
Accurate and Effective Detection of Recurrent Copy Number 
Variants in Large SNP Genotype Datasets

Simone Montalbano1,2,4, Xabier Calle Sánchez1,2,4, Morteza Vaez1,2, Dorte Helenius1,2, 
Thomas Werge1,2,3,5, Andrés Ingason1,2,3,5

1Institute of Biological Psychiatry, Mental Health Services, Copenhagen University Hospital, 
Roskilde, Denmark

2The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen 
and Aarhus, Denmark

3Lundbeck Foundation Center for GeoGenetics, GLOBE Institute, University of Copenhagen, 
Copenhagen, Denmark

4These authors contributed equally to this work

Abstract

Structural Variations, including recurrent Copy Number Variants (CNVs) at specific genomic loci, 

have been found to be associated with increased risk of several diseases and syndromes. CNV 

carrier status can be determined in large collections of samples using SNP-arrays and, more 

recently, sequencing data. Although there is some consensus among researchers about the essential 

steps required in such analysis (i.e., CNV Calling, Filtering of putative carriers, and Visual 

Validation using intensity data plots of the genomic region), standard methodologies and processes 

to control the quality and consistency of the results are lacking. Here, we present a comprehensive 

and user-friendly protocol that we have refined from our extensive research experience in the 

field. We cover every aspect of the analysis, from input data curation to final results. For each 

step we highlight which parameters affect the analysis the most and how different settings may 

lead to different results. We provide a pipeline to run the complete analysis with effective (but 

customizable) pre-sets. We present software that we developed to better handle and filter putative 

CNV carriers and perform visual inspection to validate selected candidates. Finally, we describe 

methods to evaluate the critical sections and actions to counterbalance potential problems. The 

current implementation is focused on Illumina SNP-array data. All the presented software is freely 

available and provided in a ready-to-use docker container.

Basic protocol 1: From intensity data files to CNV calls. Perform SNP filtering, PennCNV 

calling pipeline, apply a light post-processing, tabix index intensity files.

Basic protocol 2: From CNVs calls to validated CNV carriers. Filter putative CNV carriers in 

the selected loci, perform visual validation, and export results.
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Support protocol 1: Quality control. Run a comprehensive series of tests and guidance on 

which parameters to change if any problem should arise.

Support protocol 2: Install the necessary software.
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INTRODUCTION

Structural Variants are genomic rearrangements involving a sequence of base pairs. 

They can be categorised into multiple subgroups including indels, tandem repeats, Copy 

Number Variants (deletions and duplications; CNVs), and large chromosomal abnormalities 

(Sudmant et al., 2015). Recurrent CNVs constitute a structural variant class of particular 

interest, as many of them have been shown to be associated with disease traits(Malhotra 

& Sebat, 2012; Weischenfeldt, Symmons, Spitz, & Korbel, 2013). Recurrent CNVs usually 

consist of duplications and deletions occurring in specific loci of the genome interspersed 

by so-called low-copy repeats (LCR). The LCR are typically relatively large (>10kb) 

sequence elements with high (>95%) sequence homology and during cell replication 

their proximity can facilitate a non-allelic homologous recombination (NaHR) between 

chromosomes/chromatids, resulting in the deletion and duplication of the genetic material in 

between the two LCR copies.(Sharp et al., 2005; Turner et al., 2008) Although such events 

occur sporadically, the breakpoints of the resulting CNVs will always be dictated by the 

genomic position of the LCRs, hence the term “recurrent”. Most recurrent disease-associated 

CNVs are rare (<0.1%) and rather large (>300kb) (Crawford et al., 2019; Stankiewicz & 

Lupski, 2002), they often occur de-novo in the carrier and tend to not segregate over many 

generations (Stefansson et al., 2008), although this varies widely across loci and CNV 

types depending on the severity and frequency of the pathogenic symptoms associated with 

them. Some examples include 1q21.1, 15q11.2, 15q13.3 and 22q11.2(Driscoll et al., 1992; 

Stefansson et al., 2008).

Large chromosomal rearrangements were traditionally detected via microscopic karyotype 

inspection, while most recurrent CNVs are too small for such detection (hence sometimes 

referred to as “submicroscopic”) and must be detected through inferential molecular genetics 

methods. Currently, most recurrent CNVs are routinely identified (“called”) from SNP-

arrays and/or sequencing technology. Of these, SNP-arrays are more commonly applied 

in very large studies, as SNP-array genotyping is less expensive than whole genome 

sequencing, whereas the latter typically return more accurate and precise results but is more 

complex to analyse. The most commonly applied method to “call” CNVs from SNP-array 

data is PennCNV (Wang et al., 2007), a hidden Markov model (HMM) based approach 

which evaluates deviations from expected patterns in two key derived measures of the 

raw A and B allele intensities from which SNP-array genotypes are determined. These 

derived measures are the log-R-ratio (LRR), which measures the overall relative intensity 

of each probe compared to all other probes, and the B-allele-frequency (BAF), which 

measures the relative intensity of the B-allele to the total intensity for each probe. PennCNV 

is considered the current standard for CNV calling, however, it has some shortcomings. 
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PennCNV internal HMM only considers successive SNPs at any step, making it extremely 

sensitive to local noise. Due to this intrinsic limitation of the model, false positives (calls 

only due to noise), over-segmentation (a true CNV erroneously split into smaller calls), 

and imprecise boundaries in general are common problems affecting PennCNV calls. These 

issues especially affect results obtained from noisy datasets (the main sources of noise are 

discussed in the main text). Of note, complete false negatives are not generally considered a 

concern.

Prompted by our own analyses of recurrent CNVs in several large SNP-array genotype 

datasets, and a perceived lack of standardised procedures to deal with the most commonly 

encountered issues in such analyses, we have developed a set of protocols that in our opinion 

will facilitate accurate and efficient calling of recurrent CNVs (or CNVs at other fixed loci) 

in any large SNP-array dataset. In protocol 1, we describe how to filter uninformative SNPs 

from intensity data in order to improve accuracy of CNV calls (for simplicity, here and in 

following protocols we consider Illumina “final report”, containing the key LRR and BAF 

measures, as raw data - see following sections, “Necessary resources” and “Basic protocol 

1”, for a formal data description). Moreover, we show how to use the provided PennCNV 

pipeline (including some light processing), as well as the tabix-indexing of the raw data for 

the following steps. In protocol 2, we illustrate how to effectively filter putative carriers in 

selected loci as well as to visually validate the CNVs calls. This section is implemented 

using the software packages we provide. Figure 1 illustrates the overall protocol schematics. 

In support protocol 1, we illustrate how to run and interpret an extensive battery of tests in 

order to assess the quality of the results. Finally, we describe which parameters in which 

steps should be modified in order to improve the overall quality of the results, if any. In 

support protocol 2, we detail the install process of all necessary software.

As discussed in the commentary, the protocol is primarily designed for processing large 

datasets (e.g., > 50,000 samples). However, we also tried to code and describe most steps so 

that the whole protocol, or at least sections of it, can be as useful also in smaller studies and 

in ones not strictly focused on recurrent CNVs.

Necessary resources

Hardware: The protocol is designed for large collections of genotyping data. For this 

reason, the user will need at least a modern workstation, but a high-performance computing 

cluster is preferred. While the RAM and disk space requirements are not high compared to, 

e.g., programs that handle next generation sequencing data, several steps of the pipeline need 

to read raw data, thus a fast storage solution is advised.

Software: We provide a docker/singularity image containing all necessary software to 

run the protocol. Refer to support protocol 2 for instructions on how to use the image or 

how to install our software separately. The initial PennCNV calling pipeline is designed to 

take advantage of the job scheduler SLURM and to run all commands via the singularity 

container. Only Linux environments are supported.

Files: The protocol is focused on Illumina genotyping data; raw data for each sample of 

the cohort is basically the only necessary prerequisite. There must be one file per sample. 
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Additionally, a key file linking each sample to its raw data file is needed. The raw data 

format is Illumina “intensity file”/”final report” format, that is a text file containing at 

least the following columns: “Name”, “Log R Ratio”, “B Allele Freq”. Expected format 

is detailed in the following section. Please note that while intensity files are considered 

raw data, they are not the most primitive form in which Illumina SNP-array data can 

exist. If the raw data is in IDAT format, it needs to be processed into intensity files 

before proceeding with the protocol. IDAT files can be converted to GTC files using the 

Illumina software IAAP (available here https://support.illumina.com/array/array_software/

illumina-array-analysis-platform.html), then GTCs can be converted to intensity file using 

the python library IlluminaBeadArrayFiles (available here https://github.com/Illumina/

BeadArrayFiles). All required inputs are discussed in more detail at the beginning of basic 

protocols 1 and 2.

BASIC PROTOCOL 1

From raw intensity files to CNV calls

PennCNV (Wang et al., 2007) has been the de facto standard for CNV calling since its initial 

release fifteen years ago. While it is fairly easy to use, implementing a pipeline to process 

tens or hundreds of thousands of samples can be challenging. Moreover, there are many 

checks the users need to perform in order to ensure all commands run as intended, as well 

as some files that are not straightforward to generate or obtain. The pipeline we refined takes 

care of most of these issues. This protocol details how to run the pipeline and obtain the raw 

CNV calls and sample QC files to use for further processing.

Required files

To run the protocol three main files plus the intensity files are required, and they must be in 

the correct format. We provide GC content file (requirement 4), however, the user needs to 

generate the samples list (requirement 3) and the SNPs position file (requirement 2).

1. Intensity files. These files store the raw information regarding each Illumina SNP 

probe. Each file should contain at least the following three columns: “Name”, 

“Log R Ratio”, “B Allele Freq”. Column names must be exact; other columns 

can be present as long as these are the first three. These columns contain, 

namely: the name of the SNP markers, the value of Log2 R ratio (a relative 

measure of the light intensity), and B Allele Frequency (a measure of the allelic 

composition). Intensity files are also called “Final Reports” and may contain a 

multi-line header. Moreover, it is possible that multiple samples are stored in the 

same file (e.g., an entire genotyping batch) and that the files are compressed. 

In all cases PennCNV will not work. All these problems can be very different 

from case to case, but they can be solved using standard GNU utilities tools 

(included in every major linux distribution) such as sed or the program awk. To 

solve the second problem, the PennCNV script split_illumina_report.pl 

can also be used. Note that in this case the user may need to regenerate a correct 

samples_list.txt file. Note that it is important to know in which build of the 
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human genome the intensity data is (e.g., “hg19”), and that all samples in the 

same project must be on the same version.

2. snppos.txt. This is a TAB separated text file that contains at least the 

three following columns: “Name”, “Chr” and “Position”, that are the name and 

genomic location of each SNP marker. The first column must use the same 

names as in the intensity files. In projects where each intensity file contains 

this information, any sample can be used to generate the SNP position file. 

Otherwise, there should be a file called “PFB” (Population Frequency of the B 

allele) that contains all the columns required by the snppos.txt format.

3. samples_list.txt. This must be a two columns TAB separated text file with 

a header. The two columns must be “sample_ID” and “file_path”. “sample_ID” 

needs to be the identifier for the specific sample and “file_path” needs to be 

the complete path (thus starting from root, “/”, avoid using links and the home 

directory, “~/”, in the path) to the intensity file for that sample. Again, this 

protocol assumes there is one intensity file per sample. If this is not the case, see 

next point. In the case that samples were genotyped in waves or batches, these 

can be used; otherwise, batches of approximately 2000 samples will be created. 

In the first instance, an additional column called “batch” must be present, and the 

content must be integers indicating the specific batch.

4. GC content file. This file is used by the PennCNV script cal_gc_snp.pl. This 

file is not straightforward to generate but we provide the hg38, hg19 and hg18 

version as part of the IBPcnv repository. The hg38 version is available from the 

PennCNV repository, https://github.com/WGLab/PennCNV/blob/master/gc_file/. 

It is also included in the IBPcnv repository for user convenience. Finally, the 

original hg18 version can also be obtained directly from UCSC Genome Browser 

at http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/gc5Base.txt.gz.

Protocol steps with step annotations

1. Setup. We provide all required software and scripts in a docker/singularity 

container and a GitHub repository. Excluding the raw data, all files and 

subdirectories need to be in the same directory ($workingdir hereafter). 

Support protocol 2 details the installation process, as well as some suggestions 

on how to set up directories and the environment for the analysis.

2. Initial checks and required files generation:

a. This will do the following. First, it will run a series of tests to check 

that all intensity files are present and in the correct format. Then, it will 

check if samples were already divided in batches and that this is in the 

correct format. If not, it will create the batches and separate the samples 

into groups of approximately 2000 each, the actual number may vary in 

order to not have the last batch significantly smaller than the rest.

b. To complete this step, move to the main working directory (cd 

$workingdir) and run

Montalbano et al. Page 5

Curr Protoc. Author manuscript; available in PMC 2023 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/WGLab/PennCNV/blob/master/gc_file/
http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/gc5Base.txt.gz


singularity exec ibpcnv.simg Rscript \
 IBPcnv/penncnv_pipeline/01_preprocess.R \
 $workingdir 1 2000 $tabix_folder

where $tabix_folder is the complete path to the directory where the 

tabix indexed files will be created in step 5. The approximate batch size 

can be changed via the third parameter, however it is not recommended 

to use a small batch size, as the population B allele frequency (PFB) 

files will be created per batch.

c. If the script fails checking the batches but no errors are found in the 

intensity files, the second parameter can be set to 0 to skip the initial 

checks that constitute the slower part of the testing.

d. If all checks are successfully completed, the script will write the 

per-batch sample list files needed by PennCNV in $workingdir/

listfile/. The script will also print the number of batches that will 

be used.

3. Select the SNP markers:

a. This step will do the following. First it will extract the marker names 

and position from an intensity file. It will then download the HRC 

SNP list, selecting only SNPs that are strictly biallelic, known (with 

a name in dbSNP142, no “.”) and with a minor allele frequency of at 

least $minMAF (MAF values for each SNP are obtained from the HRC), 

we suggest 0.001 (0.1%). Then, it will merge the two tables, remove 

markers with duplicated “SNP_ID”, remove markers that map to the 

same position and finally it will create the snppos.txt file needed by 

PennCNV.

b. To complete this step, move to the main working directory and run

singularity exec ibpcnv.simg Rscript \
   IBPcnv/penncnv_pipeline/02_select_SNPs.R \
   $workingdir $minMAF $hgversion TRUE

The removal of duplicated markers can be avoided by setting the 

last parameter to FALSE. At the moment of writing the HRC SNP 

list is available only in hg19 coordinates, thus the last argument 

can take only “hg19” as value. This may change in the near 

future. Any other list of SNPs that follows the same format will 

work. See the Sanger Institute documentation for details, http://

ngs.sanger.ac.uk/README and ftp://ngs.sanger.ac.uk/production/hrc/

HRC.r1/README. When using a different SNP list, it is suggested 

to first use the default one first in order to be able to easily check the 

format.
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4. PennCNV calling pipeline:

a. First, run the calling pipeline in parallel on each wave. To complete this 

step, move to the main working directory and run the command

bash IBPcnv/penncnv_pipeline/03_penncnv_pipeline.sh 
\
    $workingdir $ibpcnvdir $n_batches hg19

Where $n_batches is the number of batches from step 2.

b. PennCNV calling parameters (minimum number of SNPs and minimum 

length of each call) can be changed in the script $ibpcnvdir/

penncnv_pipeline/03_2_cnv_calling.sh, before launching the 

previous step. By default, these are set to 5 and 1000 bp respectively.

c. Check that all batches are completed successfully. Catching any 

PennCNV error is quite straightforward, the following command can 

be used

cd $workingdir && grep ‘ERROR’ pennlogs/*

However, SLURM and PBS problems can be more complex to find. To 

check that all samples have been processed run

if [ $(wc -l samples_list.txt | cut -d ‘ ‘ -f1) == 
\
$(wc -l results/autosome.qc | cut -d ‘ ‘ -f1) ]; 
then
echo “All good”; fi

If this check fails, the following command can be used to list the 

samples that have not been processed by PennCNV

join -v2 −1 1 −2 2 <(LANG=C tail -n+2 1 results/
autosome.qc | sort -k) \
  <(LANG=C tail -n+2 samples_list.txt | sort -k 2)

One common problem is for a full batch or a batch chunk to fail, 

usually due to the job scheduler. If that is the case, the full batch can be 

relaunched running (for PBS systems, use qsub instead of sbatch)
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sbatch IBPcnv/penncnv_pipeline/03_1_per_wave.sh 
$workingdir \
   $ibpcnvdir $n_wave

where $n_batch is the number of the failed batch. We suggest redoing 

the whole batch also in the case of a partial failure.

d. After the calling pipeline is completed, the batches can be combined 

into two single files (CNV calls and QC) running (for PBS systems, use 

qsub instead of sbatch)

sbatch IBPcnv/penncnv_pipeline/
04_combine_results.sh \
   $workingdir $ibpcnvdir $maxgap

e. This will also perform a “soft stitching” step, meaning that for each 

sample, close calls with the same copy number will be stitched together. 

This is controlled via the $maxgap parameter; we recommend a value 

of 0.2 and not higher than 0.4 as it could alter the raw call-set. A 

stronger stitching will be performed in the basic protocol 2 when 

selecting putative CNVs in a specific locus.

5. Tabix indexing the intensity files. In basic protocol 2, we take advantage of the 

speed of tabix indexed files as well as of the GC waviness-adjusted LRR values.

a. The GC model file for the specific array in use should have already 

been generated. If the user is interested only in the second half of the 

protocol the following command can be used

bash IBPcnv/misc/create_gcmodel.sh $workingdir 
$ibpcnvdir

b. To perform the indexing run

bash IBPcnv/penncnv_pipeline/05_launch_tabix.sh 
$workingdir $ibpcnvdir

This will also compute the GC waviness-adjusted LRR values for each 

marker. This can be used in the visual inspection and it’s also discussed 

in the commentary. This step concludes basic protocol 1.
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BASIC PROTOCOL 2

From CNVs calls to validated CNVs carriers

CNV calling using SNP-array data is an intrinsically imprecise process, and strongly 

depends on the quality of the initial SNP-array raw data. In particular, it is prone to pick 

up noise as signal, as well as to “over-segment”, that is, incorrectly splitting a (often large) 

CNV call into several smaller ones. This ultimately may lead to unreliable results. Moreover, 

precise CNV boundaries (at the level of 1–2 SNP probes) are very difficult to obtain. 

Different research groups have developed different strategies to overcome these problems. 

To counter over-segmentation, it is common practice to “stitch” close, consecutive calls with 

the same Copy Number (CN). To reduce noise, some kind of filtering is almost always 

included. At the CNV call level, the filtering can act on the call length, the number of SNP 

probes or, more rarely, on the confidence score. Some filtering is usually performed also at 

sample level, this may include removing samples with a too high LRR standard deviation 

(LRRSD), extreme BAF drift, or too many calls. Few studies, such as this protocol, also 

perform an initial filtering on the SNPs in order to reduce the general noise of the raw 

data. Notably, these approaches tend to lead to false positive calls being a larger issue than 

false negative ones. Changing the type and strength of the CNV calls level filtering enables 

researchers to balance between false negatives and the number of calls to validate (i.e., false 

positives to manually screen). In order to reduce the number of false positives two main 

strategies have typically been used. The first is to visually validate all putative CNV calls. 

This approach is time consuming and prone to human error, however, when done correctly, 

it is the overall best approach, and it is commonly used when calling CNV in a limited set 

of specific genomic loci, such as recurrent CNV loci (Stefansson et al., 2014; Calle Sánchez 

et al., 2021). This approach should always be preferred when the CNVs of interest are rare, 

and thus few false positives or negatives could significantly affect estimated prevalence and 

downstream analysis. The second approach is to use multiple algorithms to perform the 

CNV calling and intersect the resulting callsets (often using a form of reciprocal overlap 

in terms of base pairs or probes) and filter the results. An example is using more than one 

program (such as PennCNV (Wang et al., 2007), QuantiSNP (Colella et al., 2007) or others) 

and considering “validated” only calls where 2 or more programs made the call. In this case 

the reasoning is that even if some false positives are introduced, with a large sample size, 

these errors will be equally distributed among, e.g., cases and controls. Such studies usually 

also perform some kind of grouping before doing any analysis (e.g., deletions affecting at 

least one gene) and rarely consider individual CNVs on their own.

In this protocol, we follow the first approach (i.e., always relying on visual inspection as the 

final validation step) and we integrate it with newly developed filters that do not depend on 

the PennCNV output but directly on the raw data. By doing so we are able to reduce the 

number of putative carriers to inspect, while also minimising the number of false negatives 

as much as possible. This approach is particularly suited for large cohorts where the number 

of false positives can be high. In smaller datasets it may not be equally useful to perform 

the filtering step and the user can simply use our package to standardise the files and then 

use the graphical interface to validate all putative carriers. It is important to notice that, 

as stated in the main introduction, this protocol has been designed with a strong focus on 
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recurrent CNV, meaning CNV with relatively fixed and precise start and end positions. As 

an example, a researcher interested in all recurrent CNVs in the larger 15q region should 

specify each specific locus individually in the loci.txt file (see required files), while 

a researcher interested in all CNVs overlapping the NRXN1 gene should use a very low 

minoverlap value (see step 3c) and avoid the advanced filtering (see step 4d).

Figure 2 shows a schematic representation of the basic protocol 2.

Required files

The only additional file needed to run the second part of the protocol is a list of the loci of 

interest. The file loci.txt must be a four column TAB separated text file with a header. 

The columns must be called “locus”, “chr”, “start”, “end”. The chromosome must be in 

integer format. This format is used in all the results and intermediate R objects, as well as 

the tabix indexed intensity files. It simply consists of integers from 1 to 22 that are used for 

autosomes, plus 23 for X, 24 for Y, 25 for XY and 26 for MT.

Protocol steps with step annotations

1. Setup. All software and scripts required are provided in a docker/singularity 

container and a GitHub repository. Support protocol 2 details the installation 

process. It is assumed the user successfully completed basic protocol 1. 

Throughout this protocol all files are loaded in R as data.table objects. Please 

note that they behave slightly differently than data.frame in certain situations. 

If the user prefers using data.frame to explore the results, after the protocol 

completion the main objects can be converted by running

objectA_df <- as.data.frame(objectA_dt)

This will ensure full consistency when using rbase commands and the 

tidyverse framework.

2. QCtreeCNV filtering pipeline. This step is meant to be run interactively in an R 

session. The user can use the provided commands in an R script; however, we 

suggest exploring at least a couple of loci interactively before setting the final 

parameters.

3. Preparation. All code lines are shown in code block 1.

a. Load data into R. To launch an interactive R session using the provided 

singularity image, run

singularity exec ibpcnv.simg R
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At this point the four main files can be loaded into R. Assuming the 

user followed the suggested naming in protocol 1, this can be done by 

running lines one to five.

b. Check formats and select the calls in the loci of interest. These steps 

can be performed with a single function, qctree_pre(). It takes 

the four main objects from the previous step and the parameters for 

stitching close calls. Line 7 shows the code for default values. If there is 

any problem with the inputs the function will fail with an error message 

explaining the specific problem. By default, the function will also take 

care of multiple calls in a locus from a single locus, keeping only the 

largest call, regardless of the copy number. The user can avoid this by 

setting rm_dup = F. Note however that the downstream steps do not 

support multiple calls per sample in a single locus and will throw an 

error if any is found.

c. The stitching function takes three main parameters, minimum SNPs 

number for calls to be considered, maximum gap between two 

consecutive calls with same CN in order to stitch them together, and 

minimum overlap between a call and a locus for the call to be selected 

as a putative CNV. Default values are respectively 20, 0.5 and 0.2. 

These values can be changed with the following parameters minsnp, 

maxgap, minoverlap, e.g. pre <- qctree_pre(loci, cnvs, 

qc, samples, minsnp = 15, maxgap = 0.4, minoverlap = 

0.5).

d. Compute CNV Regions. We provide two different functions to compute 

CNVRs (CNV Regions), cnvr_fast() and cnvrs_create(). 

Additionally, the user is free to use a different method as long as the 

results are in the correct format. CNVRs are used here to separate 

groups of largely overlapping calls within a certain locus, in particular 

groups with different lengths. CNVRs and their computation are further 

discussed in the commentary and in the package manuals and vignette. 

The suggested function can be run as shown in line 9.

1> library(data.table); setDTthreads(2); 
library(QCtreeCNV)
2> cnvs <- fread(“results/autosome.cnv”)
3> qc <- fread(“results/autosome.qc”)
4> loci <- fread(“loci.txt”)
5> samples <- fread(“samples_list.txt”)
6>
7> put_cnvs <- qctree_pre(loci, cnvs, qc, samples)
8>
9> cnvrs <- cnvr_fast(put_cnvs)
Code block 1.

4. qctree() filtering:
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a. The filtering function is structured as a decision-making tree consisting 

of five main steps, and each step has multiple parameters the user 

can change. More technical details on each step and how the main 

parameters are connected with the outputs of support protocol 1 (quality 

control) is further discussed in the commentary. To run the function 

with default values type

cnvs_out <- qctree(cnvrs[[1]], cnvrs[[2]], loci)

If no filtering is deemed necessary (for example when the number of 

putative calls is small), the user can proceed directly to point 4d.

b. Step 1 of the filtering tree is removing samples-wise QC outliers and 

this is the most accessible step to customise. By default, samples 

will be removed if they have LRRSD > 0.35, BAF drift > 0.01 or 

GCWF outside of the window −0.02 to 0.02. These values can be 

changed with the following parameters maxLRRSD, maxBAFdrift, 

maxGCWF, minGCWF.

c. The resulting table will contain the column “excl” with the value 0, 

meaning the line is a good putative CNV call, or 1, meaning the line is 

a bad putative CNV and can be skipped in the visual inspection step. 

This table can be exported in the correct format for the visual inspection 

interface with

export_cnvs(cnvs_out[excl == 0, ], 
“putative_cnvs.txt”)

This will write the file putative_cnvs.txt in the $workingdir 

containing only the good putative CNV calls in the format expected by 

DeepEYE. To export all calls, type

export_cnvs(cnvs_out, “putative_cnvs.txt”)

d. If no advanced filtering is needed, the user can simply apply the 

standard filters (LRRSD, BAFdrift, GCWF) when exporting the table. 

Using the data.table syntax, run

export_cnvs(put_cnvs[LRRSD <= 0.35 & BAFdrift <= 
0.01 &
             between(GCWF, −0.02, 0.02, incbounds=T), ],
          “putative_cnvs.txt”)
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5. Visual inspection.

a. Visual inspection of the putative CNVs is necessary to validate the 

true CNV carriers with precision. The in-house program DeepEYE 

(included in the provided container) provides the user with a graphical 

interface to assign a label (true, false, unknown) to each CNV 

candidate. The results are stored in an extra column in the putative 

CNVs file.

b. DeepEYE requires three main inputs, the samples and loci lists, plus the 

putative CNVs table. It can be run from the singularity image, assuming 

all files have the standard names described in the protocol

singularity exec ibpcnv.simg python3 /opt/eyeCNV/
visualizer.py \
  $workingdir putative_cnvs.txt loci.txt 
samples_list.txt GC_YES

This will open a graphical window as shown in figure 3.

I. Initially the window will display only a series of buttons and 

boxes (figure 3 left side). In order to start the actual visual 

inspection (figure 3 right side) the user needs to follow these 

steps:

II. Name the project (box a), the name will dictate the name of 

the output file, namely visual_output_projectname.txt. 

The project name should be meaningful, e.g., when user “abc” 

is evaluating deletions in the TAR locus, a good project name 

could be “TAR_del_abc”.

III. Select the loci to inspect. Left clicking on the button b will 

open a secondary window (i) where it is possible to select the 

loci to inspect in the current run.

IV. Select the condition. Left clicking on button c will open a 

menu with the following options: true, false, unknown, all. In 

a new project “all” should be selected, while re-evaluating a 

previous project the user can select only a portion of the calls 

(e.g., unknown).

V. Select the type. Left clicking on button d will open a menu 

with the following options: duplications, deletions, any. This 

lets the user select a specific type of CNV to inspect.

VI. Once this is set, the user can click button e, “start”.

c. If at least one CNV call was selected, the right panel will appear. The 

panel consists of two plots (h), the top is for LRR and the bottom is for 
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BAF. Each dot represents a marker. The red dots are within the locus of 

interest, the blue dots are outside.

d. For each plot the user can evaluate if a CNV is present within the red 

region and record the decision using the dedicated buttons (f):

I. True: there is a CNV in the red region (with the correct CN, as 

shown in g).

II. False: there is not a CNV in the red region (or the CN is not 

correct).

III. Unknown: it is not possible to tell whether a CNV is present or 

not, likely due to excessive noise in the region.

IV. Error: useful to mark samples with problematic intensity data.

e. The progress bar and text in g mark the session’s progress. Once all 

selected calls have been inspected the result file will be written in 

$workingdir. The last column, “visual_output”, contains the record 

of the visual inspection as integers: 1 (true), 2 (false), 3 (unknown), −7 

(error). This file can be used again as putative CNV file, for example to 

re-evaluate unknown calls only.

6. Visual evaluation concludes basic protocol 2. The file 

visual_output_projectname.txt will contain the results. The visual output 

codes (step 5e) can be used to filter the relevant CNVs. See also the final section 

“Understanding Results”.

SUPPORT PROTOCOL 1

Quality Control & Quality Assessment

This protocol, similar to any other CNV calling pipeline, implements a certain set of filters. 

We propose valid default values based on the scientific literature and our research experience 

(Stefansson et al., 2014; Calle Sánchez et al., 2021). However, since this protocol is mostly 

aimed at CNV calling in recurrent loci where the actual CNVs are quite rare, we need 

to be extremely careful that our processing does not introduce any false negatives that 

may severely bias our estimates (false positives are controlled via visual inspection). In 

large cohorts, this ultimately means balancing the strength of the filters and the amount 

of manual validation required. Finally, some filters are applied sample-wise on values that 

directly reflect the noise in the data, for the specific sample (LRRSD and BAF drift in 

particular). We found that it is often quite possible to use relaxed filters, thus eliminating 

fewer samples. However, in doing so, one must be able to assess that the ability to detect 

CNVs is not significantly different in “noisier” samples, otherwise biases may be introduced 

in the results. Here we show how to produce a series of plots that help identify such potential 

issues in the results of the protocol, and briefly discuss the interpretation of each one. 

Specific problems and solutions are then highlighted in the troubleshooting section.
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Protocol steps with step annotations

1. Setup. This support protocol is meant to help evaluate the performance of the 

CNV calling protocol. First, start an R session. From $workingdir,

singularity exec ibpcnv.simg R

Load the visual inspection results, e.g., assuming the visual inspection results 

were saved as visual_output_ALL.txt in $workingdir,

library(data.table); vi_res <- 
fread(“visual_output_ALL.txt”).

2. Create the plots. The function qc_plots_cnvs() will create three plots for the 

main filtering arguments and more supporting ones. Here we will discuss briefly 

only the main one, for the complete discussion refer to the commentary. As an 

example, to create the QC plots for the CNVs in all loci, simply run

library(QCtreeCNV); qc_plots_cnvs(vi_res, “all_loci”).

This will create the folder all_loci in the working directory and save all QC 

plots in it. Note that the plots shows the results regarding only the CNVs marked 

as true (visual_ouput == 1).

3. Interpret the results. Figure 4 shows a good and a bad example of the two plot 

types. See also the final section “Understanding Results” for more discussion.

a. Plot 1 (example in figure 4A) shows the CNV prevalence in different 

LRRSD chunks (low, medium, high), separated for deletions and 

duplications. It illustrates the ability to detect true CNVs in different 

groups of samples from the noise perspective (high LRRSD can 

be considered the main indication of a noisy sample). Ideally, the 

prevalence should not differ significantly across the different groups, 

in particular the one with the highest LRRSD. A significant change 

means that the ability to detect CNVs is significantly affected in noisy 

samples, usually lowering it. This means the LRRSD filter threshold 

may need to be increased. On the other hand, if a strong LRRSD filter 

was used and plot 1 shows very high consistency, the user may want to 

explore lowering it to possibly exclude less samples from the analysis.

b. Plots 2 and 3 (example in figure 4B) show the distribution of the 

number of SNPs and overlap proportion with the locus per call for 

true CNVs, numsnp and overlap respectively. Both these measures 

are used as filters when selecting putative CNV calls. Ideally the 
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distribution should not seem to be “cut” at the threshold values for 

numsnp and overlap. If that is the case, it might indicate that some 

potential true CNVs are being filtered out and it may be worth trying 

to relax the filters. This is especially important for very rare CNV loci, 

where a small increase in carriers can have an impact on power. Note 

that plot 2 may be more meaningful when used on individual loci or a 

group of loci with very similar marker coverage, since it is the absolute 

number of markers of each call. If different thresholds were used for 

different loci, they must be treated separately to obtain meaningful 

results.

c. Plot 4 and 5 can be interpreted in the same way as plot 1 (figure 

4A) but regarding two other noise measures, BAF drift and GCWF, 

respectively. They can be considered secondary since these dimensions 

are less prone to affect the CNV detection accuracy.

4. Deal with possible detection bias. If the dataset includes sample groups selected 

differently (e.g., cases and controls) it may be a good idea to analyse them 

separately. The CNV prevalence is often expected to differ in different groups 

(e.g., some recurrent CNVs are more frequent in neuropsychiatric case groups 

than in population controls), thus combining them may lead to confusion in 

the interpretation of the QC plots, especially if LRRSD distribution also differs 

across those groups. Possible problems in these plots are described in the last two 

points of the troubleshooting section. Assuming the sample_IDs for one group 

are in vector groupA QC analysis can be run separately with

qc_plots_cnvs(vi_res[sample_ID %in% groupA,], “groupA”)

5. Explore an individual locus or groups of loci. The process described in previous 

steps 2 and 3 can be applied to groups of loci as well as to individual loci. This 

is useful especially when there seems to be some problems but only in a fraction 

of the loci or in a particular one. For example, to look only at the results for loci 

“A” and “B” run,

qc_plots_cnvs(vi_res[locus %in% c(“A”, “B”),], “loci_A_B”)

As a rule it can be helpful to divide the loci of interest in two or three groups 

based on length (e.g., small/large) and inspect the QC plots for the groups in 

addition to the ones for all loci. Groups can also be based on prevalence (very 

rare/not very rare) or other measures. The general idea is that while looking at 

all loci at the same time can give an overall impression of the results quality, it 

can also mask problems linked to one or very few loci. Smaller groups can help 

identify those, if any, and the QC plot for individual loci can pinpoint the actual 

problem.
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SUPPORT PROTOCOL 2

Install the necessary software

We provide a docker image containing all software required to run the protocol on 

Docker Hub at https://hub.docker.com/r/sinomem/docker_cnv_protocol. This container has 

the following software installed: htslib (Bonfield et al., 2021; Danecek et al., 2021) (1.14), 

PennCNV (Wang et al., 2007) (1.0.5), R (R Core Team, 2018) (4.1.2), DeepEYE2 as well 

as several R packages, including data.table (Dowle et al., 2020), fpc (Hennig, 2020) and 

VariantAnnotation (Obenchain et al., 2014).

Regarding the in-house software used in this protocol, QCtreeCNV R package is available 

on GitHub at https://github.com/SinomeM/QCtreeCNV. Instructions to install the package 

are given in the README. DeepEYE2 is available at https://github.com/XabierCS/eyeCNV. 

All other scripts are collected in a GitHub repository at https://github.com/SinomeM/

IBPcnv.

The statistical programming language R is available at https://www.r-project.org/. Tabix 

is part of the HTSlib suite, together with SAMtools and BCFtools. It can be obtained at 

https://www.htslib.org/download/. PennCNV is the de facto standard in CNV calling from 

array data, in particular Illumina. It is available at http://penncnv.openbioinformatics.org/en/

latest/user-guide/download/. In the following section we detail how to install the docker/

singularity image and use it to run the protocol.

Protocol steps with step annotations

1. Setup. Throughout the protocol $workingdir is used to indicate the main 

project folder. This folder will contain all the input and output files. For 

simplicity the user can define an environmental variable,

export workingdir=/path/to/workingdir

2. Install Singularity. The software should be already installed on most modern 

HPC. If not, the user should ask the system administrator to install it for them. 

To install it on a Linux workstation, one should follow the official instructions 

available here, https://sylabs.io/guides/3.0/user-guide/installation.html. A 

precompiled RPM package is available at https://dl.fedoraproject.org/pub/

epel/8/Everything/x86_64/Packages/s/singularity-3.8.0-1.el8.x86_64.rpm and the 

program alien can be used to convert it to DEB (https://github.com/

apptainer/singularity/issues/5390). Finally, in systems where the use of conda 

environments is encouraged or enforced, it should be possible to use this conda 

package https://anaconda.org/conda-forge/singularity.

3. Download the provided container image. We provide the container on 

DockerHub and it can be pulled directly by singularity. To do so, first move 

in the desired folder (cd $workingdir) and then type
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singularity pull ibpcnv.simg docker://sinomem/
docker_cnv_protocol:latest

Note that the protocol expects that the image has the suggested name 
(ibpcnv.simg) and is stored (or linked) in the main working directory 
($workingdir). If singularity fails with an error regarding the /tmp folder, 
it may help to set the environmental variables SINGULARITY_TMPDIR and 
SINGULARITY_CACHEDIR to some non-protected location (such as ~/tmp or 
$workingdir/tmp).

4. Download the IBPcnv repository. We provide two versions, one that uses 

SLURM (srun/sbatch) and one that uses PBS (qsub). They can be obtained 

running

wget https://github.com/SinomeM/IBPcnv/archive/refs/heads/
master.zip && \
    unzip master.zip && mv IBPcnv-master IBPcnv && rm 
master.zip
# or
wget https://github.com/SinomeM/IBPcnv/archive/refs/heads/
pbs.zip && \
    unzip pbs.zip && mv IBPcnv-pbs IBPcnv && rm pbs.zip

for the SLURM and PBS versions respectively. For convenience we can define 

the environmental variable $ibpcnvdir,

export ibpcnvdir=${workingdir}/IBPcnv

5. Add the SLURM/PBS account if needed. The four scripts that use the job 

scheduler (03, 03.1, 03.2, and 04 in $ibpcnvdir/penncnv_pipeline/) are 

designed to be easily edited if the system requires the use of a specific account 

name. Throughout the text we provide both versions of the commands when run 

interactively.

6. Run the protocol. All scripts assume that the singularity image is used. The 

pipeline in basic protocol 1 is designed to take advantage of the SLURM or PBS 

job scheduler, depending on which branch of the IBPcnv repository was chosen.

7. Docker vs singularity. To download the container using docker we run

docker pull sinomem/docker_cnv_protocol:latest

Then, to print the tabix help page using singularity image or docker we type 

respectively
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singularity exec /path/to/ibpcnv.simg tabix -help
# or
docker run sinomem/docker_cnv_protocol:latest tabix --
help.

One of the main differences is that, conveniently, singularity automatically 

mounts several file storage locations to the container while Docker does not. 

Moreover, in order to use docker a user needs to be added to the docker 

group and this process may require sudo permissions. Refer to the docker 

documentation for further details, https://docs.docker.com/.

COMMENTARY

Background information

The main scope of this protocol is to provide a framework to enable the creation of 

high-quality datasets of recurrent CNVs from large scale SNP-genotyped collections. We 

condense years of experience in the field into easy-to-use pipelines and an extensive 

set of best practices, providing strong default values and great customizability for all 

major parameters. The framework is composed of four main elements: a docker/singularity 

container, a standardised PennCNV pipeline, an R package for data handling and cleaning, 

and a graphical interface to perform visual validation of the CNVs. The singularity image 

(support protocol 1) contains all necessary software in the correct version, and the whole 

protocol is designed to use it. Using a container, software installation is not a variable in 

the process, and instructions are always ensured to work as intended. Distributing it in 

both docker and singularity formats, we made it accessible to most systems. The CNV 

calling pipeline (basic protocol 1) has multiple qualities. It is meant to work on most HPC 

systems, freeing researchers from the task of designing ad-hoc pipelines thus providing 

standardisation and user friendliness. Moreover, it integrates several, seemingly simple, steps 

that required years of expertise to be refined, and can have a huge impact on the final 

results. The R package (basic protocol 2) serves multiple functions. It standardises putative 

CNV selection and filtering. It also implements a novel, more advanced, filtering algorithm 

designed to reduce the number of putative CNV to inspect, but with a strong focus on 

minimising false negatives. Quality control after visual validation (support protocol 2) is 

also handled by this package. Finally, the graphical interface is a very powerful program that 

can be used not only to validate CNVs in fixed loci, but to manually refine the boundaries 

of a CNV call (feature not showcased in this manuscript). Together with the possibility of 

using GCWF-adjusted values for LRR, in our opinion this makes it superior to any similar 

solution.

While CNVs can be detected and studied with different approaches, we designed the 

protocol with a clear focus, namely effective and precise detection of rare recurrent CNVs 

in specific and characterised genomic loci using large collections of SNP-array data. 

Nonetheless, we believe the graphical interface, as well as the PennCNV pipeline, provide a 

high value also when used on their own. As an example, when analysing small collections 

or for studies not focused on recurrent CNVs. To our knowledge, no comparable software 

packages are available. In contrast, the novel filtering algorithm we developed (step 4 of 
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protocol 2) is narrower in its approach. While the use of the R package to manage and 

select the CNV call from PennCNV is advised to all users, qctree() has been specifically 

constructed in order to deal with a high number of calls, where the user knows (or suspects 

from exploratory analysis) that a good portion of the putative calls are false. This can be due 

to noise, if the collection has for example a high LRRSD or GCWF, or due to the presence 

of smaller irrelevant CNVs within the locus of interest. The algorithm can deal with both 

these problems and by default will behave quite conservatively, meaning that for a call to be 

filtered out two or more measures need to decisively point towards the exclusion. In other 

words, in a dubious situation, the decision should always be made by the analyst. In accord 

with this model, visual validation always needs to be performed. If the number of putative 

calls to inspect is manageable, and/or if it is suspected that no large groups of false positives 

are present, then it is advised to skip the step and perform visual validation directly.

Design choices

We made several design choices during the creation of the protocol; we discuss the major 

ones in this section. In basic protocol 1, the pipeline is structured to be very easy to use 

also for inexperienced analysts while including several advanced steps that would require 

some level of expertise. However, all design choices we made can be considered fairly 

standard and coherent with current standard practice. In contrast, basic protocol 2 makes use 

of tabix indexed intensity files (introduced in protocol 1), which is a novel idea in CNV 

studies. Tabix indexed files provide an enormous speed advantage when accessing specific 

sections of the file (such as a genomic region in a BED file), by avoiding the need to 

load the entire file into the computer RAM or to screen the file from the beginning. This 

advantage is used throughout all functions that need access to raw data in QCtreeCNV, 

as well as to create the CNV plots on-the-fly in DeepEYE. Of note, when creating the 

indexed file, we also add an additional column containing the GCWF-adjusted values for 

LRR. The GCWF-adjusted LRR value can be used in DeepEYE, meaning that, in contrast to 

any other methods to our knowledge, the user can actually “see” the raw data trends in the 

same way as PennCNV did. This is because GCWF correction is performed by PennCNV 

when calling the CNVs, however the adjusted values are usually not stored and thus not 

accessible by the user. This whole process comes with a cost as well, as basically a full 

copy of each intensity file needs to be generated (CPU time and high I/O on the system) and 

stored (disk space). We strongly believe the advantages exceed the costs in disk space and 

propose this format as the new standard for all future programs that deals with SNP-array 

data in the form of intensity files. Another important choice was to use the R data.table 

structures and grammar in QCtreeCNV internal functions as well as in basic protocol 2. This 

package provides several advantages, including implicit parallelization of each operation 

if multiple cores are available and a simple and extremely powerful grammar. We believe 

that in small and very specific R packages like ours there is no need to avoid relying on 

external dependencies. Moreover, the aforementioned advantages (implicit parallelization in 

particular) vastly outdo the small added complexity in the protocol commands. We also state 

clearly that all objects can be reverted back to simple data.frame after completion if the 

user wishes to continue with downstream analysis. Moreover, we believe that exploratory 

analysis is a necessary part in this kind of studies, and that no protocol can substitute them. 

For this reason and considering the small number of commands and the large number of 
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tuneable parameters, we show how to run the QCtreeCNV pipeline in an interactive R 

session and we do not provide an R script. Testing multiple settings and exploring the results 

is strongly encouraged. An RStudio session may be ideal for some users but we choose to 

not include RStudio in the container as it would make it more complex and heavier. We 

note that all R packages required to run the basic protocol 2 are listed in support protocol 

2. Finally, we show how to run the protocol as a whole in all loci of interest but this may 

be limiting in some cases. One example is when the user is using a list of loci where one 

or few are very different from the others (e.g., very small or covered by very few markers). 

In this case it may be beneficial to treat a particular locus or group of loci differently from 

the other with regards to some critical parameters such as minimum number of SNPs, length 

or overlap. This applies to basic protocol 2 and support protocol 1, as all samples must be 

treated the same in basic protocol 1.

Technical details

In this section we provide more technical details, in particular about CNVRs and the 

advanced filtering function qctree(). CNV regions can be defined in different ways 

depending on the scope, but in general they are regions of the genome where very similar 

CNVs are present, across samples. Recurrent CNVs loci can be considered CNVRs, but 

they also can be smaller. In this protocol we use CNVRs only to extract false positives 

from the putative CNVs. In practice, the function cnvr_fast() performs 2D clustering 

on the normalised centre position and length of all putative CNVs in each locus of interest 

(separately). If multiple subgroups are found, they are then categorised and potentially 

treated differently in the qctree() function, meaning that CNV belonging to large CNVRs 

will be harder to mark as false positives, CNVs belonging to small CNVRs will be 

easier to exclude, and those from medium CNVRs will receive an in-between treatment. 

Supplementary figure 1 provides a schematic representation of the filtering pipeline. Step 1 

is applied sample-wise and will exclude any QC outlier, based on LRR standard deviation, 

BAF drift and GC waviness factor. It is the more canonical step and the more accessible 

to customization. Step 2 separate CNVs calls based on the CNVR they belong to. The 

reasoning is that CNVs calls that are very similar to the locus of interest should be almost 

always passed to visual inspection, while CNVs from smaller CNVRs may be filtered 

more aggressively. Step 3 further separates CNVs based on CNVRs frequency, sending 

the putative calls either directly to step 5 or first to step 4. All the dimensions on which 

step 4 and 5 are applied are derived directly from the intensity files, thus do not depend 

on PennCNV processing. Broadly speaking, they measure how LRR and BAF trends (see 

supplementary figure 2 for a visual interpretation on how BAF is used in this context) 

behave and are compared to threshold values we derived from a broad collection of human-

validated true and false CNVs calls (~15,000) in thirty different recurrent loci. In short, from 

step 3, if the CNVR is small as well as frequent, it may indicate the presence of a smaller 

true recurrent CNVs locus within the main one. Thus, CNVs with these characteristics 

proceed to step 4 where an aggressive filter is applied to test whether the raw data is 

consistent with the assumption. In contrast, if the CNVR is small but infrequent, it is likely 

that the CNVs are either noise or true CNVs called only partially by PennCNV. Thus, a 

lighter filter should be sufficient to separate the two groups.
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Critical parameters

In this section we briefly discuss the most important parameters of the entire protocol. In 

basic protocol 1 the user can mainly change the parameters of step 3b and 4d, namely the 

SNPs filtering and the first round of CNV calls stitching. In 3b it is suggested to keep 

the default value of minMAF (the minimum value of Minor Allele Frequency), however 

the user can set the last parameter to FALSE if they feel too many SNPs are excluded 

because of duplicated SNP IDs or positions. In basic protocol 2 the critical parameters 

are in steps 3c and 4a. Step 3c parameters control how the putative CNVs are selected; 

minsnp, maxgap, and minoverlap control the required minimum number of markers 

per call (applied after stitching), the maximum gap allowed before stitching two calls, and 

the minimum amount of overlap between CNV and locus of interest. Step 4a consists 

of the advanced filtering function, as already stated the most accessible parameters are 

the sample-wise filters maxLRRSD, maxBAFdrift, maxGCWF, minGCWF. These control 

respectively the maximum LRR standard deviation and B allele frequency drift, and the 

GCWF range allowed. The first two can be considered the major knobs the user can turn 

when managing the noise-to-signal ratio, other than the qctree() function itself.

Troubleshooting

Problem (Possible) Cause Suggested Solution

Errors in 
support 
protocol 2

No formal software installation 
is required thus the most likely 
problems are: required programs 
(singularity, wget, 
unzip) are missing and no 
internet connection.

Refer to the official website for singularity installation. If 
wget is not installed on the system one may use curl. 
Another alternative is to use git clone. When using 
git, remember to switch to the PBS branch if necessary!

The computing 
system does not 
provide a job 
scheduler (PBS 
or SLURM)

While common practice in large 
HPCs, smaller systems may not 
use a job scheduler to manage the 
computing load.

Only a section of basic protocol 1 requires a job scheduler 
(step 4), the actual CNV calling pipeline. In a small dataset, 
a quick solution is to manually run each batch in a separate 
session ($ibpcnvdir/penncnv_pipeline/
03_1_per_wave.sh), avoiding intra-batch 
parallelization (with small modifications 
of $ibpcnvdir/penncnv_pipeline/
03_2_cnv_calling.sh).

Bash and PBS/
SLURM errors 
in basic 
protocol 1

The main cause of errors are 
erroneous paths or typos in naming 
the required files.

Check multiple times that all required files are in the 
expected format, in particular the file name, field separator 
(TAB) and columns header. Check also that all paths are 
complete (starting from `/`) and do not include any links (as 
an example going through the user home directory). 

PBS/SLURM 
job scheduler 
throws errors 
regarding 
incorrect 
“account” or 
“partition”

To interact with the job scheduler, 
one may be required to use a 
specific account or queue.

As described in step 5 of support protocol 2, all scripts that 
use PBS/SLURM are designed to be easily modified in this 
case. Also, all commands in the protocol that used srun 
or qsub must be modified accordingly. For srun, adding 
the flag --account=account_name.

Step 4c of basic 
protocol 1 
shows some 
samples were 
not processed 
by PennCNV

Samples are called in chunks 
(within each batch) of ~200 per 
job. Some jobs may fail for 
multiple reasons.

A simple solution is to rerun the chunk or the whole batch 
manually, as shown in step 4c.

Step 4c of basic 
protocol 1 
shows some 
samples were 

A second reason some samples 
may fail processing is that the 
intensity file is in the wrong format 
or corrupted. For convenience 

Check the format of all intensity files. Lines 
19–37 of $ibpcnvdir/penncnv_pipeline/
01_preprocess.R can be used as template.
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Problem (Possible) Cause Suggested Solution

not processed 
by PennCNV

reasons, step 2b will check that 
around 25% of all intensity files 
exist, but only 100 will be opened 
to check for the correct format. It is 
possible that some files have errors 
or are missing.

Errors in basic 
protocol 2 R 
session, such as 
“file not found”

The commands shown in the 
protocol require precise file naming 
and formats.

Check multiple times the paths and file names used 
correspond to the commands run (e.g., some output files 
may not have standard names), and change the suggested 
commands when necessary.

QC plot 1, 4 or 
5 show 
problems in 
support 
protocol 1

As described in the protocol, these 
plots are meant to show if the 
ability to detect CNVs is affected 
by the noise. The high noise 
category is the most likely to 
show problems, i.e., a different 
prevalence than the other groups. 
The relevant filtering happens in 
step 4b of basic protocol 2.

This must be interpreted with some care, as often the high 
noise group is also the smaller one. If the numbers are too 
low and the estimate is unstable (especially for a single 
locus) it is quite hard to recommend a specific action. In 
general, here it is a matter of balancing losing samples with 
a stronger filter and getting potentially biased results from 
too-noisy data. Key parameters to remove the noisy samples 
are explained in step 4b of basic protocol 2.

QC plots 2 or 3 
show problems 
in support 
protocol 1

As described in the protocol, these 
plots are meant to show if the 
minsnp and overlap filters 
in step. The relevant filtering 
happens in 3c of basic protocol 2.

The distribution can take various shapes but, with high 
numbers, it should be somewhat gaussian. The main 
problem is if the distribution appears to be “cut” at the 
threshold value for the measure of interest. This is better 
observed with a single locus or a group of similar loci. If 
such a problem presents, it means that some true CNVs were 
“tagged” by very small calls or calls only very partially 
overlapping the locus of interest. The solution is to try 
reducing the relevant threshold value. However this could 
lead to a higher number of false positives, even though 
qctree() in the following step should remove most of 
them.

Understanding Results

The ultimate results of this protocol are a file containing visually inspected CNVs (basic 

protocol 2, step 5e and 6) and a collection of QC plots describing the prevalence of those 

CNVs that were deemed true across bins of increasing values of sample-quality relevant 

metrics (LRRSD, BAFDRIFT, GCWF) as well as the distribution of those true calls with 

respect to measures relevant to CNV detection sensitivity (number of SNPs per call, and 

the level of CNV call overlap with the test locus, see Support Protocol 1). In this section 

we will briefly describe both. The output of basic protocol 2 can be considered the result 

of the entire methodology, it will contain all visually inspected CNVs. Depending on the 

specific application the user is working on, it may be more or less important to obtain 

the highest possible precision. In situations where maximum precision is required, it can 

be helpful for more than one analysist to inspect the same set of CNVs (basic protocol 

2, steps 5–6) and then to merge the results, re-analysing together any CNVs where there 

was no consensus among the analysts. In any case, at the end of the process, the most 

users will want to have a final table containing only the true validated CNVs. This can 

be achieved, in R, as shown in support protocol 2 step 1 to load the table, followed 

by vi_res_true <- vi_res[visual_output == 1, ] to select only the true ones. 

The object vi_res_true can then be saved in the preferred disk location. Regarding the 

QC plots, we will describe the provided example, figure 4. The last two points of the 

troubleshooting section provide some guidance on how to interpret such plots. Following 

them we can see in both figure 4A and 4B that the prevalence and call size distribution 

of the verified deletions look unproblematic, while those of the verified duplications do 
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not. In figure 4A the deletion prevalence is consistent with respect to LRR SD. The wider 

prevalence error bars observed for the group with the highest LRR SD reflects the fact 

that relatively few samples have LRR SD values in this range. In contrast, in figure 4A we 

observe a lower duplication prevalence in the high LRR SD group than in the other two LRR 

SD groups. This indicates that the duplication detection sensitivity in this LRR-SD group 

may be reduced, as prevalence should not vary depending on LRR SD. In this example the 

duplication prevalence error bars are narrow, indicating that the lower prevalence in this 

group may not be a chance finding (i.e. that we are not detecting all true duplications in 

samples within this LRR SD range). The solution depends on the application, in a discovery 

study no adjustment may be needed, however, in a prevalence study the filtering cut-off for 

LRR SD should be lowered, to ensure that we are able to detect true deletions and true 

duplications with the same efficiency. In figure 4B, the call size distribution of the deletions 

is unproblematic; with a sample large enough the density curve should approach a gaussian 

distribution. In contrast, the density curve for duplications appears to be cut at the threshold 

value of numsnp, indicating that some true duplications may have been filtered out in step 

3c of basic protocol 2. The filtering value should in this case be lowered to ensure optimal 

capture of true CNVs at the locus in question.

Time Considerations

The time required to run the protocol depends on the amount of sample the user needs 

to process, as well as the coverage of the specific SNP array used. A collection of 

approximately 500,000 samples should take less than 72 hours to complete basic protocol 

1. However, given the fact that most steps make strong use of parallel computation this 

estimate is strongly dependent on the actual computing capabilities available (i.e. the 

number of nodes and amount of CPU cores and RAM per node) and thus the amount 

of concurrent jobs possible. Basic protocol 2 (except step 5) and support protocol 1 are 

exploratory in nature, however, they should not require more than one day of analyst work 

each. Step 5 of basic protocol 2 (i.e. the visual confirmation) is the most human-labour 

intensive step of the entire protocol. Based on our experience, an expert analyst needs 

between 2 and 10 seconds on average to evaluate each putative call.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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were created using simulated data. QCtreeCNV R package is available on GitHub at https://

github.com/SinomeM/QCtreeCNV, the code to generate figure 4 is located in the code to 

generate tmp/dev.R. DeepEYE is available at https://github.com/XabierCS/eyeCNV, toy data 

(used in figure 3) is available in the code to generate toydata/.
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Figure 1: 
Schematic representation of the whole protocol. The four major processing blocks are shown 

in yellow, the main inputs (intensity files) in grey, intermediary outputs in red, and the final 

results in green.
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Figure 2: 
More detailed schematics of basic protocol 2. Colours and icons are kept consistent with 

figure 1, indicating starting data files, QCtreeCNV and DeepEYE respectively.
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Figure 3: 
DeepEYE graphical interface (no CNV is present in the region, simulated data). Refer to 

step 5c of basic protocol 2 for the usage instruction.
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Figure 4: 
A good and a problematic example of QC plots 1, 4 and 5 (panel A), and 2 and 3 (panel B). 

In both plots the deletion in light red represent the ideal situation and the duplication in light 

blue represent the problematic situation. A, the group of samples with high LRRSD have 

less true duplications that the other two groups, and that the confidence interval is relatively 

small. B, the threshold value we selected for numsnp appears to be cutting the left tail of the 

distribution for the true duplications.
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