prevalences among the CD4 and CD8 repertoires, whereas the OT-Ida

cluster tends to have similar prevalences among the CD8 and DN repertoires. This matches

the intuition behind our scores defined by Eq (10), which seeks to identify enrichment of

Fig 4. Visualizations of TRBV gene frequency statistics and CDR3aa sequence logos for the top three lonely

clusters of the combined repertoire analysis: (A) OT-Tremont, (B) OT-Revere, (C) OT-Ida. The height of each

stack within the sequence logo is proportional to the level of that position’s conservation, and the height of each amino

acid is proportional to that amino acid’s frequency in that position. The rows below each sequence logo display the

occupancies, insertion probabilities, and expected insertion lengths of the respective positions.

https://doi.org/10.1371/journal.pcbi.1010681.g004
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subsets of DN repertoires with respect to CD4 repertoires, and not with respect to any arbi-

trary null distribution.

To get a sense of the loneliness dynamics of these clusters that does not rely on the scores

obtained from the combined repertoires above, we performed the following experiment. Recall

that each of these combined repertoires consists of a collection of independent repertoire sam-

ples. For a given DN repertoire, we define the background set as all other DN repertoires, and

the foreground set as all CD4 repertoires. The idea is that there will be intrinsic variability, or

“background noise”, that can be observed between repertoires of a common cell type, whereas

two different cell types will also possess “foreground” variability that corresponds to biological

differences between the repertoires. For each DN repertoire RDN, and each t 2 RDN, compute

the following background and foreground scores:

bg‐scoreðtÞ≔ 1

jRDNj � 1

X

R2RDNnRDN

NeighborhoodLonelinessðt j RÞ ð17Þ

fg‐scoreðtÞ≔ 1

jRCD4j

X

R2RCD4

NeighborhoodLonelinessðt j RÞ ð18Þ

We can interpret Eq (17) as the average neighborhood loneliness of a given DN TCR with

respect to the background set of all other DN repertoires, and Eq (18) analogously but with

respect to the foreground set of all CD4 repertoires. We expect these averages to give stable

estimates of how lonely this TCR looks compared to either of these two populations.

Fig 5. Plots of several statistics that describe the across-repertoire dynamics of the OT-Tremont, OT-Revere, and

OT-Ida clusters. (A) Distributions of cluster prevalence across combined repertoires, stratified by cluster and cell type.

The DN distributions are consistently to the right of the CD4 distributions, showing that our algorithm is finding

motifs that are highly represented in the DN repertoire compared to the CD4 repertoire. (B) Distributions of

neighborhood loneliness scores across individual repertoires, stratified by cell type group (background/foreground)

and cluster. N/A means not assigned to a cluster. We again see that the motifs distinguish DN sequences from CD4

sequences above the level of per-repertoire variation.

https://doi.org/10.1371/journal.pcbi.1010681.g005
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Distributions of scores obtained from Eqs (17) and (18), stratified by cluster, are shown in

Fig 5B, in the left and right panels respectively. We see that these scores of each specified clus-

ter tend to be higher than TCRs without a specified cluster for the background set, and these

scores become amplified in the foreground set. This indicates that TCRs belonging to these

clusters consistently have higher loneliness values compared to CD4 repertoires versus DN

repertoires, as expected.

The results above demonstrate that the three clusters identified by our algorithm applied to

the combined repertoires RDN and RCD4 have amplified prevalences in the individual DN rep-

ertoires with respect to the CD4 repertoires, and yield consistently high loneliness scores

across the individual replicate repertoires. This indicates that our algorithm is able to detect

clusters of TCRs which seem to be differentially enriched between the subpopulations in

question.

The total optimal transport between two TCR repertoires represents an intuitive and theo-

retically well-founded metric of global repertoire dissimilarity that can be used for applications

such as repertoire clustering. As an illustration, we calculated the matrix of total optimal trans-

port distances between the TCRβ repertoires of the IEL dataset and performed hierarchical

clustering with Ward’s linkage criterion. Examination of the clustering dendrogram (Fig 6)

revealed that the repertoires cluster according to cell subpopulation, with two exceptions: the

CD8 repertoire from mouse 19, one of the smallest repertoires with 80 sequences, was grouped

with the CD4 repertoires, and the CD8 repertoire from mouse number 22 was grouped with

Fig 6. A hierarchical clustering tree built from the matrix of optimal transport repertoire distances, with the tips

colored by the cell subpopulation: Green for DN, orange for CD8, and blue for CD4.

https://doi.org/10.1371/journal.pcbi.1010681.g006
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the DN repertoire from the same mouse. These latter two repertoires shared a higher fraction

of sequences than any other pair of repertoires, a possible indication of minor contamination

during cell sorting. Overall, the optimal transport repertoire clustering analysis accords well

with biological intuition while also providing potentially valuable information on similarity

relationships between specific repertoires.

Validating randomization test scores with biological replicates

The randomization test framework presented earlier aims to determine how statistically signif-

icant an observed loneliness score is compared to what we would expect under a null model of

having no significant differences between repertoires. The efficacy of this test depends on how

accurately the randomization distributions mimic the dynamics of two repertoires that are

truly sampled from the same population. We can benchmark this using the IEL biological rep-

licates, since these replicates are samples from a common population of genetically identical

mice; this allows us to quantify the statistical characteristics of the resultant TCR distributions,

and consequently, the loneliness score distributions. If the statistical characteristics of these

true replicate loneliness distributions approximately match the statistical characteristics of the

“randomization” loneliness distributions, this gives us confidence in our testing procedure

and significance estimates as they perform on real data.

We apply the randomization test framework described in the methods section below to the

IEL replicates as follows. First, we identify the largest DN TCRβ repertoire RDN (subject #15;

1,737 sequences) and largest CD4 TCRβ repertoire RCD4 (dataset # 17; 864 sequences). We

chose the largest dataset in hopes of obtaining the most stable parameter estimates, although

relative and absolute sample sizes did not seem to majorly contribute to the behavior across

various combinations of repertoires. For each t 2 RDN, we compute the observed score sobs =

NeighborhoodLoneliness(t; RCD4) using Eq (10). Then, we compute the distribution of score

values for t across the “background distribution” of all other DN repertoires,

SðtÞ≔ fNeighborhoodLonelinessðt;R0Þ : R0 2 RDN n RDNg: ð19Þ

Since the set of DN repertoires are biological replicates, we can use S(t) as a null distribution

of sobs. In particular, we can compute a “replicate” z-score

zðtÞ ¼
sobs � meanðSðtÞÞ

stddevðSðtÞÞ
ð20Þ

to quantify how surprising the observed sobs is with respect to the replicate null distribution

(this also allows for the computation of p-values).

Next, we apply our randomization procedure to the same (RDN, RCD4) pair, to get a ran-

domization distribution of score values

S?ðtÞ≔ fNeighborhoodLonelinessðt;R?Þg ð21Þ

where R? ranges over our set of randomization datasets mixing the pair (RDN, RCD4).

We can compute a corresponding “randomization” z-score

z?ðtÞ ¼
sobs � meanðS?ðtÞÞ

stddevðS?ðtÞÞ
: ð22Þ

If our randomization procedure produces a reliable approximate null distribution of z-

scores, and if our set of biological replicates approximate the sampling distribution of DN

TCRβ sequences well, then we would expect there to be a clear relationship between z(t) and

z?(t).
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We see that the randomization z-scores z? and replicate z-scores z exhibit a strong linear

relationship (Fig 7A), with a correlation coefficient of ρ� 0.877. Further, we can assess how

our randomization null distribution behaves as a proxy to the biological replicate null distribu-

tion by performing a standard linear regression of z on z?. Because the scatterplot reveals clear

heteroskedasticity, we use sandwich estimation to obtain robust standard error estimates. This

yields a significantly positive slope coefficient of β� 0.656259 (p< 2 × 10−16), with relatively

high predictiveness (adjusted R2: 0.769, p< 2.2 × 10−16). We note that there is some visual evi-

dence that the relationship might exhibit nonlinearity in the right tail, particularly due to the

OT-Revere cluster which seems to mostly reside above the regression line. Nonetheless, we

believe this model is still useful to understand the strength and general behavior of the

relationship.

Fig 7. Visualizations of the relationship between replicate and randomization z-scores. (A) Scatterplot of replicate

z-scores versus randomization z-scores. (B) Marginal density estimates of replicate z-scores and randomization z-

scores. We see strong evidence of a significantly positive linear relationship between these quantities, suggesting that

our randomization procedure is able to identify significant differences between repertoire datasets.

https://doi.org/10.1371/journal.pcbi.1010681.g007
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We emphasize that the slope of this line is not one, and so the randomization p-value can

not be interpreted directly as a significance test where the null is a biological replicate in a dif-

ferent organism. This is not surprising, since there is genuine biological variation between the

various mice. If one desired to approximate a between-organism p-value, one could use the

values of the linear regression to map the randomization Z-score to a replicate Z-score and cal-

culate a p-value accordingly.

We also examine marginal density estimates of these z-scores stratified by cluster (Fig 7).

For the three named clusters, the densities appear to have means notably higher than zero.

In summary, the approximate null distribution of loneliness scores from our randomization

test appears to accurately represent the loneliness score distribution under the null hypothesis

of two repertoires representing the same underlying population. Furthermore, we see that

both the randomization null distribution and the replicate null distribution both lead to signif-

icantly high loneliness scores for the top three lonely clusters identified above. This indicates

that we can confidently obtain significance estimates for loneliness scores when comparing

two TCR repertoires.

Identifying responsive TCRs to a yellow fever vaccination

Next, we benchmark the ability of our methods to detect meaningful differences between lon-

gitudinal repertoires using the YFV data discussed in the Materials and methods section. In

particular, for each of the six human donors, we perform three comparisons: −7d vs 0d, 0d vs

+15d, and 0d vs +45d. For each comparison, we compute the top 10 loneliest clusters using

Algorithm 1. Since the immune response was estimated to peak at day 15 for all subjects and

had contracted by day 45, we expect there to be many responsive TCRs in the +15d repertoire

vs 0d, and we expect the number of false positives to increase for lower-ranked (i.e., less lonely)

clusters. We expect some residual responsive TCRs in the +45d repertoire but with lower levels

than the +15d repertoire. Finally, we expect little to no responsive TCRs in the −7d vs 0d com-

parison as both datasets were collected before the vaccination, and so this comparison serves

as a control for the other two.

We compare our predictions to those made by Pogorelyy et al., the authors of the original

study, for the same six donors [20]. Pogorelyy et al. applied a Bayesian statistical framework to

the longitudinal sequence of repertoire snapshots to detect the TCR clones which experienced

significant proliferation and contraction, using biological replicates from day 0 to inform a

null model of expected proliferation by chance. In contrast to our method, that method uses

samples from all of the timepoints. While their predictions do not constitute the ground truth

of actual responsive TCR clones to the YFV vaccination, they can still serve as a useful perfor-

mance benchmark. In particular, we define the “hit rate” as the empirical probability that a

clone our procedure detects as responsive was also detected by the original authors as respon-

sive, i.e. the number of sequences we detected as responsive that were in the original respon-

sive set, divided by the number of clones our procedure detects as responsive. We can explore

how this “hit rate” varies by timepoint, cluster rank, and donor.

We see that our hit rates behave according to our prior expectations, with larger hit rates

for the + 15d comparison, lower but non-neglible hit rates for the + 45d comparison, and vir-

tually no hits for the −7d comparison (Fig 8A). Moreover, the hit rates appear to be generally

highest for the top-ranked clusters (i.e., the clusters with the highest loneliness), and decrease

to more moderate values as for the lower-ranked clusters (with rank-6 clusters happening to

have unusually high rates). We can obtain a smoothed version of these rates by calculating

aggregate hit ranks for all clusters up to the given cluster number. For example, when the clus-

ter number is 3, the hit rate is computed over all rank-1, rank-2, and rank-3 clusters. We
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observe a similar pattern, with a steady downward trend for the 15d comparison, and no

apparent trend in the other two groups (Fig 8B).

We also see that aggregate hit rates are fairly consistent across subjects, with rates for cluster

rank� 2 (i.e., the top two loneliest clusters for each subject) consistently high for the + 15d

comparison (Fig 8C), and mostly moderate to high rates for cluster rank� 10 (i.e., the top ten

loneliest clusters for each subject) (Fig 8D). Subject Q1 exhibits mildly exceptional behavior,

with notably lower hit rates than the other donors in both cases; the original authors also

noted some abnormalities for subject Q1 in their analyses, such as comparatively low levels of

responsive TCRs on + 15d and + 45d. Moreover, it appears that only subjects P1, S1, and S2

have nontrivial hit rates for both cluster rank�2 and cluster rank� 10. These three subjects

had the highest + 15d hit rates in general, which suggests that the responsive clusters we found

for day 15 were able to persist until day 45, or perhaps suggests a correlation between the

strength of the immune response for these two timepoints.

To further assess whether our method is able to detect responsive clusters, we follow the val-

idation of Pogorelyy et al. and examine an independent dataset of public TCRs obtained from

VDJdb [45]. This dataset contains 264 sequences of TCRs previously shown to be responsive

to a particular YFV epitope, as well as a control set of 370 sequences of TCRs responsive to an

unrelated cytomegalovirus (CMV) epitope; call these the YFV validation set and the CMV vali-

dation set, respectively. We will say that a TCR for an individual is candidate-responsive if it is

in a top-10 cluster (i.e. one of the top 10 highest ranked clusters by loneliness) for the

Fig 8. Various hit rate statistics for the YFV benchmark analysis. (A) Hit rates of our responsive TCR inferences

grouped by reference timepoint and cluster rank. (B) Aggregate hit rates of our responsive TCR inferences grouped by

reference timepoint and cluster rank. (C) Hit rates of our responsive TCR inferences grouped by reference timepoint

and donor, for cluster rank�2. (D) Hit rates of our responsive TCR inferences grouped by reference timepoint and

donor, for cluster rank�10.

https://doi.org/10.1371/journal.pcbi.1010681.g008
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individual’s + 15 day comparison. Define the candidate set of responsive TCRs to be the union

of candidate-responsive TCRs across the six individuals. We use these definitions to compute

two quantities for the YFV and CMV validation sets: the number of exact sequence matches

found in our candidate set, as well as the number of sequences which belong to any of the top-

10 clusters underlying our candidate set. In comparison, Pogorelyy et al. reported the number

of exact sequence matches present in their candidate set, the number of sequences with no

more than 1 CDR3aa mismatch from some TCR in their set, and the number of sequences

with no more than 2 CDR3aa mismatches from a TCR in their set. These two respective com-

parative methods reflect the way their corresponding inferential methods identify responsive

sequences.

We find that our methods are able to identify YFV sequences in the validation set while

avoiding CMV sequences in the control set at comparable rates to the methods of Pogorelyy

et al. Table 1 shows the results of the above experiment, as well as the results from Pogorelyy

et al. (obtained from Table S2 of [20]). Our method detects 3 exact sequence matches to the

YFV validation set, and 1 exact sequence match to the CMV validation set. Further, we detect

93 YFV validation sequences and 28 CMV sequences present in our candidate clusters, leading

to a true positive/false positive ratio of 93/28� 3.3. In contrast, Pogorelyy detects a total of 18

exact sequence matches to the YFV set and zero exact matches to the CMV set. When allowing

up to 1 CDR3aa mismatch, they detect 81 YFV sequences and 3 CMV sequences, leading to a

true positive/false positive ratio of 81/3 = 27. When allowing up to 2 CDR3aa mismatches,

they detect 153 YFV sequences and 30 CMV sequences, leading to a true positive/false positive

ratio of 153/30 = 5.1. While we expect their approach, which uses the full trajectory of datasets

across five timepoints for each subject, to perform better in this regard, our approach achieves

performance comparable to the Pogorelyy method when allowing two CDR3aa mismatches

while only using two timepoints for each subject. Overall, this provides further evidence that

our lonely clusters are able to extract YFV-responsive TCR clusters consistently across sub-

jects, and that these clusters generalize beyond the training datasets.

There are a couple of explanations for the discrepancies that do arise between the inferred

hits. First, as already mentioned, the set inferred by Pogorelyy et al. is not actually the ground

truth of YFV-responsive TCRs, and both methods likely contain false positives as well as true

negatives, both of which will impact the hit rates in Fig 8. Further, as mentioned, the approach

of Pogorelyy used the full trajectory of repertoire snapshots to infer their set of responsive

TCRs, whereas our method only looks at two snapshots at a time. In particular, our inferred

Table 1. Counts of matches between our inferred responsive yellow fever (YFV) sequences and either (YFV) or cytomegalovirus (CMV) sequences obtained from

VDJdb, where the CMV sequences are used as a control. Also provided are analogous counts for responsive sequences inferred by Pogorelyy et al. [20]. Columns

S1—Q2 correspond to the six subjects discussed in [20], also discussed in the Materials and Methods section.

Method Antigen S1 S2 P1 P2 Q1 Q2 Total

Ours (exact match) CMV 0 0 0 0 0 1 1

Ours (is in a top-10 cluster) CMV 2 2 4 4 4 12 28

Ours (exact match) YFV 1 1 1 0 0 0 3

Ours (is in a top-10 cluster) YFV 28 20 18 11 2 14 93

Pogorelyy (exact match) CMV 0 0 0 0 0 0 0

Pogorelyy (1 CDR3aa mismatch) CMV 0 0 0 1 0 2 3

Pogorelyy (2 CDR3aa mismatch) CMV 5 5 5 3 2 10 30

Pogorelyy (exact match) YFV 3 5 2 1 3 4 18

Pogorelyy (1 CDR3aa mismatch) YFV 24 10 12 9 5 21 81

Pogorelyy (2 CDR3aa mismatch) YFV 27 30 24 11 40 21 153

https://doi.org/10.1371/journal.pcbi.1010681.t001
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positives corresponding to the + 15d clusters make use of a fraction of the data used by Pogore-

lyy, yet we still identify a notable amount of their inferred positives, while avoiding a problem-

atic false positive rate.

Simulation-based benchmarking

In order to understand the performance of the optimal transport method in a setting where

ground truth is known, we performed a simulation experiment using baseline repertoires and

“spike-in” sequences that are responsive to a given epitope. Specifically, as background reper-

toires we used a random sample of 1,000 naive T cell clonotypes from a large data set of CD8+

T cells made available by 10X Genomics [42]. The foreground repertoire consisted of another

random sample of naive CD8+ T cell clonotypes along with a variable number of “spike-in”

TCR sequences specific for the influenza M158 epitope presented by HLA-A�02:01, such that

the entire sample had 1,000 TCRs.

We sought to determine if our NeighborhoodLoneliness value could discriminate the

spiked-in sequences from the baseline repertoire. To do so, we treated this as a classification

problem and used the Area Under the Receiver Operating Characteristic curve (AUROC),

where AUROC values above 0.5 constitute evidence of successful classification, with the evi-

dence strengthening as the AUROC approaches 1. The procedure was repeated 10 times for

each number of spike-ins.

We found that our procedure readily distinguishes the spiked-in sequences from the rest

(Fig 9), with the AUROC for discrimination of flu-specific TCR sequences increasing as the

fraction of spiked-in sequences increases. As a baseline for comparison, we also ran the ALICE

program [21] on the same data. ALICE uses a parametric background model to identify

enriched TCR neighborhoods present in a single TCR repertoire. ALICE was run on the fore-

ground TCRs, with default parameter settings and 100 million simulated sequences, and an

AUROC value was calculated by sorting the TCRs based on the ALICE p-value. ALICE also

succeeded in discriminating the spike-in TCRs from the background naive TCRs, though with

lower AUROC values than the optimal transport measure.

Discussion

We have described a nonparametric approach to TCR repertoire comparison driven by opti-

mal transport and TCRdist, including a novel clustering algorithm that determines differential

Fig 9. Recovery of “spike-in” epitope-specific TCRs from background naive TCRs based on optimal transport

(left) or the ALICE algorithm (right). The bars summarize AUROC values for 10 random replicates.

https://doi.org/10.1371/journal.pcbi.1010681.g009
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enrichment of collections of TCRs between two repertoires. We demonstrated that our frame-

work can successfully extract biologically meaningful differences between distinct TCR popu-

lations through several analyses. Our methods were able to identify several clusters that are

consistently enriched in the double negative T cell repertoire with respect to the CD4+ T cell

repertoire across biological replicates, and characterize their V gene and CDR3aa profiles.

These clusters have significant overlap with clusters that were hand-identified by independent

and close examination of a TCR data set. We also presented a randomization test to obtain sig-

nificance estimates of our TCR scores, and validated them against a proxy null distribution

comprised of the double negative biological replicates. Finally, our methods were able to detect

responsive TCR clusters to a yellow fever virus immunization across multiple donors using

only one post-vaccination repertoire snapshot per donor.

Our framework can be viewed as a nonparametric approach to detecting collections of

TCRs in a target repertoire that are enriched compared to a specified null distribution, which

is manifest as a source or reference repertoire. Thus, the inferences will be valid insofar as our

source repertoire is a representative sample from the underlying population of interest. This

provides flexibility in which baseline distribution to compare against if we do have a reference

repertoire that we are confident represents the population of interest, rather than relying on a

model that might be biased towards a different or more general population. Furthermore, our

method fundamentally involves comparing collections of amino acid sequences via a distance

rather than exact identity, making it more robust to sequencing error than methods based on

exact matches of nucleotide sequence.

The choice of whether to use a model-based method versus our non-parametric method is

analogous to the choice between a t-test and a nonparametric test such as the Mann-Whitney

U. If we do not have a representative sample repertoire from the population of interest, a

model-based approach might yield more robust results. On the other hand, if data is plentiful

and we are concerned about model fit, a nonparametric test may be more appropriate. Thus,

one must decide which reference population should be used for the particular application, and

how this reference population can be best represented, in order to choose the appropriate

approach.

There are several avenues to improve and extend the present work. We note that our cur-

rent clustering mechanism (Algorithm 1) does not automatically estimate the number of clus-

ters to return. Both of these considerations are in contrast to parametric approaches like

ALICE [21], which rely on a parametric Pgen model for the null distribution but can be directly

applied to a single repertoire and automatically return any significant cluster. Though we have

focused on single-chain repertoire data in this study, the TCRdist measure applies equally well

to paired alpha/beta TCR sequences, and the optimal transport framework presented here

should be well suited for analysis of paired repertoires from single-cell genomics experiments.

In this context, it may be interesting to compare and constrast optimal transport repertoire

analysis with parallel analyses of the transcriptional phenotypes of the same T cell clonotypes.

Another future direction involves trying other distance functions between immune recep-

tors, and seeing how other metrics impact the results. This could also lead to a generalization

of our methods to B cell receptor (BCR) repertoire data, as there is no current equivalent to

TCRdist for BCRs. One possible direction would be to examine the efficacy of BCR and TCR

sequence embeddings within our optimal transport framework, such as the embeddings

underlying recent variational autoencoders for TCR sequences [46].

One might also try another distance between probability distributions that also incorpo-

rates a metric function on the individual objects in the sample space. Perhaps the two most

popular alternative distances between two probability distributions are known as the discrep-

ancy metric and the Prokhorov metric. The discrepancy metric between probability measures
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μ and ν is defined as

dDiscrepancyðm; nÞ≔ sup
closed balls B

jmðBÞ � nðBÞj: ð23Þ

In other words, this metric looks at every possible ball, calculates the absolute difference in

probability measures of the ball, and gives the largest such difference. Such a metric is oblivious

to other differences occurring in the region space, and thus, seems less appropriate for distri-

butions over TCRs where there could be many sub-distributions with interesting behavior.

The Prokhorov metric between μ and ν is defined as

dProkhorovðm; nÞ≔ inffε > 0 : mðBÞ � nðBεÞ 8 closed balls Bg; ð24Þ

where Bε = {x: infy2Bd(x, y)� ε}. Similarly to the discrepancy metric, this metric fixates on an

infimum over the region and fails to account for more subtle differences between distributions.

Thus we believe that the optimal transport metric is the most appropriate in the TCR setting.

Supporting information

S1 Fig. Neighborhood loneliness is a better discriminator of “spike-in” TCRs than individ-

ual (per-TCR) loneliness. Each bar summarizes the Area Under the Receiver Operating Char-

acteristic curve (AUROC) values for 10 replicate experiments in which a varying number (x-

axis) of TCRs sharing a single epitope specificity were spiked into one of two repertoires ran-

domly sampled from a large population of naive CD8+ T cells. The AUROC measures the abil-

ity of the corresponding measure (neighborhood loneliness on the left or individual loneliness

on the right) to differentiate the spiked-in TCRs from the naive CD8+ TCRs when comparing

the two repertoires.

(TIFF)

S2 Fig. Scatterplots of mean annulus loneliness vs TCRdist radius for each of the DN rep-

ertoires, along with estimated segmented regression fits. Repertories with fewer than 200

TCRs have a dashed regression line. This is a visual check of the assumptions of the seg-

mented regression specified by Eq (14), showing that the assumptions hold in the relationship

of mean annulus loneliness versus TCRdist from the centroid, and that this relationship has

identifiable breakpoints for a typical repertoire. We perform Algorithm 1 on each full reper-

toire, which yields the “loneliest” cluster of each repertoire. We see that we are able to success-

fully estimate a breakpoint rbreakpoint for each subject, with rbreakpoint 2 (50, 100) for almost all

subjects. When the repertoire contains fewer than 200 TCRs, the relationships can weaken

(e.g. Subject 1), though Algorithm 1 still provides sensible regression estimates. When the rep-

ertoire contains at least 200 TCRs, we see consistent elbow behavior and convincing break-

point estimates. Furthermore, violations of the least squares assumptions do not appear to be a

concern.

(TIFF)

S3 Fig. Time breakdown for a collection of pairwise analyses, comparing the amount of

time required for the TCRdist calculation to the time required for the optimal transport

(OT) calculation.

(TIFF)
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