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Abstract
Genomic sequence data provide a rich source of information about the history of species divergence and interspecific 
hybridization or introgression. Despite recent advances in genomics and statistical methods, it remains challenging to in-
fer gene flow, and as a result, one may have to estimate introgression rates and times under misspecified models. Here we 
use mathematical analysis and computer simulation to examine estimation bias and issues of interpretation when the 
model of gene flow is misspecified in analysis of genomic datasets, for example, if introgression is assigned to the wrong 
lineages. In the case of two species, we establish a correspondence between the migration rate in the continuous migration 
model and the introgression probability in the introgression model. When gene flow occurs continuously through time 
but in the analysis is assumed to occur at a fixed time point, common evolutionary parameters such as species divergence 
times are surprisingly well estimated. However, the time of introgression tends to be estimated towards the recent end of 
the period of continuous gene flow. When introgression events are assigned incorrectly to the parental or daughter 
lineages, introgression times tend to collapse onto species divergence times, with introgression probabilities underesti-
mated. Overall, our analyses suggest that the simple introgression model is useful for extracting information concerning 
between-specific gene flow and divergence even when the model may be misspecified. However, for reliable inference of 
gene flow it is important to include multiple samples per species, in particular, from hybridizing species.

Key words: gene flow, model misspecification, multispecies coalescent, introgression, Bayesian phylogenetics and 
phylogeography (BPP), species tree.
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Introduction
Hybridization can enhance variation in recipient species, 
and has long been recognized as an important process in 
plants that can stimulate the origin of new species (e.g., 
Anderson 1949; Mallet 2007). Analyses of genomic data 
in the past decade have highlighted the prevalence of hy-
bridization or introgression in animals as well, including 
bears (Liu et al. 2014; Kumar et al. 2017), birds (Ellegren 
et al. 2012), and butterflies (Martin et al. 2013). 
Between-species gene flow may involve either sister or 
non-sister species and may play an important role in eco-
logical adaptation (Mallet et al. 2016; Martin and Jiggins 
2017). Gene flow can be a major contributor of genealogic-
al variation across the genome and gene tree-species tree 
discordance, in addition to ancestral polymorphism or de-
layed coalescence (Maddison 1997; Nichols 2001).

There is a long history of studies in population genetics 
of models of population subdivision and migration 
(Wright 1943; Malecot 1948; Slatkin 1987), and a number 
of methods have been developed to estimate the 

migration rate between populations (Beerli and 
Felsenstein 1999, 2001; Bahlo and Griffiths 2000). An im-
portant limitation of models of population subdivision, 
when applied to data from different species or subspecies, 
is that they do not account for the divergence history of 
the populations or species. Introducing a population/ 
species phylogeny into models of population subdivision 
not only improves the realism of the model but also opens 
up opportunities for addressing a number of interesting 
questions in evolutionary biology, such as estimating spe-
cies divergence times and ancestral population sizes, delin-
eating species boundaries, and inferring the direction, rate, 
and timing of gene flow (Jiao et al. 2021).

Two classes of models of gene flow have been devel-
oped that accommodate the phylogeny of the species, 
both of which are extensions of the multispecies 
coalescent (MSC) model (Rannala and Yang 2003). 
The first is the MSC-with-migration model (MSC-M, 
or isolation-with-migration or IM model, Hey and 
Nielsen 2004; Hey 2010; Zhu and Yang 2012; Dalquen 
et al. 2017; Hey et al. 2018), which assumes that two 
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species exchange migrants at a certain rate over an ex-
tended time period. The rate of gene flow from species A 
to B is measured by the proportion of migrants (mAB) in 
the receiving population B or by the population migration 
rate, MAB = NBmAB, the expected number of immigrants 
from A to B per generation, where NB is the (effective) 
population size of species B. We note that the 
isolation-with-initial-migration (IIM) model of Costa and 
Wilkinson-Herbots (2017), which assumes that gene flow 
occurs initially after species divergence but stops after a per-
iod of time when reproductive isolation has been fully es-
tablished, is an instance of the MSC-M or IM model (see 
below). The second class of models of gene flow is the 
MSC-with-introgression (MSci) model (Flouri et al. 2020), 
also known as multispecies network coalescent model 
(MSNC; Wen and Nakhleh 2018; Zhang et al. 2018), which 
assumes that gene flow occurs at fixed time points in the 
past. The rate of gene flow is measured by the introgression 
probability (φ or γ), which is the proportion of successful 
immigrants in the population at the time of introgression.

In the real world, introgressed alleles may be removed 
by natural selection because they are involved in hybrid in-
compatibility and are deleterious in the genetic back-
ground of the recipient population (Dobzhansky 1937; 
Muller 1942) or because they are linked to such loci 
(Petry 1983; Barton and Bengtsson 1986; Uecker et al. 
2015). Thus the rate of gene flow (M in MSC-M or φ in 
MSci), when those models are used to analyze genomic se-
quence data, reflect the long-term effects of selection and 
drift as well as hybridization or introgression (Martin and 
Jiggins 2017). Such an effective rate of gene flow may be 
expected to vary across the genome, influenced by the 
presence of loci in the genomic region important in eco-
logical adaptation and by the local recombination rate 
(Bürger and Akerman 2011; Aeschbacher and Bürger 
2014; Akerman and Bürger 2014; Schumer et al. 2018; 
Edelman et al. 2019; Martin et al. 2019). The rate may 
also vary over time, depending on geological or ecological 
events that cause changes in the ecology and distribution 
of the species and in the chance for two species to ex-
change genes. One can envisage models of gene flow in 
which the rate varies over time and across genomic re-
gions. For the present, such extended models are not yet 
implemented in the MSC framework, and the feasibility 
of fitting such parameter-rich models to genomic datasets 
is unexplored. MSC-M and MSci models implemented to 
date (Dalquen et al. 2017; Hey et al. 2018; Wen and 
Nakhleh 2018; Zhang et al. 2018; Flouri et al. 2020) assume 
constant rates, and should be considered first approxima-
tions when applied to genomic sequence data.

In this paper, we use mathematical analysis and com-
puter simulation to examine the impact of model misspeci-
fication on estimation of parameters under the MSci model, 
such as species divergence and introgression times, popula-
tion sizes, and introgression probabilities. We use the 
Bayesian program Bayesian phylogenetics and phylogeogra-
phy (BPP) (Flouri et al. 2018, 2020) to analyze multilocus se-
quence data simulated under various MSci and MSC-M 

models. Although BPP is our own implementation of the 
MSci model, our results should apply to similar exact or like-
lihood methods (Wen and Nakhleh 2018; Zhang et al. 2018). 
Our results may also apply to approximate methods, which 
use summaries of the data such as the genome-wide site- 
pattern counts (as in the D-statistic, Green et al. 2010 and 
HYDE, Meng and Kubatko 2009; Blischak et al. 2018), recon-
structed gene trees (as in SNAQ, Solis-Lemus and Ane 2016), 
or other summary statistics used in Approximate Bayesian 
Computation (Dittberner et al. 2022). However, approxi-
mate methods do not make a full use of information in 
the data and may not identify all parameters in the model. 
For example, the D-statistic is agnostic of the mode of gene 
flow (migration versus introgression) and cannot be applied 
to data sampled from only two species or populations. The 
computational strengths and statistical weaknesses of ap-
proximate methods have been discussed by a number of 
authors (Degnan 2018; Elworth et al. 2019; Jiao et al. 2021; 
Zhu and Yang 2021; Hibbins and Hahn 2022; Ji et al. 
2022). In contrast, likelihood methods integrate over all pos-
sible gene trees underlying the sequence alignments, making 
use of all information about the model and parameters in 
the sequence data. They typically involve a heavy computa-
tional load. However, recent algorithmic improvements 
have made it possible to apply the MSci model to 
genome-scale datasets with more than 10,000 loci (Flouri 
et al. 2020). Inferring introgression events or constructing 
an introgression model using genomic sequence data, how-
ever, remains a challenging task, even when a binary species 
tree is specified, onto which introgression events can be 
added (Ji et al. 2022; Thawornwattana et al. 2022); see 
Discussion for an overview of currently available methods 
for inferring gene flow on a species phylogeny. For these 
and many other reasons, the model of gene flow assumed 
in our data analysis may often be incorrect. An important 
question is to what extent inference of gene flow and esti-
mation of the timing and rate of gene flow can still be 
achieved when the model of gene flow is misspecified. 
The impact of model misspecification on estimation of 
other evolutionary parameters such as species divergence 
times is also of major concern.

Although there are many ways in which the assumed 
model is wrong, we are particularly interested in a few 
types that are likely in real data analyses (Finger et al. 
2022; Thawornwattana et al. 2022). First, gene flow may 
be occurring continuously during a time period but an 
MSci model is fitted to the genomic data, which assumes 
that gene flow occurred at a particular time point (e.g., 
Wen and Nakhleh 2018; Jiao et al. 2020). We are here inter-
ested in whether species divergence times and ancestral 
population sizes are affected by the misspecification, and 
how the migration rate in the migration model (M) corre-
sponds to the introgression probability in the MSci model 
(φ). The case of two species is analytically tractable. We 
study the limit of the maximum-likelihood estimates 
(MLEs) of introgression probability and introgression 
time when the data size (the number of loci) approaches 
infinity when the data are generated under the MSC-M 
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model. We use computer simulation to verify and extend 
the analytical calculation.

Second, the introgression event may be assigned to a 
wrong branch on the species tree, for example, to a parental 
or daughter branch of the genuine introgression lineage. 
Alternatively, introgression may involve species that have 
since gone extinct or are not included in the data sample. 
The presence of such ghost species is known to mislead in-
ference of the history of gene flow for the sampled species 
(Beerli 2004; Tricou et al. 2022). Thus we conducted simu-
lation to examine the impact of unsampled species on the 
inference of gene flow. In general, our results demonstrate 
the usefulness of the simple introgression model in infer-
ring gene flow using genomic sequence data.

Results
Correspondence between the MSC-M and MSci 
Models in the Case of two Species
Notation and Definition of Parameters
Following Jiao et al. (2020), we study the asymptotic be-
havior of Bayesian parameter estimation under the intro-
gression (MSci) model when the data are generated 
under the migration (IM) model in the case of two spe-
cies, with one sequence per species per locus (fig. 1). Here 
we focus on this simple case because it is analytically 
tractable. Note that our Bayesian implementation in BPP 

(Flouri et al. 2020) accommodates an arbitrary number 
of species and an arbitrary number of sequences per spe-
cies per locus, and the likelihood calculation averages 
over the gene genealogy for the sequences at each locus. 
We assume an infinite number of loci, and the data at 
each locus consist of a pair of sequences (a, b) from 
the two species, with x differences at n sites. The coales-
cent time t for the locus is unknown and underlies the 
observed difference. Jiao et al. (2020) analyzed the 
MSC-M model (fig. 1a) assuming infinite sequence length 

(n = ∞) so that the true coalescent time between the 
two sequences (t) is known. Here we accommodate ran-
dom fluctuations in the number of mutations due to fi-
nite sequence length and consider three variants of the 
migration model.

In the basic IM model (fig. 1a), species A and B diverged at 
time τR and there has since been gene flow from A to B at the 
rate of MAB migrants per generation. The IIM model (fig. 1b) 
assumes that migration occurred initially after species diver-
gence but stopped at time τT > 0 (Costa and 
Wilkinson-Herbots 2017), and is represented by an MSC-M 
model for three species including a ghost species. Here the 
ghost does not necessarily represent a real species but is a 
mathematical device for specifying the IIM model. The IIM 
model becomes identical to the IM model when τT = 0. 
We also consider a secondary contact (SC) model (fig. 1c), 
in which two species initially had complete isolation but 
came into contact at a certain time point (τT) with ongoing 
gene flow at the rate of MAB ever since (Costa and 
Wilkinson-Herbots 2021). This is similarly specified using a 
ghost species at time point τT (fig. 1c). The migration model 
involves three types of parameters: species divergence times 
(τR, τT), population sizes for extant, and extinct species 
(θA, θB, θT , θR), and the (population) migration rate MAB. 
The population size parameter for any species with (effective) 
population size N is defined as θ = 4Nμ, where μ is the mu-
tation rate per site per generation. We refer to a branch on 
the species tree by its daughter node so that branch RA is 
also branch A, with population size parameter θA. Both diver-
gence times (τ) and population sizes (θ) are measured by the 
expected number of mutations per site.

Asymptotic Theory
We first consider the IIM model of figure 1b, of which the IM 
model of figure 1a is a special case with τT = 0. The 
backwards-in-time process of coalescent and migration in 
time interval (τT , τR) is described by a Markov chain with 

(a) (b) (c) (d) (e)

FIG. 1. (a–c) Three MSC-M models for two species A and B used to generate data: IM (isolation with migration), IIM (isolation with initial migra-
tion), and SC (secondary contact). The IIM model is an instance of the MSC-M model with a ghost species at node T and with migration from 
species A to T (b). Similarly, the SC model (c) is a case of the MSC-M model with τT > 0. Note that τT is the time when migration stopped in the IIM 
model and the time when migration started in the SC model. In the numerical calculations and in the simulations, we assumed the population size 
θ0 = 0.002 for the thin branches and θ1 = 0.01 for the thick branches, and the migration rate was MAB = 0.2 migrants from A to B per generation. 
Note that in our setup, the time period of gene flow is Δτ = θ0 in all three models. (d ) The introgression (MSci) model used to analyze the data. (e) 
A schematic summary of the estimate of the introgression probability (φ) in the MSci model (d ) when the data are generated under the MSC-M 
models of a–c. The sudden drop in φ̂ as MAB increases coincides with an underestimation of τR and overestimation of θR .
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three states: AB, AA, and A (Notohara 1990). Here AB is the 
initial state, with two sequences in the sample, one in A and 
another in B; AA means both sequences are in A (in other 
words, sequence b is traced back into A); and A means 
one sequence in A (in other words, sequence b is traced 
back into A and has coalesced with sequence a). Note that 
in the Markov chain, time runs backwards, so the transition 
from AB to AA means migration of a sequence from A to B in 
the real world. The generator matrix for the Markov chain is 
(see, e.g., Notohara 1990; Jiao et al. 2020)

Q =
AB AA A

AB −w w 0
AA 0 − 2

θA

2
θA

A 0 0 0

(1) 

where w = mAB/μ = 4MAB/θB is the mutation-scaled migra-
tion rate, and 2/θA is the coalescent rate in population A, 
with one time unit being the expected time taken to accu-
mulate one mutation per site. Q has eigenvalues λ1 = 0, 
λ2 = −2/θA, and λ3 = −w.

Let the transition probability matrix over time t be 
P(t) = {pij(t)} = eQt, where pij(t) is the probability that 
the Markov chain will be in state j time t later given that 
it is in state i at time 0. This is

P(t)

=
e−wt θAw

2−θAw (e−wt − e− 2
θA

t) 1 − 2e−wt−θAwe
− 2

θA
t

2−θAw

0 e− 2
θA

t 1 − e− 2
θA

t

0 0 1

⎡

⎢
⎢
⎣

⎤

⎥
⎥
⎦.

(2) 

The probability density of coalescent time t is thus

fiim(t) =
PAB,AA(t − τT) 2

θA
, if τT < t < τR,

[1 − PAB,A(τR − τT)] 2
θR

e− 2
θR

(t−τR), if t > τR



=

2w
2−θAw [e−w(t−τT) − e− 2

θA
(t−τT )],

if τT < t < τR,
2

2−θAw e−w(τR−τT) − θAw
2−θAw e− 2

θA
(τR−τT)

 
2
θR

e− 2
θR

(t−τR),

if t > τR.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3) 

This is a function of w = 4MAB/θB but not of MAB and θB 
individually. The parameters specifying the density are 
thus Θiim = (w, θA, θR, τR, τT). Note that the density under 
the IM model fim(t) is given by fiim(t) with τT = 0 (fig. 1b 
and c).

Similarly under the secondary-contact (SC) model (fig. 
1c), the coalescent-with-migration process over the time 
interval (0, τT) is described by the Markov chain of equa-
tion (1). Given the parameters Θm, the probability density 
of coalescent time t is

fsc(t) =

PAB,AA(t) 2
θA

, if 0< t<τT,

PAB,AA(τT) 2
θA

e− 2
θA

(t−τT ), if τT < t<τR,

PAB,AA(τT) 2
θA

e− 2
θA

(τR−τT) +PAB,AB(τT)
 

× 2
θR

e− 2
θR

(t−τR), if t>τR

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

=

wθA
2−wθA

[e−wt −e− 2
θA

t] 2
θA

, if 0< t<τT,
wθA

2−wθA
[e−wτT −e− 2

θA
τT ] 2

θA
e− 2

θA
(t−τT ), if τT < t<τR,

wθA
2−wθA

[e−wτT −e− 2
θA

τT ]


e− 2
θA

(τR−τT ) +e−wτT



× 2
θR

e− 2
θR

(t−τR), if t>τR.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(4) 

Under the MSci model (fig. 1d), we have (e.g., Jiao et al. 
2020)

fi(t)

=
φ 2

θS
e− 2

θS
(t−τS), if τS < t < τR,

[φe− 2
θS

(τR−τS) + (1 − φ)] 2
θR

e− 2
θR

(t−τR), if t > τR.

⎧
⎨

⎩

(5) 

This is a function of parameters Θi = (φ, θR, θS, τR, τS). 
Given the coalescent time t for a locus, the probability of 
observing x differences at n sites under the JC mutation 
model (Jukes and Cantor 1969) is given by the binomial 
probability

f (x | t) = (
3
4

−
3
4

e−8
3t)x · (

1
4

+
3
4

e−8
3t)n−x. (6) 

The marginal probability of observing x differences at n 
sites, under both the migration (IM, IIM, SC) and introgres-
sion (MSci) models, is

f(x |Θ)= ∫∞0 f(x | t)f (t |Θ) dt, (7) 

where f(t|Θ) is given by equations (3), (4), or (5).
For analytical tractability of the likelihood (eq. 7), we as-

sume the infinite-sites mutation model instead of JC, and 
replace the binomial likelihood by a Poisson approxima-
tion

f (x | t) =
1
x!

(2nt)x e−2nt. (8) 

Equation (7) is derived in SI text, as supplementary equa-
tion (S6), Supplementary Material online for the IM 
(with τT = 0) and IIM (with τT > 0) models, supplemen-
tary equation (S7), Supplementary Material online for 
the SC model, and supplementary equation (S9), 
Supplementary Material online for the MSci model.

Suppose the data are generated under the migration 
model (IM, IIM, or SC) and analyzed under the MSci mod-
el. When the number of loci L→∞, the MLE Θ̂i under 
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MSci will converge to Θ∗i , which minimizes the Kullback– 
Leibler (KL) divergence

D(Θm ∥ Θi) =
n

x=0

fm(x |Θm) log
fm(x |Θm)
fi(x |Θi)

, (9) 

where the subscript “m” stands for any of the three 
MSC-M models (“im” for IM, “iim” for IIM, or “sc” for SC, 
fig. 1a–c). The KL divergence is a measure of distance 
from the fitting introgression model to the true migration 
model: here Θm are fixed, whereas Θi are being estimated. 
The limiting values Θ∗i as L→∞ are also known as the 
pseudo-true parameter values for the misspecified MSci 
model. The BFGS optimization routine in PAML (Yang 
2007) is used to minimize equation (9) to obtain the MLEs.

We are in particular interested in the introgression 
probability φ and the introgression time τS. Note that un-
der the migration model, the probability that any lineage 
from species B traces back to A is

φ0 = 1 − e−4MABΔτ/θB , (10) 

where Δτ is the time period of gene flow (fig. 1a–c). 
Equation (10) gives the expected proportion of migrants 
under the true migration model. When MAB is small, 
φ0 ≈ (4MAB/θB)Δτ, which is also given by equating the ex-
pected total number of migrants under the two models: 
NBφ0 ≈ mABNBΔτ/μ. Note that mABNB is the expected 
number of migrants per generation and Δτ/μ is the num-
ber of generations with gene flow.

It may be noted that the theory of equation (9) can be used 
to study the limiting parameter estimates (when L→∞) in 
the migration model when the true model is the introgression 
model. One has only to flip the roles of fm(x |Θm) and 
fi(x |Θi) in equation (9). This is not pursued in this paper.

Asymptotic Results under the IM Model
We used the asymptotic theory (eq. 9) to obtain the MLEs 
(Θ∗i ) under the MSci model (fig. 1d) when the data consist 
of an infinite number of loci, with one sequence of length n 
per species per locus, generated under the IM, IIM, or SC 
models (fig. 1a–c). The true parameter values used (Θm) 
are shown in figure 1. The MLEs Θ∗i are shown in figure 2
and the true and best-fitting distributions of the coales-
cent time t are shown in supplementary figure S1, 
Supplementary Material online for the IM model. The cor-
responding results for the IIM and SC models are in 
supplementary figures S2–S5, Supplementary Material on-
line, to be discussed in the next sections.

We use five methods (a–e) to fit the MSci model, with 
method d estimating all five parameters, whereas the 
others have some parameters fixed (fig. 2). We examined 
the effects of the sequence length (n) and the migration 
rate (MAB). Note that five parameters are identifiable under 
the MSci model: Θi = (τR, τS, θR, θS, φ) (fig. 1d), and 
θA, θB, θH are unidentifiable as no coalescent events can 
occur in those populations given one sequence per species 

per locus. Population size θS is identifiable as it is possible 
for both sequences a and b to be traced back to popula-
tion S. Nevertheless, one expects the information con-
cerning θS to be weak in datasets of two sequences per 
locus. In methods c and d, θS and φ are estimated as 
free parameters. Application of the misspecified MSci 
model (to data generated under the IM model) led to un-
reasonably large estimates of θS (as large as 0.5 mutations 
per site), and the poor estimates of θS caused φ to be 
poorly estimated as well. This is due partly to our use of 
one sequence per species per locus and partly to the con-
founding effects between θS and φ. We discuss both ef-
fects later when we describe the simulation results. Here 
we focus on methods a, b, and e, in which θS is fixed at 
the true value θ0 (in methods a and b) or constrained to 
be equal to θR (in method e).

In the IM model, migration occurs throughout the time 
interval (0, τR), at the rate of MAB migrants per generation 
(fig. 1a). When such data are analyzed under the introgres-
sion model, a simple expectation might be that the intro-
gression time τS should be the average τR/2, whereas the 
introgression probability might be given by the expected 
proportion φ0 of equation (10). However, as we show be-
low, this expectation is too simplistic.

First, we discuss the introgression time τS, assuming 
the true coalescent time (or n = ∞). Given the data- 
generating IM model, there is a strictly positive probabil-
ity for 0 < t < ϵ for any small constant ϵ > 0 
(supplementary fig. S1, Supplementary Material online). 
In other words, there must exist loci at which t is arbitrar-
ily close to 0. In the MSci model, sequences a and b can-
not coalesce until they are in the same population S, so 
that τS < t. When the MSci model is fitted to data gener-
ated under the IM model, τ̂S is dominated by the min-
imum rather than the average coalescent time, and 
τ̂S → τ∗S = 0 when the number of loci L→∞ (and 
when the true coalescent time t is known). Even though 
migration occurs throughout the time interval (0, τR), the 
MSci model has to lump all migration events to one time 
point, τ∗S = 0 (fig. 2b and e).

With finite sequences (n < ∞), t is not observed and is 
reflected in the number of mutations (x). Whatever the 
true t, there is a positive probability of observing no mu-
tations between the two sequences, so that an absence 
of mutations (x = 0) is not strong evidence for t = 0. 
The MLE τ∗S reflects not only the minimum coalescent 
time, but also the whole distribution (supplementary 
fig. S1, Supplementary Material online). Thus τ∗S > 0, dif-
ferent from the case where the coalescent time is known 
without error (n = ∞). Nevertheless, one expects τ∗S 
to be closer to 0 than to τR, especially if the number 
of sites is large. Indeed in our calculations, τ∗S ≪ 1

2 τR 
(fig. 2b and e).

Next we consider the introgression probability φ and 
again focus on methods a, b, and e (fig. 2). The estimate 
φ∗ increases nearly linearly when MAB is small (< 1

4, say) 
but tails off at large MAB. All estimates are smaller than 
φ0 of equation (10) but they are close at low rates (with 
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MAB < 1
4 and φ < 1

4, say) (fig. 2a, b and e). We defer to a later 
section a detailed discussion of the estimation of φ, con-
trasting the IM, IIM, and SC models.

Finally the estimated divergence time between the 
two species (τR) matched the true values at low migra-
tion rates but was underestimated at high migration 
rates, with the ancestral population size θR overesti-
mated (fig. 2). It may be tempting to interpret the under-
estimation of τR (and overestimation of θR) by the MSci 
model as being due to the difficulty of distinguishing 
complete isolation with recent species divergence from 
introgression or of distinguishing migration and coales-
cent events close to species divergence from ancestral 
polymorphism. However, this does not appear to be a 
correct interpretation.

We examined the true and fitted distributions of the co-
alescent time (supplementary fig. S1, Supplementary 
Material online). If there is no migration (MAB = 0), the 
MSci model (with φ = 0) will be correct, and the parameter 
estimates will converge to the true values, with a perfect fit to 
the density fm(t). At low migration rates (MAB ≤ 0.1, say), 
the MSci model fits the density fm(t) very well, with 
the discontinuity point in the true and fitting 

distributions coinciding: τ∗R = τm
R . At the intermediate 

rate of MAB = 1, the species divergence time τR is still cor-
rectly estimated even though the fit to the density is poor 
(supplementary fig. S1, Supplementary Material online). 
At high rates (with MAB ≥ 1.4, say), the true density has 
a mode in the interval (0, τm

R ), dropping off at τm
R . The 

best fitting density starts from 0, with an exponential de-
cay, and has a discontinuity point at τR with again an ex-
ponential decay. This best-fitting density is a poor fit, and 
the discontinuity point τ∗R is moved to smaller values as an 
attempt to accommodate the migration and coalescent 
events in the middle of the interval (0, τm

R ) to improve 
the fit (judged by the KL divergence). Thus τR is underes-
timated (τ∗R < τm

R ). As a result, the population size param-
eter θR is overestimated, as those two parameters tend to 
be strongly negatively correlated (e.g., Burgess and Yang 
2008). In other words, the intermediate coalescent times 
in the interval (0, τR), which occur at a large proportion 
of loci, are accommodated or misinterpreted by the 
MSci model using a smaller τR and larger θR. Coalescent 
times in the range τ∗R < t < τm

R , which represent true mi-
gration events, are misinterpreted as coalescent events 
in species R, and φ∗ is much less than φ0 (eq. 10).











(a) (b) (c) (d) (e)

FIG. 2. Best-fitting parameter values under the MSci model of figure 1d when data of two sequences per locus (one per species), each of n sites, are 
generated under the IM model of figure 1a. Five methods (a-e) are used to fit the MSci model, estimating 2, 3, 4, 5, and 4 parameters, respectively, 
whereas the other parameters are fixed. In (a), τR and φ are estimated, but θR and θS are fixed at their true values in the IM model, and the 
introgression time τS = τH is fixed at τT = 0. In (b), τS is estimated as well. In (c), τS = 0 is fixed, whereas the other four parameters are estimated. 
In (d ), all five parameters are estimated. In (e), the constraint θR = θS is enforced so that four free parameters are estimated. The dotted lines for 
φ indicate the true total amount of introgression of equation (10). The dashed lines indicate φ∗ of equation (11). The true and best-fitting dis-
tributions of the coalescent time (t) are shown in supplementary figure S1, Supplementary Material online.
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Asymptotic Results under the IIM Model
When data are generated under the IIM model (fig. 1b) 
and analyzed under the MSci model (fig. 1d), the results 
(supplementary figs. S2 and S3, Supplementary Material
online) show similar patterns to those under the IM model 
discussed above. Similarly, θS is difficult to estimate using 
two sequences per locus in methods c and d, and the 
poor estimates of θS affects the estimation of φ. Thus we 
focus on methods a, b, and e, in which θS is fixed or con-
strained, and on the introgression time and introgression 
probability.

In the IIM model, migration events occur throughout 
the time interval (τT , τR) (fig. 1b), but the estimate of the 
introgression time is dominated or influenced by the min-
imum coalescent time, so that τ∗S = τT when n = ∞, and 
τ∗S > τT when n is finite. In the latter case, τ∗S is much closer 
to τT than to τR (supplementary fig. S2, Supplementary 
Material online).

The introgression probability φ∗ grew almost linearly 
with MAB when MAB was small (with MAB ≤ 0.2, say), and 
this estimate was close to the expectation φ0 of equation 
(10) (supplementary fig. S2a, b and e, Supplementary 
Material online). At high migration rates, equation (10) 
gave a serious overestimate. This “bias” in φ at high migra-
tion rates was accompanied by a reduction in τR and over-
estimation of θR. This can similarly be explained by the 
attempt of the MSci model to accommodate the coalescent 
times in the middle of the time interval (τT , τR) 
(supplementary fig. S3, Supplementary Material online).

Asymptotic Results under the SC Model
Under the SC model, there is initially complete isolation 
after species divergence but the two species come into 
contact at time τT , with ongoing gene flow ever since 
(fig. 1c). The best-fitting parameter values under the 
MSci model (Θ∗i ), for data of two sequences per locus, 
are shown in supplementary figure S4, Supplementary 
Material online, with fitted densities of coalescent time t 
shown in supplementary figure S5, Supplementary 
Material online.

The results show patterns similar to those under the IM 
and IIM models discussed above. The species divergence 
time under the MSci model τ∗R = τ(sc)

R when the migration 
rate MAB is small but drops at very high rates (with 
MAB > 2). The introgression time is dominated by the min-
imum coalescent time, so that τ∗S = 0 when n = ∞, and τ∗S 
is much closer to 0 than to τT when n is finite 
(supplementary fig. S4, Supplementary Material online). 
Note that in the true model migration occurs throughout 
the time interval (0, τT).

The introgression probability φ∗ grew almost linearly 
with the migration rate MAB when MAB was small (with 
MAB ≤ 1

4, say), and was close to the expectation φ0 
(eq. 10) when MAB < 2 (supplementary fig. S4a, b and e, 
Supplementary Material online). At very high rates 
(MAB > 2), φ∗ was much smaller than φ0, and this ‘bias’ 
was accompanied by an underestimation of τR and over-
estimation of θR. Similarly to the IM and IIM models 

discussed above, this is due to the attempt of the MSci 
model to accommodate the coalescent times in the mid-
dle of the interval (0, τT) (supplementary fig. S5, 
Supplementary Material online).

The Amount of Gene Flow under the IM, IIM, and SC Models
Although the expected total amount of gene flow mea-
sured by φ0 (eq. 10) is the same under the IM, IIM, and 
SC models of figure 1a–c, the estimates under the MSci 
model differ, as summarized in figure 1e.

At low migration rates, τR, θS, and θR in the MSci model 
are nearly accurately estimated to match those in the true 
model (figs. 2, supplementary figures S2 and S4, 
Supplementary Material online). Consider the case of in-
finitely long sequences with known coalescent time. Let 
τ∗R = τm

R , θ∗R = θm
R , and let the introgression time be τ∗S = 

0 for the IM and SC model, and τ∗S = τT for the IIM model. 
We also match the probability density of coalescent time t, 
with fi(t) = fm(t), for t > τR. With those simplifying as-
sumptions, φ∗ that minimizes the KL divergence (eq. 9) 
can be derived as

φ∗(IM) ≈ φ0−wθA
2 (1−e

− 2
θA

τR )

(1−wθA
2 )(1−e

− 2
θA

τR )
,

φ∗(IIM) ≈ φ0−wθA
2 (1−e

− 2
θA

(τR−τT )
)

(1−wθA
2 )(1−e

− 2
θA

(τR−τT )
)
,

φ∗(SC) ≈
φ0− wθA

2−wθA
(e−wτT −e

− 2
θA

τT )e
− 2

θA
(τR−τT )

1−e
− 2

θA
τR

.

(11) 

At low migration rates, equation (11) provides accurate 
numerical results (methods a, b, e in figs. 2, 
supplementary figures S2 and S4, Supplementary 
Material online). From equation (11), we have

φ0 > φ∗(SC) > φ∗(IIM) = φ∗(IM). (12) 

In other words, recent gene flow (as in SC) is easier to re-
cover by the MSci model than ancient gene flow (as in IM 
or IIM). Note that φ∗(IIM) = φ∗(IM) holds only when one se-
quence is sampled per species; as there is no coalescent 
over (0, τT), IIM is essentially the same model as IM with 
a time shift (fig. 1). This will not be the case when multiple 
sequences per species are sampled or when the sequence 
length is finite.

Simulation Results
As our asymptotic theory was limited to a single sequence 
per species per locus, we used simulation to verify and aug-
ment our analytical calculations above. We simulated data 
under the IM, IIM, or SC models of figure 1a–c, using the 
same parameter values as above, and analyzed them using 
BPP under the MSci model (fig. 1d). The JC mutation model 
(Jukes and Cantor 1969) was assumed. In the basic setting, 
we used S = 4 sequences per species per locus, n = 1, 000 
sites per sequence, and L = 4, 000 loci in each dataset, 
with the migration rate MAB = 0.2. We varied n, S, L, MAB 
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to examine their effects. With multiple sequences per spe-
cies (S > 1), all eight parameters of the MSci model, Θi = 
(φ, θA, θB, θR, θS, θH, τR, τS) (fig. 1d) are identifiable (Yang 
and Flouri 2022). The results are summarized in figure 3. 
We note a few common features first. In nearly all cases, 
population sizes for extant species (θA, θB) were very well 
estimated, with posterior means close to the true values 
and with very narrow highest-probability-density (HPD) 
credibility intervals (CIs). The exception was parameter θB 
under the IM model (note that B is the species receiving 

immigrants), which was less well estimated when the data-
set was small and had either short sequences (n = 250) or 
few loci (L ≤ 500), or when the migration rate was very 
high. The poorer estimation of θB appeared to be related 
to the underestimation of φ and τR; see below. The popula-
tion size for the common ancestor θR was mostly well esti-
mated, although overestimated at very high migration 
rates. Population sizes for the ancestral species (θS, θH) 
are harder to estimate; indeed they had larger CIs and 
were influenced by misspecification of the model of gene 

FIG. 3. Average posterior means and 95% HPD CIs for parameters in the MSci model of figure 1d over 30 replicate datasets simulated under the 
migration (IM, IIM, and SC) models of figure 1a–c, plotted against the number of sites per sequence (n), the number of sequences per species (S), 
the number of loci (L), and the migration rate (MAB). Parameters in the migration model are given in the legend to figure 1. In the standard 
setting, each dataset consists of L = 4,000 loci, with S = 4 sequences per species at each locus and n = 1,000 sites per sequence, and the migration 
rate was MAB = 0.2 individuals per generation. In the four sets of simulations, one of the factors (n, S, L, M) varies whereas the others are fixed. 
When S = 1, population sizes θA , θB , and θH are unidentifiable. Estimates of τ and θ parameters are multiplied by 103. Dotted lines indicate true 
values of identifiable parameters, except in the plot of φ against MAB , where it represents φ0 of equation (10), (which is identical for the IM, IIM, 
and SC models of fig. 1). Note that the n, S, L, and MAB axes are all on the logarithmic scale.
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flow. As expected from the asymptotic results, τR was very 
well estimated, except at very high migration rates, in which 
case τR was underestimated (and θR overestimated).

Next we examine the effects of n, S, L, MAB in turn. First, 
the number of sites (n) had a relatively small impact on 
MSci parameters, when other factors were fixed (at the ba-
sic setting of S = 4, L = 4,000, and MAB = 0.2). When 
n = 250, CIs for parameters such as the introgression 
time and probability (τS and φ) were wide. When 
n ≥ 1, 000, the CIs were much smaller for all parameters. 
The introgression time τ̂S decreased slightly as the se-
quence became longer. This is consistent with the asymp-
totic analysis, which suggests that τ∗S is dominated by the 
smallest coalescent time or sequence divergence and 
should be 0 for the IM and SC models or τT for the IIM 
model (when n→∞) (figs. 2, supplementary figures S2 
and S4, Supplementary Material online). Similarly, for the 
IM and SC models, φ̂ increased with the increase of n 
when MAB was low, as observed in the asymptotic analysis. 
Under the IIM model, small datasets with short sequences 
(n = 250) produced very uncertain estimates of φ and θH 
(and, to a lesser extent, τS and θS). The two parameters 
are nearly confounded; this is discussed below when we 
examine the impact of the migration rate (MAB).

Second, we varied the number of sequences per species 
(S). When one sequence per species is in the data (S = 1), 
only five parameters in the MSci model (fig. 1d) are iden-
tifiable: θR, θS, τR, τS, φ). When multiple sequences were 
sampled per species, all eight parameters are identifiable. 
They were well estimated when the dataset was large 
(say, with S ≥ 2 for IM and SC or S ≥ 4 for IIM). Even 
with S = 4 sequences per species, estimates of φ from 
data generated under the IIM model involved wide CIs, 
with τS being close to τR, and θS and θH being very impre-
cise as well (fig. 3). This is due to the semi-unidentifiability 
or the confounding effects of the parameters, and will be 
discussed below. Here we note that the problem disap-
peared and all parameter estimates were well-behaved in 
large datasets when many sequences were sampled 
(S ≥ 2 for IM and SC or S ≥ 4 for IIM; fig. 3).

Third, we examined the impact of the number of loci (L). 
The IIM model was hard to fit in small datasets with a small 
number of loci (L ≤ 1, 000), generating large CIs for para-
meters φ and θH. This is the same pattern as in the case 
of short loci (n = 250) or few sequences (S ≤ 2), discussed 
above. In large datasets, the parameters were well esti-
mated. Note that the number of loci L is the sample size 
in the statistical model as data at different loci are inde-
pendently and identically distributed. Theory predicts 
that in large datasets the variance should be proportional 
to 1/L (see O’Hagan and Forster 2004 for the case of cor-
rectly specified models and Yang and Zhu 2018 for the 
case of misspecified models), and thus the CI should de-
crease at the rate of L−1/2. This prediction held for para-
meters that were well estimated (fig. 3). As discussed 
earlier, the introgression time τS is dominated by the smallest 

coalescent time or smallest sequence divergence. Thus in-
creasing the number of loci led to a decrease in the estimated 
introgression time, and the trend was in particular apparent 
for the IIM model (under which τ̂S → τT when L→∞ if 
n = ∞). In all cases, the estimated introgression time (τ̂S) 
was closer to the more recent end of the time interval for 
gene flow than to the midpoint, that is, τ̂S < τR/2 for IM, 
τ̂S < (τR + τT)/2 for IIM, and τ̂S < τT/2 for SC (see fig. 1a–c).

Finally, we evaluated the impact of the migration rate 
(MAB) (fig. 3). Under the IM model, there is a near linear rela-
tionship between the introgression probability φ and MAB at 
low rates. The amount of gene flow estimated under the MSci 
model is less than the true amount expected under the IM 
model (φ0 of eq. 10) but the two were close at low rates 
(with MAB < 0.1, say). At very high rates (with MAB > 1.0, 
say), divergence time τR was increasingly underestimated 
and the population size θR was overestimated. These patterns 
are the same as observed in the asymptotic analysis of infinite 
data (L = ∞), and are due to the attempt of the MSci model 
to accommodate intermediate coalescent times in the data, 
as discussed earlier (see figs. 2, supplementary figures S2 and 
S4, Supplementary Material online).

Under the IIM model, φ̂ involved very large uncertainties 
at low rates (MAB < 0.04, say), with θS, τS, and θH affected as 
well. Given the small MAB, why did φ̂ not converge to ∼ 0 
with narrow CIs? Note that if MAB = 0 in the IIM model, 
the MSC model with no gene flow or MSci with φ = 0 
will be the correct model. Similarly in figure 3 where 
MAB = 0.2 was fixed, wide CIs for those parameters were 
observed in small datasets with short loci (n ≤ 250), few se-
quences (S ≤ 2), or few loci (L ≤ 1, 000), as noted above. 
Also in the asymptotic analysis (with L = ∞), we noted 
that θ∗S and φ∗ were grossly wrong but had no sampling er-
rors because the data size was L = ∞ (fig. 2; supplementary 
figures S2 and S4, Supplementary Material online, methods 
c, d). We suggest that all those results are due to the near 
unidentifiability of parameters in the MSci model (in par-
ticular, θS and φ); in other words, the parameters are 
confounded.

If MAB = 0 in the MSC-M model, MSci with φ = 0 will be 
the correct model, but φ > 0 with a large appropriately ad-
justed θS may provide a very good fit to the data (of two se-
quences per locus). When MAB is small but nonzero, the MSci 
model will never achieve a perfect fit, and a large φ with ap-
propriately adjusted θS may provide a better fit than a small 
φ. Thus in infinite data (L = ∞), we may get grossly wrong 
estimates with no uncertainty (supplementary figure S2, 
Supplementary Material online, methods c, d). In finite data-
sets (L < ∞), there will be a ridge in the posterior surface in-
volving φ and θS, leading to wide CIs for those parameters, 
influenced by both model misspecification and the prior 
(fig. 3). Including multiple samples from the same species 
(S > 1) is useful for improving the information content in 
the data, but strong correlation between φ̂ and θ̂S may be ex-
pected nevertheless. In this regard, the large uncertainties in 
posterior estimates of parameters may be useful as they help 
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the investigator avoid incorrect inferences of a large φ when 
gene flow is minimal.

Introgression Events Assigned to Wrong Branches
We conducted simulations to examine the bias in param-
eter estimates when the introgression event is assigned on 

either the parental or daughter branch of the lineage genu-
inely involved in introgression. The data were simulated 
under model trees A or B and analyzed under models A 
or B of figure 4a and b.

In the A-A and B-B settings (fig. 4e), the correct MSci 
model was assumed, and the performance of the method 
serves as a reference for comparison. Most parameters, 
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FIG. 4. (a,b) Two introgression 
(MSci) models and (c,d ) two 
migration (IM) models used in 
simulation. The thin branches 
have the population size θ0 = 
0.002 and the thick branches 
have θ1 = 0.01. In MSci model 
A, the species divergence/ 
introgression times are 
τR = 4θ0, τS = 3θ0, τT = 2θ0, 
and τX = τY = 1.5θ0. In MSci 
model B, τR = 4θ0, τS = 3θ0, 
τT = θ0, and τX = τY = 1.5θ0. 
Introgression probability is 
φ = 0.2. In the IM model C, 
τR = 4θ0, τS = 3θ0, and 
τT = 2θ0, with migration occur-
ring from species A to B over 
time period (0, τT) at the rate 
M = 0.1 migrants per gener-
ation. In the IM model D, 
τR = 4θ0, τS = 3θ0, and τT = θ0, 
with migration from species A 
to ST over time period (τT , τS) 
at the rate M = 0.1. (e) The 
95% HPD CIs for parameters 
in 100 replicate datasets of 
L = 250, 1,000, and 4,000 loci. 
Column labels refer to the 
simulation model followed by 
the analysis model; for ex-
ample, “B-A” means that data 
were simulated under model 
B and analyzed under model 
A. The values of θ and τ para-
meters are multiplied by 103. 
Black solid line indicates the 
true value.
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including the species divergence times (τR, τS, τT , and 
τX = τY) and population sizes for extant species 
(θA, θB, θC , θD), were well estimated. For well-estimated 
parameters, the CI width reduced by a half as the number 
of loci (L) quadrupled, as predicted by theory. Population 
sizes for ancestral species (θR, θS, θT , θX , and θY) were less 
well estimated, although performance improved with sam-
ple size: with L = 4, 000 loci, these parameters were well es-
timated. Introgression probability (φ) was well estimated, 
but thousands of loci were necessary to obtain precise es-
timates with narrow CIs under the standard settings used 
here (four sequences per species per locus and 500 sites per 
sequence).

In the other settings (fig. 4e), there was mismatch be-
tween the models used to simulate and to analyze data. 
We note that population sizes for extant species 
(θA, θB, θC , θD) were well estimated, as was the age of 
the root (τR). Performance for estimation of those para-
meters was very similar whether or not there was model 
misspecification (e.g., the A-B setting versus the B-B setting 
and C-A versus A-A). Below we focus on estimation of the 
other parameters.

In the A-B setting (fig. 4e), data were simulated under 
model A with A→ B introgression (fig. 4a) but analyzed 
under model B with introgression incorrectly assigned to 
the parental branch ST. Ancestral population sizes θR 
and θS were well estimated, similar to the B-B setting. 
Divergence times τR and τS were well estimated, but τ̂T 
and τ̂X were stuck together. We expect τ̂(B)

T to be mostly 
determined by the smallest sequence divergence (tbc) 
between B and C, which should be close to 
τ(A)

T = 2θ0 = 0.004. Here, we use the superscript to indicate 
the model in which the parameter is defined. In the fitting 
model B, the introgression time τ̂(B)

X (which is >τ̂(B)
T ) should 

reflect the smallest sequence divergence tab, whereas in the 
true model A, tab is mostly determined by τX (which is 
<τT). Thus misidentification of the introgression lineage 
caused τ̂(B)

X to be stuck at τ̂(B)
T (fig. 5a). There was virtually 

no information for θT as the population was estimated to 
have near-zero time duration with no chance for coales-
cence. The introgression probability was seriously underes-
timated, converging to φ∗A−B ≈ 0.12 when the number of 
loci L increases (table 1), whereas the true value was 0.2. 
This smaller estimate of introgression probability is ex-
plained by the distribution of coalescent times between 
species in the true and fitting models (supplementary 
fig. S6, Supplementary Material online, true model A). 
Under the true model A, sequences from A and B are 
more similar than those between A and C due to the 
A→ B introgression, with an excess of small coalescence 
time tab. Under the analysis model B, tab and tac have the 
same distribution. Thus the true model predicts an excess 
of small tab, whereas the fitting model predicts an excess of 
small tac, and having a smaller φ in the fitting model helps 
to reduce the discrepancy.

In the B-A setting (fig. 4e), the simulation model (MSci 
model B of fig. 4b) assumes introgression involving the an-
cestral branch ST but the analysis model (model A) 

assigned introgression to the daughter branch TB. 
Posterior means and CIs for divergence times τR and τT 
were similar to those in the A-A setting. Note that τ̂(A)

T 
should be mostly determined by the smallest sequence di-
vergence (tbc) between B and C, and given that this is 
τ(B)

T = 2θ0 = 0.002, τ̂(A)
T was well estimated, unaffected by 

mis-assigned introgression event. Although the true 
introgression time τX was 0.003, it was forced to be less 
than τT by the analysis model A. As the number of loci in-
creases, τ̂(A)

X became stuck at τ̂(A)
T (fig. 5b). However, τ̂(A)

S 
was seriously underestimated. This may be explained as 
follows. In the analysis model A, τ̂(A)

S was mostly deter-
mined by the shortest sequence distance between A 
and C. In the true model B, this should be close to 
τ(B)

X = 1.5θ0 = 0.003, due to introgression. With mutation-
al fluctuations in the sequences, one can expect τ̂(A)

S to lie 
between (τ(B)

X , τ(B)
S ) = (1.5θ0, 3θ0), but closer to τ(B)

X in large 
datasets with many sites and/or many loci. Population 
sizes θ̂(A)

S and θ̂(A)
Y were affected by the mis-assigned intro-

gression events as well, as those populations are close to 
the introgression branches. In particular, θ̂(A)

Y was very im-
precise as branch YT was very short, and θ̂(A)

S was overes-
timated because τ̂(A)

S was seriously underestimated (as 
those two parameters are negatively correlated). Finally, 
the introgression probability (φ) was underestimated, ap-
parently converging to φ∗B−A ≈ 0.02 when the number of 
loci L increased (table 1), whereas the true value was 0.2. 
This greatly reduced introgression probability appeared 
to reflect the very poor fit of the misspecified model A 
to data generated under model B (see the large differences 
between the true and fitting distributions of coalescent 
times in supplementary fig. S6, Supplementary Material
online, second row). As τ̂(A)

X and τ̂(A)
S are seriously underes-

timated, an excess of small coalescent times (tab, tac) is ex-
pected in the fitting model A but does not appear in the 
data, so that having a smaller φ improves the fit.

In summary, assigning introgression events to a wrong 
parental or daughter branch led to biased estimates of 
introgression times (causing the introgression events to 
collapse onto speciation events) and to seriously underes-
timated introgression probabilities.

Continuous Migration versus Episodic Introgression
In this set of simulations, we generated data under the IM 
models C and D of figure 4c and d and analyzed them un-
der the MSci models A and B, with the mode of gene flow 
misspecified and with gene flow assigned to either the cor-
rect branch or a wrong branch on the species tree.

In the C-A and D-B settings (fig. 4e), gene flow occurred 
continuously but the data were analyzed under the MSci 
model assuming introgression at a time point. The mode 
of gene flow was misspecified, but the lineages involved 
were correctly identified. In the C-A setting, gene flow 
was between non-sister species, whereas in the D-B setting 
it was between sister species. Speciation times (τR, τS, τT) 
and population sizes (θ) were well estimated, similar to 
the A-A setting. Surprisingly ancestral population sizes 
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θT , θX , θY appeared to be even better estimated, with nar-
rower CIs, in the C-A setting than in A-A. Speciation times 
and population sizes were extremely similar between set-
tings D-B and B-B. Those results were consistent with 
the results for the case of two species (fig. 3), which 
showed that at low migration rates, species divergence 
times and population sizes were well estimated under 
the MSci model when the data were generated under 
the IM model.

In the C-A setting, the estimated introgression time τ̂(A)
X 

appeared to converge (when L increased) to 0.0011, much 
more recent than the average time of gene flow 
(τ(C)

T /2 = 0.002), and the introgression probability φ̂C−A 
appeared to converge to φ∗C−A = 0.12 (table 1), smaller 
than the expected proportion of total migrants: 
φ0 = 1 − e−4MABτ(C)

T /θ(C)
B = 0.148. As discussed earlier for 

the case of two species, the limiting value for τ̂(A)
X was non-

zero, as the sequence length is finite, and the MLE φ̂C−A 
slightly underestimated the true amount of gene flow. In 
the D-B setting, the introgression time τ̂(B)

X appeared to 
converge to 0.0027, larger than τ(D)

T = 0.002 but much 
smaller than the average time of gene flow, 

1
2 (τ(D)

S + τ(D)
T ) = 0.004, and the introgression probability 

φ̂D−B appeared to converge to φ∗D−B = 0.08 (table 1), 
much smaller than φ0 = 0.148 from equation (10). In 
both the C-A and D-B settings, the estimated introgression 
time was within the time interval of gene flow, but closer 
to the time when gene flow stopped, whereas the amount 
of gene flow was underestimated (φ∗C−A < φ0, φ∗D−B < φ0). 
Moreover, we have φ∗D−B < φ∗C−A. These patterns are con-
sistent with our analysis of the two-species case at low mi-
gration rates (eq. 12, fig. 3), which suggested that gene flow 
after a period of isolation (the SC model) is easier to re-
cover than gene flow that starts at speciation but stops 
some time afterwards (the IIM model).

In the C-B and D-A settings (fig. 4e), the mode of gene 
flow was misspecified and furthermore gene flow was as-
signed onto the wrong branch of the species tree. In the 
C-B setting, divergence time τT was underestimated slight-
ly, due to gene flow assigned to the wrong branch, as ob-
served in the A-B setting. Ancestral population sizes θT and 
θY were affected by gene flow, similar to the A-B setting. 
Model B forces τX > τT . Thus we expect τ̂(B)

X and τ̂(B)
T to 

get stuck together, with both being smaller than 

t
t

t

t

(a) (b)

FIG. 5. Posterior means of speciation/introgression times (×10−3) when the introgression event is assigned to a wrong branch. In (a) tree A-tree B, 
data were simulated using species tree A (fig. 4a), with introgression from species A to B, but are analyzed assuming tree B, with introgression 
assigned incorrectly to the parental branch ST (so that τX > τT). In (b) tree B-tree A, data were simulated under tree B (fig. 4b) and analyzed 
assuming tree A, with introgression assigned to the daughter branch B (with τX < τT). For each number of loci (L = 250, 1,000, 4,000), 100 rep-
licate datasets were generated and analyzed. These correspond to the A-B and B-A settings of figure 4e, where estimates of other parameters are 
shown.

Table 1. Average Posterior Means and 95% HPD Intervals (in parentheses) for Introgression Time (τX , ×10−3) and Introgression Probability (φX) in the 
Simulations.

Analysis τX φ

L = 250 L = 1000 L = 4000 L = 250 L = 1000 L = 4000

Figure 4 A-A 3.06 (2.63, 3.49) 3.02 (2.80, 3.24) 3.00 (2.89, 3.11) 0.23 (0.16, 0.32) 0.21 (0.17, 0.24) 0.20 (0.19, 0.22)
Figure 4 B-A 1.62 (0.95, 2.05) 1.77 (1.54, 1.96) 1.82 (1.72, 1.91) 0.02 (0.00, 0.04) 0.02 (0.01, 0.03) 0.02 (0.02, 0.03)
Figure 4 C-A 1.12 (0.83, 1.40) 1.11 (0.97, 1.25) 1.11 (1.04, 1.18) 0.12 (0.09, 0.15) 0.12 (0.10, 0.13) 0.12 (0.11, 0.12)
Figure 4 D-A 1.69 (1.18, 2.07) 1.80 (1.58, 1.97) 1.86 (1.76, 1.94) 0.02 (0.01, 0.04) 0.02 (0.01, 0.03) 0.02 (0.02, 0.03)
Figure 4 A-B 3.82 (3.53, 4.11) 3.75 (3.61, 3.90) 3.73 (3.66, 3.80) 0.18 (0.09, 0.28) 0.13 (0.11, 0.16) 0.12 (0.11, 0.14)
Figure 4 B-B 2.98 (2.61, 3.35) 2.99 (2.80, 3.18) 3.00 (2.91, 3.10) 0.23 (0.14, 0.34) 0.20 (0.17, 0.24) 0.20 (0.18, 0.22)
Figure 4 C-B 2.98 (2.72, 3.24) 2.93 (2.80, 3.06) 2.91 (2.85, 2.98) 0.11 (0.08, 0.14) 0.10 (0.09, 0.12) 0.10 (0.10, 0.11)
Figure 4 D-B 2.83 (2.28, 3.38) 2.71 (2.42, 3.00) 2.73 (2.59, 2.87) 0.11 (0.04, 0.20) 0.08 (0.05, 0.10) 0.08 (0.07, 0.09)
Figure 6 IIM 3.40 (2.38, 4.36) 2.93 (2.42, 3.43) 2.83 (2.58, 3.08) 0.24 (0.04, 0.53) 0.10 (0.05, 0.16) 0.08 (0.06, 0.10)
Figure 7 2.81 (2.41, 3.22) 2.80 (2.60, 3.01) 2.79 (2.68, 2.89) 0.23 (0.16, 0.31) 0.21 (0.18, 0.25) 0.21 (0.19, 0.22)
Figure 8 3.12 (1.93, 4.07) 3.05 (2.42, 3.68) 2.98 (2.73, 3.23) 0.03 (0.01, 0.06) 0.03 (0.01, 0.04) 0.02 (0.02, 0.03)
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τ(C)
T = 2θ0 = 0.004; as the number of loci L increased, τ̂(B)

X 
appeared to converge to 0.0029, and φ̂C−B to φ∗C−B = 
0.10 (table 1).

In the D-A setting, the divergence time τS was underesti-
mated, due to gene flow assigned to the wrong branch, simi-
larly to the B-A setting. The ancestral population sizes θR and 
θX were well estimated as in the A-A setting, but θT had a 
slight positive bias. The ancestral population sizes θS and 
θY were affected by the gene flow, similar to the B-A setting. 
The introgression time and probability (τX and φ) do not exist 
in the simulation model D. Model A forces τX < τT , so we ex-
pect τ̂(A)

X to be close to τ(D)
T = θ0 = 0.002; when the number 

of loci L increased, τ̂(A)
X appeared to converge to 0.00186, and 

φ̂D−A to φ∗D−A = 0.02 (table 1). Note that φ0 > φ̂C−B > φ̂D−A 
with φ̂C−B < φ̂C−A and φ̂D−A < φ̂D−B. Those results are con-
sistent with our early results for fitting the MSci model to 
data generated under the migration model in the two-species 
case (eq. 12, fig. 3), and with the results for the A-B and B-A 
settings that assignment of gene flow to a wrong branch re-
duces the estimate of φ.

In summary, the estimated introgression probabilities, 
at 0.12, 0.08, 0.10, and 0.02 for the C-A, D-B, C-B, and 
D-A settings, respectively, even though the total amount 
of gene flow was the same in models C and D (table 1), sug-
gest the following general patterns. First, the MSci model 
underestimates the total amount of gene flow if gene 
flow occurs continuously in every generation (i.e., 
φ̂C−A < φ0, φ̂D−B < φ0), as discussed in our analysis of the 
two-species case. Second, assigning gene-flow events to 
wrong lineages led to serious underestimation of the 
amount of gene flow (i.e., φ̂C−B < φ̂C−A, φ̂D−A < φ̂D−B). 
Third, recent gene flow in the data is more easily recovered 
(i.e., φ̂C−A > φ̂D−B, φ̂C−B > φ̂D−A).

Isolation with Initial Migration (IIM) Model
Next, we assessed the effects of taxon sampling when 
the mode of gene flow is misspecified. We used the IIM 
model for three species of figure 6a to simulate data and 
analyzed them under the MSci model of figure 6b. 
Species divergence times (τR, τS) and population sizes 
(θA, θB, θC , θR, θS, and even θX and θY) were well esti-
mated. We expect the estimated introgression time τ̂X to 
converge to τT = θ0 = 0.002 if the sequence length is infin-
ite and to a higher limit for finite sequence length. In our 
simulation τ̂X ≈ 0.00283 at L = 4, 000 (table 1). The esti-
mated introgression probability (φ̂) converged to a non-
zero limit, ∼ 0.08 (table 1), compared with φ0 = 0.148 
by equation (10).

The IIM model of figure 6a is very similar to the 
two-species model of figure 1b except that here the tree 
is larger with more species, and serves to highlight the 
fact that the impact of the misspecification of the model 
of gene flow is local. The case is also similar to the D-B set-
ting of figure 4, with the only difference that here the hy-
bridizing species T had only one descendent species 
sampled in the data, whereas in figure 4 (D-B) it had two 
descendent species sampled. Thus estimates of parameters 

such as the introgression probability and introgression 
time were similar to those in the D-B setting of figure 4
but with wider CIs (table 1). Unlike approximate methods 
designed to work with species triplets or quartets only, the 
Bayesian approach accommodates an arbitrary number of 
species in the data (with arbitrary data configurations at 
each locus), so that the difference in taxon sampling has 
only the effect of affecting the information content in 
the data.

Ghost Species
We considered two scenarios in which a species that con-
tributed migrants to extant species has gone extinct or is 
otherwise unsampled in the data. Note that existence of 
extinct or unsampled species that received genetic materi-
als from ancestors of extant species in the sample is not 
relevant to the analysis of the sampled data and does 
not constitute a model misspecification. In the first scen-
ario, model A′ of figure 7a′ is used to simulate data, which 
assumes that species XUV contributed migrants to species 
B but is not included in the sample. Note that this model is 
equivalent to model A of figure 7a. When we fit model B 
(fig. 7b), the only incorrect assumption is the constraint 
that τX = τY . This is a minor misspecification. Indeed all 
parameters shared between the simulation model and 
the analysis model were well estimated (fig. 7c). The esti-
mates of introgression time, τ̂X = τ̂Y ≈ 0.0028 (table 1), 
were close to the average of the two parameters in the 
true model (0.0025). Introgression probability φ̂ ≈ 0.21 
(table 1) was also close to the true value (0.2). The exist-
ence of the ghost species (XUV) had very little effect on 
the inference.

In the second scenario (fig. 8a), the true model assumes 
continuous migration involving intermediate ancestral 
species that have gone extinct, and the MSci model 
(fig. 8b) was fitted to data sampled from extant species. 
Divergence times τR and τT were very well estimated, as 
were the population sizes shared between the simulation 
and analysis models (θA, θB, θC , θR). We expect τ̂T in model 
B to be dominated by the minimum coalescent time tab 
between sequences from A and B, and this is given by 
τ(A)

T . Gene flow from branches RC to SU over the time inter-
val (τU, τS) and then from SU to TB during (τU, τT) was in-
terpreted as introgression in the MSci model. The effective 
rate for this migration may be close to MCUMUB = 0.04, 
giving φ0 = 1 − e−4×MCUMUB×(τT−τU)/θB = 0.031. The estimate 
was φ̂X ≈ 0.02 (fig. 8c, table 1). The introgression time τ̂X 
should be between τU = θ0 = 0.002 and τT = 2θ0 = 0.004 
and the estimate was ≈ 0.0030 (fig. 8c, table 1). Note 
that both θ̂T and θ̂Y were overestimated (fig. 8c). Branch 
T of figure 8b corresponds to branches RS and ST of figure 
8a, with population size θ0 = 0.002. Branch Y corresponds 
to a segment of branch TB over the time interval (τU, τT), 
with θ1 = 0.01. Overestimation of θY (and θT) may be be-
cause there is a deficit of tbb over the interval (τU, τS) due 
to gene flow, and the fitting MSci model, with the amount 
of gene flow underestimated (φ̂ < φ0), used large θ̂Y and 
θ̂T to compensate.
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Discussion
The Mode of Gene Flow and the Utility of 
Misspecified Introgression Models
The asymptotic theory, even though based on only two 
species with one sequence sampled per species per locus, 
has been very useful. It generated a number of insights 
that were confirmed and extended in our simulation. 
Together the theory and simulation suggest the following 
correspondence between the MSC-M and MSci models. 
When gene flow occurs continuously over an extended 
time period after divergence of two species and we fit 
the introgression model, the estimated introgression 
time tends to be closer to the more recent end of the 
time period of gene flow, because the introgression time 
is dominated by the most recent coalescent time or 
the minimum sequence divergence between species. If 
the true coalescent time is known and used as data, the 
introgression time will converge to the time when gene 
flow stopped. At low migration rates (M < 1

4, say), the species 
divergence time is correctly estimated by the MSci model, 
and the introgression probability φ is lower than but close 
to the expected proportion of migrants (φ∗ < φ0). The esti-
mate is particularly close under the secondary-contact 

model (supplementary fig. S4, Supplementary Material on-
line). At very high migration rates, the estimated introgres-
sion probability φ∗ may be much less than φ0, and 
furthermore the species divergence time is underestimated 
to account for intermediate coalescent times generated un-
der the MSC-M model. Recent gene flow (as in the SC mod-
el) is easier to recover (with φ∗ closer to φ0) than ancient 
gene flow (as in the IIM model).

The accurate estimation of species divergence times un-
der the MSci model despite the misspecification, at least at 
lower migration rates (e.g., τR for M ≤ 0.3 in fig. 3), may be 
worth emphasizing. It is well known that ignoring gene 
flow between two species may lead to serious underesti-
mation of the species divergence time. Here our results 
suggest that if gene flow is continuous, the MSci model as-
suming introgression at a fixed time point still gives reliable 
estimates of the species divergence time. The estimated 
introgression probability (φ) may also serve as a useful 
guide even though it reflects both the migration rate per 
generation (m or M) and the time duration of the period 
of gene flow (eq. 10). Even if gene flow occurs continuously 
over time (so that the migration model is a more realistic 
model), the MSci model is effective in extracting historical 
information about species divergence times and 

qq q

q q q q

t t t j
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FIG. 6. (a) An isolation-with-initial-migration (IIM) model used to simulate data. The parameter values used are θ0 = 0.002 for population sizes 
for the thin branches and θ1 = 0.01 for the thick branches, τR = 4θ0, τS = 3θ0, τT = θ0 for species divergence times. The number of sequences is 
S = 4, with the sequence length n = 500. The migration rate is M = 0.1. (b) The MSci model used to analyze the data. (c) The 95% HPD CIs for 
parameters, with black lines indicating the true values. Estimates of θ and τ are multiplied by 103.
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population sizes. Note that on the evolutionary time scale, 
a few hundred or thousand generations may count as a 
fixed time point, in which case the MSci model may pro-
vide an adequate approximation.

Both the asymptotic theory and simulation have high-
lighted the semi-unidentifiability or confounding effects 
between the introgression probability (φ) and the popula-
tion size of the donor species (θS in fig. 1d) (e.g., fig. 2, 
methods c and d). The problem is particularly acute under 
the IIM model applied to small datasets (with short loci, 
few sequences per species, or few loci), where high esti-
mates of φ with wide CIs are produced even though migra-
tion occurs at very low rates (fig. 3). One such case has 
been observed in a recent analysis of genomic data 
from the erato group of Heliconius butterflies 
(Thawornwattana et al. 2022). The estimated H. sara →
H. demeter introgression probability was high with wide 
CIs for some chromosomal regions with a small number 
of loci (e.g., chromosome 21 with 4350 noncoding and 
3628 coding loci, and an inversion on chromosome 15 
with 149 noncoding and 167 coding loci), with the intro-
gression time close to the species divergence time, whereas 
for the other large chromosomes, the estimates were near-
ly zero (φ̂ < 0.01). The true rate in this case appeared to be 
φ ≈ 0, but the limited data from small chromosomal seg-
ments led to poorly supported large introgression rates, as 
in our simulations (fig. 3).

We demonstrated that including multiple samples from 
the same species (in particular, from recipient species) is 
important to resolving unidentifiability issues or con-
founding effects, as well as boosting up the information 
content concerning the rate of gene flow in the data. In 
this regard, it may be noted that many approximate meth-
ods are designed to use only one sample per species, and it 
has been claimed that “adding more samples provides little 
new information with respect to introgression” (Hibbins 
and Hahn 2022). We suggest that this may not be a gener-
ally correct statement.

Overall, our simulations using larger species trees with 
more than two species suggest that misspecification of 
the mode of gene flow (continuous migration versus epi-
sodic hybridization/introgression) has relatively small 
and localized effects, restricted to divergence times and 
population sizes around the lineages involved in gene 
flow, while species divergence times, population sizes for 
extant species and for ancestral species not involved in 
gene flow are largely unaffected. If gene flow occurs be-
tween species A and B but more distantly related species 
are included in the data sample, parameters outside the 
AB clade are largely unaffected (e.g., compare results for 
the IIM model for two species of fig. 3 with those for three 
species of fig. 6). Similarly, if A represents a clade rather 
than one species, divergence times and population sizes in-
side the A clade are not affected by gene flow involving the 
branch ancestral to the A clade (e.g., compare the D-B set-
ting of fig. 4 with the IIM model of fig. 3).

Assigning gene flow to parental or daughter branches 
causes the introgression probability to be underestimated, 
and the introgression time to collapse onto the species di-
vergence time. This result may be used to diagnose the 
mis-assignment of introgression lineages in real data ana-
lysis (Ji et al. 2022). A number of authors have discussed 
the impact of ghost species on detection of between- 
species gene flow (Beerli 2004; Ottenburghs 2020). 
Tricou et al. (2022) used simulations to demonstrate 
that D-statistics can be misled to detect false signals of 
introgression when the model involved an unsampled 
(ghost) species. In our simulations, the impact of ghost 
species on Bayesian estimation of introgression rate and 
time was minor provided we considered the rate of gene 
flow in the migration and introgression models to reflect 
both indirect gene flow via intermediate species and direct 
gene flow.

Testing Models of Gene Flow
In this study, we fixed the model of introgression in our 
analyses, with all introgression events pre-identified, to 
examine the effects of model misspecification. One may 
ask what happens if different introgression models (which 
for example assign introgression events onto different 
branches of the species tree) are compared using genomic 
data. Currently, both *BEAST and PHYLONET have implemen-
ted cross-model MCMC algorithms under the MSci model, 
which insert and delete introgression events on the species 
tree, allowing the Markov chain to move between models. 
Those algorithms are computationally expensive and cur-
rently the two programs can handle only very small data-
sets (with <100 loci, say). In the BPP program, one may use 
the Bayes factor to compare two MSci models, using 
thermodynamic integration (Gelman and Meng 1998; 
Lartillot and Philippe 2006) combined with Gaussian quad-
rature to calculate the marginal likelihood values (Rannala 
and Yang 2017). In the case where the compared models 
are nested (e.g., one with introgression and another with-
out), the Bayes factor may also be calculated through the 
Savage–Dickey density ratio (Dickey 1971), which uses 
only a within-model MCMC run under the more general 
model (Ji et al. 2022). This has a computational advantage 
over reversible jump MCMC (Green 1995), and has recent-
ly been applied to formulate and compare introgression 
models in an analysis of genomic data from the Tamias 
quadrivittatus group of North American chipmunks 
(Ji et al. 2022). Calculation of marginal likelihood values 
or Bayes factors may be feasible if we have only a small 
number of well-specified models but may not be feasible 
for searching in the space of MSci models for a given set 
of species.

Approximate methods have also been developed to in-
fer introgression events or the so-called phylogenetic net-
works using summaries of the multilocus sequence data. 
For example, estimated gene tree topologies may be 
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treated as data, as in PHYLONET/GT (Wen et al. 2016). Some 
methods are designed to detect gene flow in a small tree 
with three or four species, including summary methods 
based on genome-wide site-pattern counts (such as D 
and HYDE discussed earlier) or on estimated gene trees 
(e.g., SNAQ) and maximum likelihood applied to multilo-
cus sequence alignments (e.g., 3S, Zhu and Yang 2012; 
Dalquen et al. 2017). Results for species subsets may 
then be combined to formulate an introgression model 
on the large tree for all species, which is a challenging 
task (Edelman et al. 2019; Thawornwattana et al. 
2022). In summary, there is currently an acute need for 
improving the computational efficiency of Bayesian 
MCMC algorithms for inference under the MSC model 
with gene flow and the statistical efficiency of approxi-
mate methods.

It will also be interesting to use the same genomic data 
to compare the MSC-M and MSci models. The two classes 
of models often predict very different distributions of gene 
trees and coalescent times (e.g., supplementary figs. S1, S3, 
S5, Supplementary Material online; see also Jiao and Yang 
2021). Thus, genomic data may be informative to distin-
guish them. A stochastic search in the combined space 
of MSC-M and MSci models may be infeasible, as the 

two types of models are very different. However, they 
can be compared using Bayes factors.

Materials and Methods
Simulation to Establish a Correspondence between 
the Migration and Introgression Models in the Case 
of Two Species
We analyzed the relationships between parameters when 
data are generated under the continuous migration model 
(IM, IIM, and SC; fig. 1a–c) and analyzed under the episodic 
introgression (MSci) model (fig. 1d). Our theory assumed 
an infinite number of loci (L = ∞), a finite number of sites 
per sequence (n), with only one sequence per species per 
locus. We conducted computer simulations to augment 
the theoretical analysis. Data of multilocus sequence align-
ments were simulated under the IM, IIM, and SC models of 
figure 1a–c, and analyzed under the MSci model (fig. 1d). 
Population sizes on the species tree (fig. 1) were θ0 = 0.002 
for the thin branches and θ1 = 0.01 for the thick branches. 
Migration occurred from species A to B after their diver-
gence at τR = θ0 in the IM model, between τR = 2θ0 and 
τT = θ0 in the IIM model, and between τT = θ0 and the 

q q q q

q q q q q

t t t t j

(a) (a’) (b)

(c)

FIG. 7. (a) MSci model A (fig. 1A in Flouri et al. 2020) assumes that τX > τY and τT > τY and can represent scenario (a′) in which species X split into 
two species (A and U), and species XUV contributed migrants into species TYB at time τY but has since become extinct. This model was used to 
simulate data, with θ0 = 0.002 for the thin branches and θ1 = 0.01 for the thick branches, τR = 4θ0, τS = 3θ0, τT = 2θ0, τX = 1.5θ0, and τY = θ0. 
The introgression probability is φ = 0.2. The number of sequences is S = 4, and the sequence length is n = 500. (b) MSci model B (fig. 1B in Flouri 
et al. 2020) used to analyze the data, which incorrectly assumes τX = τY . (c) The 95% HPD CIs for parameters, with θs and τs multiplied by 103 and 
black solid line indicating the true value.
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present time in the SC model. In the standard model, the 
migration rate was MAB = 0.2 individuals per generation. 
Each dataset consisted of L = 4, 000 loci, with S = 4 se-
quences per species, and n = 1, 000 sites per sequence. 
We conducted four sets of simulation to examine the im-
pact of the number of sites per sequence (n), the number 
of sequences per species (S), the number of loci (L), and the 
migration rate (MAB). The values used were n = 250, 1,000, 
4,000, 16,000, 64,000; S = 1, 2, 4, 8, 16; L = 250, 500, 1,000, 
2,000, 4,000, 8,000; and MAB = 0.01, 0.02, 0.03, 0.04, 0.05, 
0.07, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0. With three models 
(IM, IIM, and SC), four factors (n, S, L, M), and 30 repli-
cates, a total of 3 × (5 + 5 + 6 + 13) × 30 = 2, 790 data-
sets were simulated. Data were simulated using BPP 4.4.1 
(Flouri et al. 2018, 2020), by generating the gene tree 
with coalescent times for each locus and then “evolving” 
sequences along branches of the gene tree under the JC 
mutation model (Jukes and Cantor 1969). Sequences at 
the tips of the gene tree constituted the data at the locus.

Each dataset was analyzed using BPP under the MSci 
model (fig. 1d) to estimate the parameters. This is the so- 
called A00 analysis, with the model fixed (Yang 2015). The 
Bayesian implementation of the MSci model in BPP accom-
modates gene-tree reconstruction uncertainties while 
making use of information in both gene tree topologies 
and branch lengths, and allows the estimation of the direc-
tion, timing, and strength of introgression (Jiao et al. 2021). 
The JC mutation model was assumed in the analysis. 
Gamma priors were assigned to population size para-
meters (θ) and to the age of the root on the species 
tree; θ ∼ G(2, 400) and τ0 ∼ G(2, 200). Note that the gam-
ma distribution G(a, b) has mean a/b and variance a/b2, 
so that the shape parameter a = 2 means diffuse priors. 

Introgression probability φ was assigned the beta prior be-
ta(1, 1), which is U(0, 1).

We used 32,000 MCMC iterations as burnin, and took 
2 × 105 samples, sampling every five iterations.

Introgression Events Assigned to Wrong Branches
Data were simulated under models A and B of figure 4 and 
analyzed under models A and B, possibly with the introgres-
sion event assigned incorrectly onto either the parental or a 
daughter branch of the branch truly involved in introgres-
sion. The species divergence times (τ) are shown in the trees 
(fig. 4). We used S = 4 sequences per species per locus, with 
n = 500 sites in the sequence. The number of loci was 
L = 250, 1,000, and 4,000. We used two population sizes, 
with θ0 = 0.002 for the thin branches and θ1 = 0.01 for 
the thick branches. The number of replicates was 100.

Each dataset was analyzed using BPP under both models 
A and B (fig. 4a and b). Gamma priors were assigned to 
parameters, θ ∼ G(2, 400) with mean 0.005 and τ0 ∼ 
G(2, 200) with mean 0.01. With two trees/models, three 
numbers of loci, 2 × 3 × 100 = 600 datasets were simu-
lated, each analyzed under models A and B. We used 
32,000 MCMC iterations as burnin, and took 2 × 105 sam-
ples, sampling every five iterations.

Continuous Migration versus Episodic Introgression
Data were simulated under the MSC-M models C and D 
of figure 4c and d, with continuous migration at the rate 
M = 0.1 migrants per generation, and analyzed under 
MSci models A and B (fig. 4a and b), resulting in four set-
tings: C-A (simulation model C and analysis model A), C-B, 
D-A, and D-B. In setting C-A and D-B, gene flow was 

FIG. 8. (a) Migration model in-
volving ghost species for simu-
lating data. The parameter 
values used are θ0 = 0.002 for 
the thin branches and θ1 = 
0.01 for the thick branches, 
with the divergence times (τs) 
shown next to the internal 
nodes. The number of se-
quences is S = 4, and the se-
quence length is n = 500. The 
migration rates are MCU = 
MUB = 0.2 migrants per gener-
ation. (b) MSci model used to 
analyze the data. (c) The 95% 
HPD CI for parameters, with 
θs and τs multiplied by 103, 
and with black solid lines indi-
cating the true values. 
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continuous in the true model but the MSci model assumes 
episodic introgression at a particular time point, so that 
the mode of gene flow is misspecified. In settings C-B 
and D-A, the mode of gene flow was similarly misspecified 
but we had in addition mis-assignment of gene flow to 
wrong branches on the species tree. Other parameter set-
tings were the same as above. With two trees, three num-
bers of loci (L), a total of 600 datasets were generated, each 
analyzed twice (under models A and B).

Isolation with Initial Migration (IIM) Model
Data were simulated under the IIM model A of figure 6a, 
with A→ B migration over the time period (τT , τS), and 
analyzed under the MSci model of figure 6b, assuming 
introgression at time τX = τY . The IIM model was specified 
using a ghost species (U) from which no sequences were 
available. We generated 100 replicate datasets, each of 
L = 250, 1,000, or 4,000 loci, with a total of 300 datasets si-
mulated. MCMC settings were the same as above.

Ghost Species
To assess the effects of unsampled ghost population, we 
simulated data under MSci model A′ (see fig. 1A in 
Flouri et al. 2020) of figure 7a′ and analyzed them under 
the MSci model B of figure 7b, with τX = τY incorrectly as-
sumed. Here introgression involved a ghost species XUV 
which went extinct or was otherwise unsampled in the 
data. This scenario is equivalent to model A of figure 7a. 
With the three values for L (250, 1,000, 4,000), 300 datasets 
were generated, all analyzed under the MSci model 
(fig. 7b).

We also used the IIM model of figure 8a to generate 
data, with migration from species RC to SU and from SU 
to TB, and with V and W to be unsampled ghost species. 
Data (i.e., sequences from A, B and C) were analyzed under 
the MSci model of figure 8b. We used three values for L 
(250, 1,000, 4,000) and 100 replicates, with 300 datasets si-
mulated in total. Other settings were the same as above.

Supplementary Material
Supplementary data are available at Molecular Biology and 
Evolution online.
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