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Abstract
Excessive fat accumulation in the liver has become a major health threat worldwide. Unresolved fat deposition in the liver 
can go undetected until it develops into fatty liver disease, followed by steatohepatitis, fibrosis, cirrhosis, and eventually 
hepatocellular carcinoma. Lipid deposition in the liver is governed by complex communication, primarily between meta-
bolic organs. This can be mediated by hormones, organokines, and also, as has been more recently discovered, metabolites. 
Although how metabolites from peripheral organs affect the liver is well documented, the effect of metabolic players released 
from the liver during the development of fatty liver disease or associated comorbidities needs further attention. Here we focus 
on interorgan crosstalk based on metabolites released from the liver and how these molecules act as signaling molecules in 
peripheral tissues. Due to the liver’s specific role, we are covering lipid and bile mechanism-derived metabolites. We also 
discuss the high sucrose intake associated with uric acid release from the liver. Excessive fat deposition in the liver during 
fatty liver disease development reflects disrupted metabolic processes. As a response, the liver secretes a variety of signaling 
molecules as well as metabolites which act as a footprint of the metabolic disruption. In the coming years, the reciprocal 
exchange of metabolites between the liver and other metabolic organs will gain further importance and will help to better 
understand the development of fatty liver disease and associated diseases.
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Introduction

Hepatic fat accumulation, also known as fatty liver disease, 
is a rising global health problem affecting more than 25% of 
adults worldwide [1, 2] and creates a substantial burden for 
our society. The incidence of fatty liver disease will prob-
ably increase in the following years if the current trends 
continue [3]. Fatty liver disease is strongly associated with 

comorbidities such as obesity, type 2 diabetes (T2D), hyper-
lipidemia, hypertension, and the metabolic syndrome [2]. 
Although weight loss improves liver histology and thus has 
a positive effect on disease progression, patient compliance 
with strict diets is usually low, with a high relapse rate [4]. 
Therefore, a better understanding of the molecular mecha-
nisms causing the disease and new targets for therapeutic 
intervention are urgently needed.

Although the accumulation of lipid droplets (LDs) in 
hepatocytes has long been recognized as the hallmark of 
fatty liver disease, it is now widely accepted that the stor-
age of excess lipid molecules in the form of triacylglycerol 
(TAG) is a protective mechanism against cellular lipotoxic-
ity [5–7]. Lipid accumulation is probably a result of over-
flow after the adipose tissue expansion is exceeded. Indeed, 
hepatocytes undergo cellular stress due to lipotoxicity when 
the excess accumulation of free fatty acids (FAs) cannot be 
disarmed through the lipid storage mechanism or FA oxida-
tion [8–10]. Untreated fatty liver disease-induced stress can 
aggravate and lead to hepatocyte injury and eventually cell 
death, the hallmark of non-alcoholic steatohepatitis [11]. 
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Further progression of steatohepatitis may lead to fibro-
sis, cirrhosis, and eventually hepatocellular carcinoma, 
the fourth leading cause of death from cancer worldwide 
[12]. Recently a group of experts agreed on revising and 
updating the nomenclature and disease definition for non-
alcoholic fatty liver disease (NAFLD) and NASH to meta-
bolic-associated fatty liver disease (MAFLD) [13]. This new 
definition better reflects the complexity of the disease and 
its consequences and integrates metabolic dysfunction into 
the terminology. However, to keep it consistent and easier 
to follow, we will use the term fatty liver disease throughout 
the manuscript.

Fatty liver disease is considered a liver-focused disease. 
However, its strong association with obesity, T2D, and the 
metabolic syndrome suggests a complex metabolic network 
between liver and adipose tissue as well as other tissues 
(e.g., pancreatic islets, muscle, heart, and others). There-
fore, we need to consider “interorgan crosstalk”, which can 
be defined as signaling between different tissues promoted 
by secreting factors into the bloodstream. The importance 
of fatty liver disease-associated interorgan crosstalk affect-
ing peripheral tissues via hormones, organokines [14, 15], 
microRNAs [16], and extracellular vesicles [17] has been 
well recognized. However, how energy homeostasis byprod-
ucts secreted from the liver during the development of fatty 
liver disease and steatohepatitis orchestrate other metabolic 
players such as muscle, adipose tissue, and pancreas requires 
further study. Being the master regulator of lipid metabo-
lism, the liver robustly responds to metabolic dysregulation 
by fine-tuning the lipid output. Another liver-specific func-
tion is the synthesis, secretion, and absorption of bile acids. 
Bile acids in the plasma act as signaling molecules and are 
altered in many liver diseases. Therefore, the role of bile 
acids in fatty liver disease development will also be covered 
in this review. Finally, the liver is exposed to large amounts 
of dietary fructose due to unhealthy eating habits and the 
liver’s coping mechanism is closely associated with uric acid 
metabolism. Thus, in this review, we intend to focus on how 
liver-derived lipids, bile acids, and uric acid, are involved in 
interorgan crosstalk that influences energy homeostasis in 
the context of the development of fatty liver disease.

Liver‑derived lipids as signaling molecules

The human body is evolutionarily well-adapted to control 
energy homeostasis by storing excess energy in the form 
of neutral lipids that can be used when nutrients are scarce. 
Maintaining energy homeostasis is demanding and requires 
robust orchestration between various tissues. Undoubtedly, 
the liver is a master regulator of this metabolic network, 
as it regulates a variety of metabolic functions, including 
but not limited to the regulation of glucose synthesis (i.e., 

gluconeogenesis), glycogen storage, and bile acid synthe-
sis. The liver also fine-tunes lipid distribution in the body 
by plasma lipid uptake, de novo lipid synthesis, and lipid 
secretion into the bloodstream. Of course, adipose tissue is 
the main lipid storage of the body and the primary source 
of plasma FAs. Upon high energy demand (fasting or exer-
cise), adipocyte lipolysis releases FAs from TAGs into the 
bloodstream for transport to the liver and other organs as an 
additional source of energy [18]. Hepatocytes then take up 
plasma FAs either by FA transport proteins (FATP) 2, 5 [19], 
the scavenger receptor CD36 [20, 21] or to a lesser extent 
passive diffusion [22]. Moreover, FAs are also synthesized 
in the liver or taken up from the diet in the form of chylomi-
cron remnants. In the case of obesity-induced insulin resist-
ance, increased adipocyte lipolysis releases more FAs from 
the TAG stores into circulation [23]. Ironically, this might 
occur due to endoplasmic reticulum (ER) stress caused by 
increased dietary FA flux [24] and excessive expansion of 
adipocytes leading to adipose insulin resistance [25]. There-
fore, the net outcome is increased levels of serum FA which 
are taken up by the liver. The resulting accumulation of FAs 
in hepatocytes is either used in mitochondria for β-oxidation 
or esterified into TAG. Hepatic accumulation of TAGs is 
either utilized to form very low-density lipoproteins (VLDL) 
or stored in LDs in hepatocytes, the phenotypic trademark of 
fatty liver disease (Fig. 1). If the elevated FA influx cannot 
be compensated by intracellular coping mechanisms, further 
FA accumulation results in lipotoxicity, which eventually 
leads to cellular damage.

One of the liver’s coping mechanisms for elevated intra-
cellular lipid concentrations is to secrete them in VLDL 
particles, rich in TAG and cholesteryl esters [26]. VLDL 
delivers energy-rich TAG to peripheral tissues via the blood-
stream, where in endothelial cells lipoprotein lipase (LPL) 
hydrolyzes TAG to liberate diacylglycerol (DAG) and FA 
[27]. Adipose tissue, heart, and skeletal muscle express high 
levels of LPL and are exposed to TAG-derived metabolites. 
Peripheral tissues take up released FA via FA transporter 
receptors including CD36 and FATP [28] or passive diffu-
sion (Fig. 2A).

During the development of fatty liver-associated comor-
bidities such as T2D and obesity, the liver secretes large 
amounts of VLDL particles [29] that eventually lead to 
elevated levels of plasma FA uptake through lipase activ-
ity (LPL) [30]. Indeed, increased FA uptake largely con-
tributes to tissue insulin resistance, which was shown 
by muscle-specific deletion of LPL [31]. Lipotoxicity-
induced cardiomyopathies are among fatty liver disease-, 
T2D-, and obesity-associated comorbidities [32, 33]. FAs 
are the primary energy source of cardiomyocytes and can 
either be taken up directly from plasma or from lipopro-
teins via LPL. However, lipoprotein-derived FAs seem to 
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be a limiting factor for cardiac lipid uptake as heart-spe-
cific LPL deletion increases plasma TGs but not plasma 
FAs [34].

The role of the adipose tissue in increasing plasma FAs, 
thereby increasing liver lipid deposition in the context of 
obesity and T2D is well acknowledged and has been exten-
sively discussed elsewhere [35, 36]. During fatty liver dis-
ease development, the liver also influences the remodeling 
of the adipose tissue. VLDL, for example, is known to be a 
major source of lipids for the adipose tissue since the dele-
tion of the VLDL receptor (VLDLR) leads to decreased 
adipogenesis in high-fat diet-fed mice [37]. Although adi-
pose VLDLR is decreased in morbidly obese patients [38], 
it mediates excessive VLDL uptake in macrophages and 
exacerbates adipose tissue inflammation [39, 40].

Although LPL expression in the pancreas is relatively 
low, evidence indicates that elevated VLDL levels contrib-
ute to the development of pancreatitis, as a common condi-
tion among obese and T2D patients [41, 42], and are further 
known to be associated with fatty liver disease [43]. In mice, 
deletion of the VLDLR in pancreatic stellate cells amelio-
rates the development of pancreatitis [44].

Ceramides belong to a class of lipids called sphingolip-
ids, essential components of cellular membranes [45] and 
ceramide synthesis favors saturated long-chain FA over 
unsaturated or short-chain FA [46]. Ceramides produced in 
the liver are distributed to the other organs through VLDL 
and plasma ceramide levels are strong predictors of insulin 
resistance and cardiovascular diseases [47–49]. Interest-
ingly, unlike in the liver, ceramide levels are associated with 
insulin resistance in skeletal muscle [50, 51]. Studies have 
shown that ceramides negatively influence the AKT pathway 
[52–54], the primary signal transduction mode of the insulin 
receptor. Studies suggest that this might happen by prevent-
ing AKT from translocating to the plasma membrane [55] 
through PKCζ-mediated inhibition of phosphatidylinositol 
3,4,5-trisphosphate binding the AKT pleckstrin homology 
domain [56, 57] or by augmenting protein phosphatase 2A 
(PP2A) dephosphorylation of AKT residues [57, 58]. Cera-
mides may also impair the insulin response in skeletal mus-
cles independent of AKT by inhibiting glucose transporter 
4 (GLUT4) translocation to the plasma membrane, thereby 
reducing muscle glucose uptake [59]. Excess circulating 
glucose upon skeletal muscle insulin resistance might be 
taken up by the liver and serves as a source for de novo lipo-
genesis, of which the primary output is saturated long-chain 
FA, culminating in further lipid deposition in the liver and 
secretion in VLDL particles [60]. Recent studies revealed 
that senescent hepatocytes and adipocytes can promote the 
development of metabolic diseases. This occurs either by 
reducing mitochondrial FA oxidation, causing hepatic lipid 
accumulation and fatty liver disease [61] or by triggering 
the NFkB-dependent senescence-associated secretory phe-
notype in adipocytes and causing adipose inflammation 
[62], a hallmark of diabetes. Ceramides have been shown to 
promote senescence [63] through PP1 and PP2A-mediated 
dephosphorylation and inactivation of cyclin-dependent 
kinase 2 (CDK2) [64]. Taken together, it is not surprising 
that blocking ceramide synthesis is effective in preventing 
diet-induced insulin resistance [65]. Conversely, senothera-
peutic drugs (inhibiting senescence) may be useful too, since 
they have recently been shown to improve the regenerative 
capacity of the adult liver [66]. In summary, these new types 
of drugs suggest a bright future for treating liver diseases or 
at least some of their clinical manifestations.

FA are the building blocks of membranes, stored lipids 
and efficient energy substrates, composed of hydrocarbon 
chains linked to a carboxylic acid group. FAs that are taken 

Fig. 1   Under physiological conditions, free fatty acids (FA) taken up 
from plasma by the liver through specific CD36 and FA transport pro-
tein (FATP) family receptors can undergo β-oxidation (not shown), 
Lipid droplet (LD) formation or VLDL formation, depending on the 
energy needs of the body. However, the metabolic conditions leading 
to elevated plasma FA concentrations result in increased FA uptake, 
leading to elevated intracellular FA to which the liver responds by 
increasing LD deposition, β-oxidation, and VLDL formation. Current 
evidence also indicates that FAs might be released or transported to 
the bloodstream as a response to intracellular FA increase
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up by the cell, are either re-esterified or activate peroxisome 
proliferator-activated receptor α (PPARα) to induce mito-
chondrial and peroxisomal β-oxidation to yield acetyl-CoA 
[67, 68], with the ultimate goal of generating ATP. Accord-
ingly, PPARα levels are increased in fatty liver disease 
patients and its deletion leads to the worsening of steato-
sis, reflecting a compensatory mechanism against excessive 
FA influx [69]. However, NASH patients exhibit reduced 
PPARα levels [70] which further exacerbates the condition 
by impairing FA clearance and causing more FAs to enter 
the TAG synthesis pathway in a vicious cycle. Overload of 
cellular FA exceeding the capacity of TAG synthesis leads 
to increased DAG levels, an intermediate metabolite, which 
activates protein kinase C (PKC) and blunts insulin recep-
tor signaling [71], resulting in hepatic insulin resistance. 
It is thus not a coincidence that about 34–70% of diabetic 
patients also suffer from fatty liver disease [72].

The type of circulating FAs can impact other organs 
besides the liver. Medium- and long-chain FA are ligands for 
the receptor GPR40 and act on pancreatic β-cells to enhance 
the secretion of insulin [73] by inducing the endoplasmic 
reticulum (ER) to release its calcium stores and trigger-
ing exocytosis of insulin vesicles [74]. In addition to the 
pancreas, FAs activate GPR40 as well as GPR120 on the 
enteroendocrine cells of the gut to induce the secretion of 
incretins and indirectly promote pancreatic insulin secre-
tion [75, 76]. Notably, we have observed that the chronic 
release of excessive amounts of FA into the blood can lead 
to insulin resistance by sustaining elevated blood insulin 
levels in a mouse model with dysfunctional hepatic mito-
chondrial β-oxidation [77]. This FA-mediated organ cross-
talk might provide a mechanism by which organ-specific 
insulin resistance can develop into systemic insulin resist-
ance. Interestingly, GPR40 deficiency protects from insulin 
resistance [78] while GPR120 deficiency results in obesity 

Fig. 2   A TAG molecules 
constituting the VLDL particles 
secreted from the liver can be 
liberated by lipoprotein lipase 
(LPL). Free fatty acids (FAs) 
can then be taken up by CD36 
or FA transport protein recep-
tors. Alternatively, FAs can pass 
through the lipid bilayer by pas-
sive diffusion. VLDL particles 
can also be taken up directly by 
target tissues via VLDL 
receptor (VLDLR)-mediated 
endocytosis. B The amount and 
the composition of VLDL is 
altered during the development 
of fatty liver disease. While 
LPL-mediated FA uptake is 
increased in adipose, muscle 
and heart tissue; receptor-medi-
ated VLDLR uptake is critical 
for the pancreas. The red arrow 
indicates the deleterious effect 
of increased VLDL concentra-
tions. TAG​ triacylglycerol, PL 
phospholipids, SPL sphingolip-
ids, CE cholesteryl esters, Cer 
ceramide
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and insulin resistance [79]. This discrepancy might be due 
to a preference for GPR40 for saturated FA and GPR120 for 
unsaturated FA [80], suggesting a difference in metabolic 
regulation by saturated and unsaturated FA [81].

Short-, medium- and long-chain FA, can influence insulin 
secretion indirectly. Short-chain FAs (SCFAs) are ligands 
of GPR41 and GPR43 and promote the secretion of incre-
tins by enteroendocrine cells of the gut [82]. Paradoxically, 
SCFAs inhibit insulin signaling only in adipocytes through 
the activity of GPR43 but increase insulin sensitivity in 
other organs. This is proposed to prevent excessive stor-
age of energy in the adipose tissue while enhancing energy 
expenditure in other organs. Of note, this effect was depend-
ent on the composition of the gut microbiota, suggesting 
microbes are the primary sources of SCFAs [83, 84]. This 
indicates the importance of metabolite signaling between 
the gut microbiota and the metabolic organs of our body 
and will be discussed further below in the context of bile 
acids. The human body produces SCFAs as a product of 
β-oxidation and ketogenesis or from ethanol by mitochon-
drial acetyl-CoA hydrolase (ACOT9) upon ethanol con-
sumption. Free acetate, a type of SCFA, is not used by the 
liver for ATP generation since hepatic acetyl CoA synthetase 
has a low affinity for acetate [85]. Acetate is more likely 
delivered to the heart, as the cardiac acetyl-CoA synthetase 
has a high affinity for acetate and converts it to acetyl-CoA 
for energy [85]. On the other hand, excessive ethanol con-
sumption leading to elevated levels of plasma acetate and, 
correspondingly, acetyl-CoA, can enhance histone acetyla-
tion in immune cells to up-regulate the expression of inflam-
matory cytokines, contributing to acute alcoholic hepatitis 
[86] or in hippocampal cells to modulate transcriptional 
responses of alcohol-associated learning and memory [87].

As discussed above, FAs are primarily released from 
the adipose tissue. Indeed, increased plasma FAs, as in obe-
sity, are scavenged by the liver, leading to elevated lipid 
deposition. Excessive lipid deposition, namely liver steato-
sis, triggers compensatory mechanisms by enhancing VLDL 
formation and secretion, thereby reducing the lipid burden 
of the liver [26]. Although VLDL secretion is best known 
as a FA export mechanism, a recent study on liver-specific 
CDK mutant mice has shown that the liver might directly 
release FAs into the plasma [77]. CDK family proteins are 
master regulators of the cell cycle [88]. Among other CDKs, 
CDK1 drives the cell cycle through G2 to mitosis when 
bound by the cyclin B1 protein; and its deletion results in 
mitosis failure, but hepatocytes grow further in size [89]. 
We have shown that Cdk1 deletion in hepatocytes, thereby 
preventing mitosis, results in the depletion of liver TAGs 
and substantially decreased plasma VLDL levels. Partially 
due to elevated expression of liver adipose triglyceride 
lipase (ATGL,  encoded by PNPLA2), the rate-limiting 
enzyme releasing FA from cytosolic LDs [90]. Surprisingly, 

however, plasma FA concentrations were significantly ele-
vated in liver-specific Cdk1 mutant mice [77]. As a result, 
FAs affected the physiology of the adipose tissue, muscle, 
and pancreatic islets, resulting in hyperinsulinemia. Over 
time, these animals developed insulin resistance, and the 
increased blood glucose levels activated the transcription 
factor liver X receptor (LXR). The LXR/RXR dimer then 
promotes the expression of lipogenic genes, resulting in liver 
steatosis. Interestingly, the phenotype of this mouse model 
with a mutation in hepatocytes was dependent on interorgan 
crosstalk, suggesting that more than one organ is at fault in 
T2D and fatty liver disease [77].

Although the fatty liver disease-associated mechanisms 
seem to contribute to the total lipid burden of the body 
(Fig. 2B), there is still a need for a deeper understanding of 
how the liver remodels peripheral tissues during the devel-
opment of the disease. Future studies on diverse lipid species 
secreted from the liver and their effects on target tissues 
would pave the way to develop more precise therapeutic 
molecules against fatty liver disease or associated diseases.

Bile acids

In addition to regulating metabolic functions, the liver also 
plays a critical role, together with the digestive system, 
to control bile acid production, secretion, and recycling. 
Although bile acids are well-acknowledged for their function 
in emulsifying lipids in the intestinal lumen, it has also been 
shown that plasma bile acid concentrations are dysregulated 
during the development of fatty liver disease [91] and more 
importantly, they act as signaling molecules on peripheral 
tissues [92].

Primary bile acids produced by hepatocytes from cho-
lesterol are chenodeoxycholic acid (CDCA) and cholic 
acid (CA). These are typically conjugated to glycine or, to 
a lesser extent, taurine before secretion [93]. Conjugated 
bile acids are usually referred to as bile salts, stored in the 
gallbladder and secreted via the bile duct into the duodenum, 
which is mediated by the ATP-binding cassette subfamily B 
member 11 (ABCB11) and multidrug resistance-associated 
protein 2 (MRP2) transporters [94]. Up to 95% of primary 
bile acids are recycled in the ileum, either via the apical 
sodium-dependent bile acid transporter (ABST) found on 
enterocytes or via passive diffusion [95, 96]. Enterocytes 
secrete bile acids into the portal circulation via the organic 
solute transporter α (OSTα) and OSTβ proteins [97]. Portal 
bile acids are then actively transported to hepatocytes by the 
organic anion transporting polypeptide (OATP) and sodium 
taurocholate co-transporting polypeptide (NTCP) [98]. A 
portion of the bile salts, however, becomes deconjugated by 
microbial hydrolases, and bacterial enzymes further convert 
these into secondary bile acids: lithocholic acid (LCA) and 
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deoxycholic acid (DCA), which are derived from CDCA and 
from CA [99], respectively. Therefore, the gut microbiome 
plays an important role in the recycling of bile acids. Sec-
ondary bile acids can then re-enter the enterohepatic system 
by passive diffusion and serve as signaling molecules [100]. 
A small portion of bile acids in the portal circulation may 
escape liver uptake and can be found in the bloodstream. Not 
surprisingly, serum bile acids are elevated postprandially 
[101]. However, the liver robustly clears the remaining bile 
acids from circulation. Therefore, the persistency of high 
bile acid concentration in the circulation has been associ-
ated with liver diseases [102–104] and can be manifested 
by jaundice.

The presence of circulating bile acids is primarily rec-
ognized by two receptors found in peripheral tissues: the 
farnesoid X receptor (FXR) and G Protein-Coupled Bile 
Acid Receptor 1 (TGR5). Unconjugated primary bile acids 
are taken up through the intestines, bind, and activate the 
transcription factor FXR [105, 106]. This allows for nega-
tive feedback on bile acid synthesis on two fronts. Activa-
tion of hepatic FXR promotes expression of nuclear receptor 
subfamily 0 group B member 2 (NR0B2), which binds and 
represses liver receptor homolog-1 (LRH-1) transcriptional 
activity, thereby reducing the expression of cholesterol 7 
alpha-hydroxylase (CYP7A1), a key enzyme in bile acid 
synthesis [107, 108]. Alternatively, activation of FXR in 
the intestine induces fibroblast growth factor 15 (FGF15) 
production, which travels to the liver via the portal vein and 
stimulates the FGFR4-JNK-NR0B2 pathway in hepatocytes 
to inhibit the transcription of CYP7A1 [109]. Primary bile 
acids also regulate liver lipid metabolism by repressing the 
transcription factor PPARγ coactivator 1- α (PGC-1α) using 
the FXR-NR0B2 axis [110], especially given the crucial role 
of PGC-1α in FA oxidation and utilization [111].

The in vivo data reveals a tissue-specific impact of FXR 
function on the metabolic outcome. Whole-body FXR-
deficiency in mouse models of insulin resistance protects 
mice from diet-induced obesity and glucose intolerance 
[112–114], independent of hepatic FXR, as hepatic insulin 
resistance remains unaffected in the absence of FXR [112]. 
In this context, intestinal FXR appears to be responsible for 
promoting systemic insulin resistance, as intestine-specific 
inhibition of FXR led to a reduced ceramide synthesis and 
therefore prevented and reversed the development of fatty 
liver disease [115], possibly by preventing adipose inflam-
mation caused by bile acids produced by the gut microbiota 
[114]. In contrast, hepatic FXR is protective against fatty 
liver disease, as liver-specific knockout of Fxr enhanced the 
incidence of hepatic steatosis [116]. A recent study supports 
the tissue-specific responses of FXR activation by providing 
evidence that hepatic FXR modulates lipogenesis, whereas 
intestinal FXR controls lipid absorption from the gut [117]. 
Nevertheless, conjugated bile acids might be antagonists of 

FXR [118, 119], instead of unconjugated bile acids. Since 
bile acids are released from hepatocytes in the conjugated 
form and 95% of the conjugated bile acids are absorbed from 
the ileum [120] (Fig. 3A), hepatic FXR exposed to the extra-
cellular environment in the liver are more likely to encounter 
conjugated bile acids and become inhibited. On the other 
hand, intestinal cells are more likely to be exposed to uncon-
jugated bile salts as the gut microbiota deconjugates a small 

Fig. 3   A The liver synthesizes primary bile acids from choles-
terol. Bile acids are also conjugated either with glycine and taurine 
and become conjugated bile acids (CBAs). CBAs are secreted into 
the intestines through bile ducts. CBAs can be deconjugated and/
or turned into secondary bile acids by the microbiome. Primary and 
secondary bile acids are then absorbed through the ileum and shut-
tled back to the liver through the portal vein. Although most of 
the bile acids are taken up by hepatocytes, a small portion escapes 
from absorption and is released into the bloodstream. Bile acids can 
directly bind to the nuclear receptor Farnesoid X receptor (FXR) 
to mediate gene regulation or act on G-protein coupled receptor 
TGR5 to initiate an intracellular signal cascade. B Although plasma 
bile acids seem to increase in patients with fatty liver, the effect on 
peripheral tissue is mostly determined as anti-diabetic (green arrow)
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percentage of bile acids that are released into the intestines 
to promote FXR signaling [119].

Besides the entero-hepatic system, although expressed 
at relatively low levels, FXR activation in various tissues 
significantly impacts energy homeostasis. In the pancreas of 
obese animals, FXR translocates to the nucleus and protects 
pancreatic islet cells against lipotoxicity [121]. In another 
study, FXR activation in β-cells has been shown to stimulate 
insulin secretion and glucose uptake [122]. Another strong 
implication of the roles of FXR in energy metabolism is 
adipose tissue: animals lacking FXR show impaired adipose 
tissue development and insulin resistance [123]. Interest-
ingly, hypothalamic FXR has been reported to have a resid-
ual expression profile [124] but modulates brown adipose 
tissue through the sympathetic system upon FXR agonist 
treatment [125].

Obviously, findings of FXR activity are contradictory 
since fatty liver disease patients show elevated levels of 
serum bile acids despite the bile acid receptor FXR being 
mostly associated with improved energy homeostasis [126]. 
This contradiction could partially be attributed to the bile 
acid composition instead of the total amount of bile acids. 
In one clinical study, although serum total bile acid con-
centration was significantly elevated in fatty liver disease 
patients compared to the healthy cohort, the amount was not 
significantly altered between patients suffering from fatty 
liver or steatohepatitis [127]. Conversely, conjugated bile 
acid ratios were decreased in NASH compared to fatty liver 
disease [127] while cholic acid conjugates are increased in 
NASH. The other plausible explanation could be the dif-
ferential effect of bile acids on FXR receptors. One such 
example is that 12α-hydroxylated secondary bile acids, LCA 
and DCA, increase during T2D and are known to antagonize 
FXR [128].

Secondary bile acids like taurolithocholic acid (TLCA), 
LCA, and DCA [129], produced by the gut microbiome from 
primary bile acids, are preferential ligands for the receptor 
TGR5 [130]. Unlike FXR, studies on TGR5 conclusively 
point to TGR5 being anti-diabetic. For example, treatment 
with bile acids activates TGR5 in brown adipose tissues in 
mice or skeletal muscle in humans to induce type 2 iodothy-
ronine deiodinase activity, which increases the active thyroid 
hormone levels and promotes higher energy consumption 
[131]. Bile acid-mediated activation of TGR5 also regu-
lates glucose homeostasis by enhancing insulin secretion 
by pancreatic β-cells through cAMP-PKA signaling [132] 
or triggering intestinal incretin secretion [133]. Accordingly, 
TGR5 signaling protects against diet-induced obesity [131, 
133] and other diabetes-associated pathologies such as fatty 
liver disease [134], diabetic retinopathy [135], and nephrop-
athy [136]. Notably, observations in humans subjected to 
CDCA treatment support the findings in vitro and in mice, 
with elevated brown adipose tissue activity and energy 

expenditure upon administration of TGR5 agonists but not 
FXR agonists [137]. In distinct tissues such as the nervous 
system, activation of TGR5 in the hypothalamus was shown 
to protect against obesity by reducing food intake [138].

The sensors that secondary bile acids can modulate are 
not restricted to TGR5; they also bind to FXR receptors 
with high affinity. It is acknowledged that disruption of the 
gut microbiome abrogates secondary bile acid formation, 
disrupting TGR5 and FXR stimuli. Of course, this highlights 
the importance of maintaining a healthy gut microbiome 
for proper physiological metabolism. Due to the pleiotropic 
effect of FXR, long-known inhibitors are of limited use in 
the clinic. Therefore, in addition to other pharmacological 
interventions for fatty liver disease, the gut microbiome 
emerges as an alternative therapeutic option.

The recognition of bile acid metabolism and its contribu-
tion to energy homeostasis (Fig. 3B) has enabled the dis-
covery of specific bile acid agonists, which are currently 
under clinical investigation. Although the results are prom-
ising, further safety studies are needed for general use in 
fatty liver disease patients [94]. This clearly indicates that 
further investigations on how different bile acid species act 
on peripheral tissues are needed. In addition to chemical 
intervention, modulation of microbiota would be a promis-
ing tool for adjusting specific plasma bile acid species.

Uric acid

Purine molecules, guanine, and adenine mediate critical 
cellular functions such as monomers in nucleotide synthe-
sis or energy carriers. Purine catabolism takes place in the 
liver through nucleotidase, deaminase, and xanthine oxidase 
enzymes (Fig. 4A). The end product of the purine catabo-
lism in the liver is uric acid which is released into the blood-
stream and excreted through the kidneys [139]. Disrupted 
purine metabolism or uric acid excretion leads to elevated 
serum uric acid levels, namely hyperuricemia. Hyperurice-
mia has long been associated with gout, the accumulation of 
urate crystals in joints, causing painful inflammation. Recent 
studies have also shown that hyperuricemia is also associ-
ated with the development of fatty liver disease.

The lifestyle and feeding habits of human beings have 
dramatically changed over the last decades, mainly due to 
the industrialization of food production. Similarly, the com-
position of the diet has also undergone fundamental changes. 
One such example is high fructose corn syrup which is heav-
ily used in food and beverages as a sweetener [140]. It is 
well-documented that fructose has the propensity to pro-
mote fatty liver disease and other metabolic diseases [141]. 
Dietary fructose is taken up in the small intestine either by 
the transporter GLUT5 into intestinal epithelial cells [142], 
where it is metabolized by the ubiquitous ketohexokinase-C, 
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or by GLUT2 into the hepatic portal system [143] to be 
delivered to hepatocytes and broken down by the hepatic 
ketohexokinase-A. The two ketohexokinases are alterna-
tively spliced isoforms that utilize ATP to convert fructose to 
fructose-1-phosphate, which is converted to glyceraldehyde 
and dihydroxyacetone phosphate, after which the fructose 
metabolic pathway converges with glucose metabolism at 
the glycolytic step (Fig. 4A) [141]. Interestingly, the dif-
ferent routes of fructose uptake have distinct impacts on 
the development of fatty liver disease. Intestinal uptake 
and clearance of fructose protect against fructose-induced 
fatty liver by reducing the amount of fructose, microbi-
ome, and bacterial toxins taken up by the liver, alleviating 
liver inflammation [144, 145]. On the other hand, hepatic 

fructose metabolism is linked to hepatic steatosis [141]. 
High hepatic ketohexokinase activity, a result of excessive 
fructose consumption overwhelming the intestinal fructose 
clearance capacity, can cause a drop in ATP and intracellular 
phosphate levels [146, 147], thereby triggering the activ-
ity of AMP deaminase [148, 149], which promotes purine 
catabolism. This explains the acute rise in serum uric acid, 
the end product of purine degradation, following fructose 
consumption [150]. This raises the question: why is uric acid 
unfavorable for the liver?

The observation that the fructose-mediated metabolic 
syndrome can be partially rescued by treatment with allopu-
rinol, a xanthine oxidase inhibitor that blocks uric acid 
production, suggests that uric acid may be a mediator of 
fructose-dependent fatty liver development [151, 152]. This 
is supported by studies showing that treatment with xanthine 
oxidase inhibitors can rescue the steatotic phenotype in fatty 
liver disease patients and mouse models [153–155]. Notably, 
increased uric acid levels have been observed in non-dietary 
rodent models of insulin resistance by others and ourselves 
[77, 156], and elevated serum uric acid has been identified 
as a risk factor for the development of fatty liver disease 
in humans [157–159], implicating a more generic role for 
purine catabolism in fatty liver disease pathogenesis. Mul-
tiple mechanisms for uric acid-dependent fat accumulation 
in hepatocytes have been suggested. For example, uric acid 
induces oxidative stress leading to the accumulation of cit-
rate, which serves as raw material for de novo lipogenesis 
[160], while promoting the expression of lipogenic enzymes 
via the JNK-sterol regulatory element-binding protein 1-c 
(SREBP-1c) pathway [161]. Alternatively, uric acid can 
cause ER stress, thereby enhancing ER stress-dependent 
cleavage and activation of SREBP-1c [162]. Uric acid may 
additionally promote insulin resistance by reducing the 
expression of the organokines FGF21 through the up-regu-
lation of miR-149-5p [163]. FA oxidation is repressed due 
to redox inactivation of the β-oxidation enzyme enoyl-CoA 
hydratase 1 [160]. Besides promoting lipid accumulation, 
uric acid may also facilitate the progression from hepatic 
steatosis to steatohepatitis by inducing an inflammatory 
response through the release of C–C chemokine ligand 2 
(CCL2) from endothelial cells [164] and activation of the 
NRLP3 inflammasome [165] via the ROS-TXNIP pathway 
[166] to promote cell death in hepatocytes [167].

Besides the liver, uric acid can also affect other organs 
(Fig. 4B). Perhaps, the most studied clinical manifestations 
of elevated plasma uric acid (hyperuricemia) in peripheral 
tissues are crystal formation in joints, namely gout [168]. 
However, hyperuricemia can also affect other metabolic 
organs including the adipose tissue and pancreas. Uric acid 
treatment has been shown to inhibit glucose-stimulated 
insulin secretion in isolated pancreatic islets and pancre-
atic β-cell lines while inducing β-cell apoptosis [169–171], 

Fig. 4   A After digestion, the liver is exposed to large amounts 
of fructose through the portal vein. Excessive fructose leads to a 
decrease in ATP levels and an increase in AMP concentration and 
AMP deaminase. Elevated deaminase activity promotes purine catab-
olism and eventually leads to a net increase in uric acid formation. B 
Elevated uric acid is a well-known cause of gout. It was also shown 
to inhibit insulin secretion, cause β-cell apoptosis, and adipogenesis. 
(the red arrow indicates the deleterious effect of hyperuricemia) TCA​ 
tricarboxylic acid cycle, F-1-P Fructose-1-phosphate, AMPD AMP 
deaminase, PNP purine nucleotide phosphorylase, XO xanthine oxi-
dase, ALDOB aldolase B, TKFC triokinase/FMN cyclase, GA D-glyc-
eraldehyde, GA3P D-glyceraldehyde-3-phosphase
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a common phenomenon seen in T2D. Uric acid can also 
promote adipogenesis in mesenchymal stem cells, contrib-
uting to fructose-mediated obesity [172]. Interestingly, uric 
acid may be secreted by adipocytes, through enhanced uric 
acid production by adipose tissues from obese animals [173]. 
These findings highlight a positive feedback loop between 
the liver and the adipose tissue and the interplay between 
purine catabolism and lipogenesis in these two metabolic 
organs in cases of metabolic disease. In addition to its direct 
role on metabolic tissues, uric acid has been shown to act on 
the central nervous system and modulate energy metabolism. 
In one study, high-uric acid diet fed rats displayed elevated 
levels of inflammatory cytokines, activated NF-kB pathway 
and increased gliosis, a reactive response of glial cells, in the 
hypothalamus. This lead to dyslipidemia and glucose intoler-
ance [174]. Furthermore, uric acid has also been associated 
with impaired cognitive functions in rat studies [175].

Despite the well-acknowledged anti-oxidant function in 
plasma, uric acid has also been described as a pro-oxidant 
in the cytoplasm or in atherosclerotic plaques, thereby caus-
ing/accelerating the development of cardiovascular disease 
[176].

Conclusions

In the industrialized world, diseases associated with exces-
sive calorie intake have drawn much attention due to chronic 
but devastating physiological outcomes. In this context, fat 
accumulation in the liver and the development of fatty liver 
disease have long been considered associated with obesity 
and T2D. Here, we discussed selected liver-derived metabo-
lites as a ‘cause’ of direct or indirect actions promoting the 
development of fatty liver disease.

As one can expect, no single liver-derived molecule 
has been discovered as the primary contributor to the fatty 
liver disease itself or the associated diseases. Accordingly, 
although fatty liver disease biomarkers have been intensively 
studied, and more metabolites have been covered, the predic-
tive value of the available metabolites is still limited [177]. 
This is partially due to the current limitation in metabolite 
coverage of mass spectrometry-based metabolomics [178]. 
Furthermore, a mere concentration of the plasma metabo-
lites might not reflect true biological functions. For example, 
plasma lipids derived from the liver are primarily carried in 
lipoprotein particles [179]. These lipoproteins are able to 
act as compartments and exchange various lipids (e.g., TAG 
and cholesteryl ester), which might alter the lipid species 
delivered via the uptake of lipoproteins in peripheral tissues.

As the number of covered metabolites in untargeted 
metabolomics studies increases, another issue remains to be 
tackled: despite primarily being byproducts of physiologi-
cal processes, many metabolites can enter cells via passive 

diffusion, while several others are recognized by cellular 
receptors and taken up by the target tissues. However, many 
metabolite-specific tissue receptors are yet to be discovered 
[180].

Indeed, the development of fatty liver disease is a com-
plex process and requires more mechanistic studies to bet-
ter understand how metabolic disturbances abrogate the 
lipid compensation mechanisms of the liver. However, it is 
equally important to elaborate on how the liver responds to 
the altered physiology.
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