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Abstract
Aims/hypothesis Serum sex hormone-binding globulin (SHBG) has been proposed to act as a hepatokine that contributes to the
extrahepatic complications observed in non-alcoholic fatty liver disease (NAFLD). However, it remains uncertain whether serum
SHBG mediates the association between intrahepatic lipids (IHL) and type 2 diabetes. Therefore, we studied whether, and to
what extent, serum SHBG mediates the association between IHL content and type 2 diabetes.
Methods We used cross-sectional data from the Maastricht Study (n=1554), a population-based cohort study with oversampling
of individuals with type 2 diabetes. Type 2 diabetes status was assessed by oral glucose tolerance test, and IHL content was
measured using 3T Dixon MRI. Mediation analyses were performed to assess the role of serum SHBG in mediating the
association between IHL content and type 2 diabetes.
Results IHL content was significantly associated with type 2 diabetes in women and men (OR 1.08 [95% CI 1.04, 1.14] and OR
1.12 [95% CI 1.08, 1.17], respectively). Serum SHBG significantly mediated the association between IHL content and type 2
diabetes. The contribution of serum SHBG was higher in women (OR 1.04 [95% CI 1.02, 1.07]; proportion mediated 50.9%
[95%CI 26.7, 81.3]) than inmen (OR 1.02 [95%CI 1.01, 1.03]; proportionmediated 17.2% [95%CI 9.6, 27.6]). Repeat analyses
with proxies of type 2 diabetes and adjustment for covariates did not substantially affect the results.
Conclusions/interpretation In this large-scale population-based cohort study, serum SHBG was found to be a mediator of the
association between IHL content and type 2 diabetes. These findings extend our understanding of the potential mechanisms by
which NAFLD is a risk factor for type 2 diabetes, and further elaborate on the role of SHBG as a hepatokine.
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Abbreviations
DHD Dutch Healthy Diet
IHL Intrahepatic lipid
NAFLD Non-alcoholic fatty liver disease
ROI Region of interest
SHBG Sex hormone-binding globulin

Introduction

Non-alcoholic fatty liver disease (NAFLD) is a serious health
concern that affects approximately 25% of the global popula-
tion [1]. It encompasses a spectrum of histological abnormal-
ities that result from excess storage of intrahepatic lipids (IHL)
[2]. NAFLD is a precursor for several hepatic complications
including liver failure and hepatocellular carcinoma, and is
also a risk factor for the development of various extrahepatic
complications, such as type 2 diabetes and cardiovascular
disease [3, 4].

It has been proposed that hepatokines (liver-derived
proteins that have systemic metabolic effects) may, in part,
mediate the association between IHL accumulation and extra-
hepatic complications [5, 6]. Serum sex hormone-binding
globulin (SHBG) has emerged as a hepatokine [7, 8]. SHBG
is a glycoprotein that is synthesised in the liver under the
regulation of several transcription factors including hepato-
cyte nuclear factor 4α, constitutive androstane receptor,
peroxisome proliferator-activated receptor γ and chicken
ovalbumin upstream promotor transcription factor [9–11]. In

turn, these transcription factors are affected by several meta-
bolic, hormonal, inflammatory and nutritional factors.
Experimental studies have shown that de novo lipogenesis,
the principal pathway resulting in accumulation of IHL [12],
downregulates hepatocyte nuclear factor 4α, resulting in
reduced SHBG expression [13].We have previously extended
these experimental data by showing that de novo lipogenesis,
assessed using stable isotopes [12], is inversely associated
with serum SHBG levels in humans [14].

Of interest, Mendelian randomisation studies have
shown that genetically predicted low serum SHBG levels
are associated with a higher risk of type 2 diabetes [15, 16].
This effect appears to be attributable to SHBG itself, i.e.
independent of the effects of SHBG on free testosterone
levels [17].

However, it remains to be elucidated to what extent serum
SHBG mediates the association between IHL accumulation
and type 2 diabetes. Therefore, the aim of the present study
was to assess whether, and to what extent, serum SHBG has a
mediating role in the association between IHL content and
type 2 diabetes in a population-based cohort.

Methods

Study population The Maastricht Study is a population-based
cohort study with oversampling of individuals with type 2
diabetes. The study design and rationale have been extensive-
ly described previously [18]. In brief, the Maastricht Study
focuses on the aetiology, pathophysiology, complications
and comorbidities of type 2 diabetes, and involves extensive
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phenotyping of all participants. All individuals between 40
and 75 years of age living in the southern part of the
Netherlands were eligible for participation. Participants were
recruited through mass media campaigns and via mailings
from the municipal registries and the regional Diabetes
Patient Registry.

The present study includes cross-sectional data from 3340
participants in whom serum SHBG levels were measured and
who completed baseline measurements between November
2010 and December 2017. Quantification of IHL content
was implemented from December 2013 onwards.
Participants were excluded from the current analyses if they
were diagnosed with other types of diabetes (n=41) or had
missing data for IHL content (n=1161) or covariates
(n=584). This resulted in a study population of 1554 partici-
pants (see electronic supplementary material [ESM] Fig. 1), of
whom 369 had type 2 diabetes.

The Maastricht Study has been approved by the institution-
al medical ethical committee (NL31329.068.10) and the
Minister of Health, Welfare and Sports of the Netherlands
(permit 131088-105234-PG). All participants gave written
informed consent prior to participation.

Outcome: type 2 diabetes All participants underwent a
standardised 2 h 75 g oral glucose tolerance test after an over-
night fast, except for individuals using insulin and/or individ-
uals with a fasting capillary glucose ≥ 11.1 mmol/l. For these
individuals, information about fasting glucose levels, use of
glucose-lowering medication, and history of other types of
diabetes was used to assess type 2 diabetes status [18].
Diabetes was defined according to the WHO 2006 diagnostic
criteria as a fasting plasma glucose ≥ 7.0 mmol/l and/or a 2 h
plasma glucose ≥ 11.1 mmol/l [19].

Exposure: IHL content IHL content was quantified by Dixon
MR imaging using a 3.0 Tesla MRI system (MAGNETOM
Prismafit, Siemens, Germany) with body matrix and supine
radiofrequency coils. After a scout scan, transverse two-
dimensional T2-weighted true fast imaging with steady-state
free precession (T2w TRUFI) images of the liver were obtain-
ed using the following variables: voxel size: 1.2 × 1.2 × 5.0
mm3, repetition time 422 ms, echo time 1.65 ms, flip angle
60°, number of signal averages 1, parallel imaging
(GRAPPA) factor 2. Next, transverse two-dimensional turbo
spin echo Dixon MR images were obtained of the liver during
a breath-hold using the following variables: voxel size: 2.0 ×
2.0 × 6.0 mm3, number of slices 4, repetition time 500 ms,
echo time 31 ms, turbo factor 5, number of signal averages 1,
parallel imaging (GRAPPA) factor 3 [20]. Three regions of
interest (ROIs) in the liver were drawn on the T2w TRUFI
images by trained observers, taking care to position the ROIs

in artifact-free regions and to avoid positioning the ROIs on
visible structures, such as vessels and bile ducts.
Subsequently, these ROIs were copied to the water and fat
Dixon MR images to calculate the IHL percentage, expressed
as the ratio CH2/H2O × 100%. Hepatic steatosis has been
defined as an IHL content >5.56% when expressed as CH2/
(H2O + CH2) [21], which corresponds to a cut-off of 5.89%
(0.0556/(1–0.0556)) when IHL is expressed as CH2/H2O, as
was done in this study.

The Dixon MRI method was validated in 36 participants
with a broad range of IHL content, and calibrated against the
results obtained using 3T protonmagnetic resonance spectros-
copy (1H-MRS), i.e. the gold standard for non-invasively
quantifying IHL [22]. After calibration, the intraclass correla-
tion coefficient between Dixon MRI and 1H-MRS was 0.989
(95% CI 0.979, 0.994).

Mediator: serum SHBG levels Serum SHBG levels were
measured using a human SHBGDuoSet solid-phase sandwich
ELISA (R&DSystems, USA) according to the manufacturer’s
instructions. The intra- and interassay coefficients of variation
for serum SHBG were 2.8% and 5.1%, respectively. The
DuoSet ELISA was validated against a chemiluminescent
immunometric assay (Immulite XPi, Siemens, Germany) in
eight samples. The intraclass correlation coefficient was
0.974 (95% CI 0.862, 0.995).

Measurement of covariates All participants completed ques-
tionnaires regarding age, sex, educational level (low, medium
or high), smoking status (never, former or current smoker),
use of alcohol (g/day) and menopausal status (postmenopaus-
al status was defined as a most recent menstrual period more
than 12 months prior to the time of assessment) [18]. Use of
medication was assessed through medication interviews.
Anthropometric measurements including weight, height,
waist circumference and office systolic and diastolic blood
pressure were measured during physical examination. BMI
was calculated as weight (kg) divided by height (m) squared
[18]. Daily total physical activity levels were measured during
8 consecutive days using activPAL3 physical activity moni-
tors (PAL Technologies, UK) and expressed as minutes of
stepping activity per day [23]. Fasting levels of glucose, insu-
lin, HbA1c and lipid profile (total cholesterol, HDL-cholester-
ol, LDL-cholesterol and triglycerides) were measured in
venous blood samples [18]. Insulin sensitivity was estimated
using the Matsuda insulin sensitivity index [24]. Adherence to
the Dutch dietary guidelines was assessed based on the Dutch
Healthy Diet (DHD) index consisting of 15 components and
based on food frequency questionnaires [25]. In the
Maastricht Study, the DHD index consists of 14 components
(DHD-14). The coffee component was not included as it is
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based on the type of coffee consumed, which the food
frequency questionnaires were unable to distinguish between
[26]. Furthermore, as we included alcohol consumption as a
separate covariate in the regression models (see below), the
DHD index in the present study was reported as the DHD-13
(DHD-14 minus the alcohol component).

Statistical analyses Continuous data are presented as mean ±
SD, or as median (IQR) in the case of a non-normal distribu-
tion. Categorical data are presented as percentages. Non-
normally distributed variables were log10-transformed prior
to further analyses.

Univariate regression analyses were performed to study the
associations between (1) IHL content and serum SHBG; (2)
serum SHBG and type 2 diabetes (crude and adjusted for IHL
content); and (3) IHL content and type 2 diabetes. All associ-
ations were explored for an interaction with sex. Regression
coefficients are presented as unstandardised β coefficients.

Mediation analyses were then performed to investigate
whether the association between IHL content and type 2
diabetes status was mediated by serum SHBG, as illustrated
in the directed acyclic graph in ESM Fig. 2. We also tested for
an effect of an interaction between the exposure and the medi-
ator on the outcome. Themediation analyses were adjusted for
the following confounders: model 1 was adjusted for age;
model 2 was additionally adjusted for (proxies of) lifestyle:
BMI, alcohol intake, DHD-13, level of education and total
physical activity; model 3 was additionally adjusted for meno-
pausal status and use of oestrogen-containing medication in
women. Furthermore, given the oversampling of participants
with type 2 diabetes, analyses were repeated after taking the
higher prevalence of type 2 diabetes into consideration using
case–control mediation analyses [27]. The analyses were then
repeated using a binary exposure, i.e. hepatic steatosis yes/no.
Lastly, to further test the robustness of our findings,
the analyses were repeated with adjustment for waist circum-
ference instead of BMI (model 2), and analyses were repeated
with proxies of type 2 diabetes as the outcome variable, i.e.
HbA1c and the Matsuda index.

For all mediation analyses, the regression-based approach
[28, 29] was used to estimate the natural direct and natural
indirect effects. The 95% CIs were estimated using non-
parametric bootstrapping with the percentile method. The
proportion mediated (%) was estimated as ORDirect ×
(ORIndirect – 1)/(ORDirect × ORIndirect – 1) × 100 in the case
of a binary outcome [30], or asβIndirect/βTotal × 100 in the case
of a continuous outcome [31]. All results were considered
statistically significant at a p value<0.05, except for interac-
tion terms where a less stringent p value threshold was consid-
ered statistically significant (p<0.10).

Statistical analyses were performed using SPSS version
27.0 for Windows (IBM, USA) and R statistical software

version 4.0.1 (R Foundation for Statistical Computing,
Austria) with the CMAverse package [32].

Results

Study population Table 1 shows the characteristics of the
overall study population and the population stratified accord-
ing to type 2 diabetes status. The overall population had a
mean age of 60 ± 8 years and 47.9% were female, of whom
the majority (79.2%) were postmenopausal. Only a small
number of women (4.0%) used oestrogen-containing medica-
tion. The overall population had a median IHL content of
3.5% (IQR 2.1–6.5) and a median serum SHBG level of
35.5 nmol/l (IQR 25.3–49.8). Although Table 1 data were
not tested for statistical significance, participants with type 2
diabetes were more often male, tended to be older, and gener-
ally had a poorer metabolic profile (i.e. higher BMI, waist
circumference, systolic blood pressure and serum triglycer-
ides, and lower HDL-cholesterol and Matsuda index).
Furthermore, participants with type 2 diabetes had a higher
median IHL content and lower serum SHBG levels.

Univariate regression analyses Univariate regression analyses
were performed to study the association between (1) IHL
content and serum SHBG levels (i.e. exposure–mediator);
(2) IHL content and type 2 diabetes status (i.e. exposure–
outcome); and (3) serum SHBG levels and type 2 diabetes
status (i.e. mediator–outcome). As there was a statistically
significant interaction effect of the dependent variable and
sex on the outcome for all three associations (p=0.001,
0.040 and < 0.001, respectively), all analyses were subse-
quently stratified according to sex. The sex-stratified popula-
tion characteristics are presented in ESM Table 1.

There was a statistically significant inverse association
between IHL content and serum SHBG levels in men and
women (β −0.008 [95% CI −0.010, −0.006] and β −0.014
[95% CI −0.017, −0.011], respectively) (Fig. 1). The strength
of association was stronger in women, and this remained after
exclusion of premenopausal women and women using
oestrogen-containing medication (β −0.015 [95% CI
−0.018, −0.012]). Furthermore, there was a statistically signif-
icant association between IHL content and type 2 diabetes
status in men and women (OR 1.12 [95% CI 1.08, 1.17] and
OR 1.08 [95% CI 1.04, 1.14], respectively). Of note, these
associations represent the total effect estimates in the media-
tion analyses (i.e. exposure–outcome). Lastly, there was a
statistically significant inverse association between serum
SHBG and type 2 diabetes status in men and women (OR
0.96 [95% CI 0.95, 0.98] and OR 0.98 [95% CI 0.97, 0.99],
respectively). Adjustment for IHL content did not affect these
associations (OR 0.97 [95% CI 0.96, 0.98] and OR 0.98 [95%
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CI 0.97, 0.99], respectively). Furthermore, for all analyses,
adjustment for age, BMI, alcohol intake, DHD-13, level of

education, physical activity, and menopausal status and use
of oestrogen-containing medication in women, did not

Table 1 Characteristics of the overall study population and the population stratified according to type 2 diabetes status

Variable Overall
(n=1554)

Individuals without type 2 diabetes
(n=1185)

Individuals with type 2 diabetes
(n=369)

Age, years 60 ± 8 59 ± 8 62 ± 8

Sex, % women 47.9 53.8 29.0

Postmenopausal, % of women 79.2 78.3 84.1

Use of oestrogen-containing medication, % of women 4.0 3.8 5.6

Education level low/medium/high, % 30.3/28.8/40.9 27.3/28.4/44.2 39.8/30.1/30.1

Smoking, never/former/current, % 38.0/50.2/11.8 39.0/49.3/11.7 34.8/53.0/12.2

DHD index (DHD-13)a 77.2 ± 13.9 78.0 ± 13.9 74.8 ± 13.7

Alcohol, g/day 9.0 (2.0–19.0) 9.8 (2.7–19.5) 5.8 (0.5–16.0)

Physical activity, min/day 120.8 (93.6–148.7) 125.5 (101.1–152.5) 100.9 (74.6–135.8)

BMI, kg/m2 26.6 ± 4.1 25.8 ± 3.7 29.0 ± 4.3

Waist circumference, cm 94.3 ± 12.5 91.3 ± 11.0 103.8 ± 12.5

Office systolic blood pressure, mmHg 134 ± 17 132 ± 17 140 ± 16

Office diastolic blood pressure, mmHg 76 ± 10 76 ± 10 77 ± 9

Total cholesterol, mmol/l 5.3 ± 1.2 5.6 ± 1.1 4.5 ± 1.0

HDL-cholesterol, mmol/l 1.6 ± 0.5 1.7 ± 0.5 1.3 ± 0.4

LDL-cholesterol, mmol/l 3.1 ± 1.0 3.3 ± 1.0 2.4 ± 0.9

Triglycerides, mmol/l 1.2 (0.9–1.7) 1.1 (0.8–1.5) 1.5 (1.1–2.1)

Use of lipid-modifying medication, % 32.3 19.7 72.9

HbA1c, % 5.6 (5.4–6.0) 5.4 (5.3–5.7) 6.7 (6.2–7.4)

HbA1c, mmol/mol 38.0 (35.0–42.0) 36.0 (34.0–39.0) 50.0 (44.5–57.0)

Fasting glucose, mmol/l 5.5 (5.0–6.3) 5.3 (4.9–5.7) 7.5 (6.8–8.6)

Fasting insulin, mmol/l 59.1 (41.8–87.8) 55.3 (40.0–77.0) 83.2 (51.3–126.0)

Matsuda index 3.6 (2.1–5.3) 4.1 (2.6–5.8) 2.0 (1.3–3.0)

Use of glucose-lowering medication, % 17.9 0.0 75.3

IHL content, % 3.5 (2.1–6.5) 2.9 (1.9–5.1) 5.2 (3.5–10.7)

Hepatic steatosis, % yes 29.9 22.0 55.0

Serum SHBG, nmol/l 35.5 (25.3–49.8) 38.7 (27.6–54.2) 26.4 (19.6–37.0)

Data are presented as mean ± SD or median (IQR) unless otherwise indicated
a Dutch Healthy Diet (DHD-14) index minus alcohol component (DHD-13)

Fig. 1 Association between IHL content and serum SHBG (logarithmic scale) in men (a) and women (b). The black line represents the line of best fit
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substantially affect the results (p<0.025 for all analyses; data
not shown).

Mediation analyses We performed mediation analyses to
assess whether, and to what extent, the relationship between
IHL content and type 2 diabetes status was mediated by serum
SHBG levels. There was no interaction effect of the exposure
and the mediator on the outcome in both men and women.We
found that the association between IHL content and type 2
diabetes was statistically significantly mediated by serum
SHBG in men (OR 1.02 [95% CI 1.01, 1.03]) and women
(OR 1.04 [95% CI 1.02, 1.07]) (Fig. 2). In men, serum
SHBG was estimated to mediate 17.2% (95% CI 9.6, 27.6)
of the association between IHL content and type 2 diabetes,
while the proportion mediated was 50.9% (95%CI 26.7, 81.3)
in women. The mediation effect of serum SHBG remained
statistically significant after adjustment for age (model 1),
BMI, alcohol intake, DHD-13, level of education and total
physical activity (model 2), and menopausal status and use
of oestrogen-containing medication in women (model 3)
(Table 2).

Additional analyses The mediation analyses were repeated
after accounting for the oversampling of participants with type
2 diabetes in the Maastricht Study; this did not substantially
affect the results (ESM Table 2). In addition, the analyses
were repeated using a binary exposure, i.e. hepatic steatosis
(yes/no). This did not materially affect the results, although
statistical significance was lost in model 2 for men (p=0.16;
ESM Table 3). In addition, the mediation analyses were
repeated after adjustment for waist circumference instead of
BMI (model 2); this did not materially change the results
(ESM Table 4). Finally, mediation analyses were repeated
using proxies for type 2 diabetes (i.e. HbA1c and the
Matsuda index) as the dependent variable. In both men and

women, serum SHBG remained a statistically significant
mediator in the association between IHL content and both
HbA1c and the Matsuda index in the crude and fully adjusted
models (ESM Tables 5 and 6).

Discussion

In the present study, serum SHBG partially mediated the asso-
ciation between the IHL content and type 2 diabetes status.
Themediating role of serum SHBG in the association between
IHL content and type 2 diabetes was more substantial in
women than in men. Similar results were found when the
analyses were repeated using proxies of type 2 diabetes (i.e.
HbA1c and the Matsuda index) and when adjusted for
confounders.

The importance of hepatokines in the pathogenesis of
extrahepatic disease, in particular type 2 diabetes, is increas-
ingly recognised [5, 6, 33]. Nevertheless, this is the first study
that has assessed the mediation effect of serum SHBG in the
association between IHL content and type 2 diabetes. The
current findings corroborate the hypothesis that SHBG may
have a role not only as carrier protein for testosterone and a
biomarker of metabolic disease, but also as a hepatokine
affecting type 2 diabetes [16, 17, 33]. Experimental studies
have shown that de novo lipogenesis, which is one of the
primary pathways contributing to the accumulation of IHL
[12], downregulates hepatocyte nuclear factor 4α and subse-
quently serum SHBG levels [13], a finding that we recently
extrapolated to humans [14, 34]. Mendelian randomisation
studies have shown that genetically predicted low serum
SHBG levels are causally associated with an increased risk
of type 2 diabetes, independent of the effects of SHBG on free
testosterone levels [15–17, 35]. However, the exact biological
mechanism by which serum SHBG influences type 2 diabetes
is poorly understood, and experimental studies into the

IHL

SHBG

T2D
100% (OR 1.12; 95% CI 1.08, 1.17) 

82.8% (OR 1.10; 95% CI 1.06, 1.15) 

17.2%
(OR 1.02; 95% CI 1.01, 1.03) 

IHL

SHBG

T2D
100% (OR 1.08; 95% CI 1.04, 1.14) 

49.1% (OR 1.04; 95% CI 1.01, 1.09) 

50.9%
(OR 1.04; 95% CI 1.02, 1.07) 

a b

Fig. 2 Crude association between IHL content and type 2 diabetes (T2D)
mediated by serum SHBG in men (a) and women (b). Solid horizontal
arrows represent the total effect, i.e. the association between IHL content

and type 2 diabetes status. Dashed horizontal arrows indicate the direct
effect, i.e. the association between IHL content and type 2 diabetes status
that is not attributable to serum SHBG
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mechanism of action are scarce and sometimes contradictory
[36–38]. These studies are complicated by the fact that wild-
type rodents do not express hepatic SHBG, which limits the
extrapolation to humans. Therefore, further research to unrav-
el the exact mechanisms through which SHBG exerts its
effects is needed.

It is likely that there are several pathways that mediate the
association between IHL content and type 2 diabetes, of which
serum SHBG is merely one. Insulin resistance and excess
(hepatic) glucose production are other well-known mediators
[39]. The accumulation of IHL contributes to an excess of
circulating fatty acid metabolites in peripheral tissues, which
are involved in the pathogenesis of insulin resistance [6, 39].
In addition, the carbohydrate regulatory element binding
protein, which is one of the principal transcription factors that
regulate de novo lipogenesis [40], activates glucose-6-
phosphatase and thereby contributes to increased hepatic
glucose production [41]. It is likely that these pathways are
largely responsible for the remaining direct effect of IHL
content on type 2 diabetes that was observed in this study.

We observed a relatively high estimated proportion of
mediation by serum SHBG in the association between IHL
content and type 2 diabetes. This may be an indication of the
biological relevance of serum SHBG in the pathogenesis of
type 2 diabetes. Indeed, the indirect effects of our mediation

analyses suggest that a single percentage point increase in IHL
content is associated with 8–12% higher odds of type 2 diabe-
tes overall and 2–4% higher odds of type 2 diabetes when
mediated via serum SHBG. Given that the median IHL
content in this study population was 3.5% (IQR 2.1–6.5)
(Table 1), the current findings are likely to be clinically rele-
vant. Nevertheless, in some analyses, there was a considerable
uncertainty in the estimated proportion mediated, particularly
when the direct effect (i.e. the effect of IHL content on type 2
diabetes that was not attributable to serum SHBG) was not
statistically significant. This may indicate methodological
limitations of the estimated proportion mediated, and the
results should therefore be interpreted with care [42].
Furthermore, the high estimated proportion mediated may
partially be the result of potential bi-directionality of the asso-
ciations. Although it is assumed that there is a causal associ-
ation between IHL content, serum SHBG and type 2 diabetes
(an assumption that is supported by experimental and genetic
studies [13, 15, 16]) we cannot exclude the possibility that the
associations are in fact bi-directional. Indeed, experimental
studies have found that transgenic SHBG mice show reduced
IHL content and improved glucose homeostasis [36, 37, 43],
although these findings have not yet been extrapolated to
humans. In addition, hyperinsulinaemia and hyperglycaemia,
which are characteristic of type 2 diabetes [44], stimulate de

Table 2 Mediation effect of serum SHBG on the association between IHL content and type 2 diabetes

Model Men (n=810) Women (n=744)

OR (95% CI) Proportion mediated (95% CI)a OR (95% CI) Proportion mediated (95% CI)a

Crude

Total effectb 1.12 (1.08, 1.17) 1.08 (1.04, 1.14)

Direct effectb 1.10 (1.06, 1.15) 1.04 (1.01, 1.09)

Indirect effectb 1.02 (1.01, 1.03) 17.2 (9.6, 27.6) 1.04 (1.02, 1.07) 50.9 (26.7, 81.3)

Model 1

Total effect 1.13 (1.09, 1.17) 1.08 (1.05, 1.13)

Direct effect 1.10 (1.06, 1.14) 1.04 (1.01, 1.09)

Indirect effect 1.03 (1.02, 1.04) 24.6 (15.6, 36.0) 1.04 (1.02, 1.07) 48.5 (24.0, 80.4)

Model 2

Total effect 1.08 (1.05, 1.13) 1.04 (1.00, 1.09)

Direct effect 1.07 (1.03, 1.11) 1.02 (0.98, 1.07)

Indirect effect 1.01 (1.01, 1.02) 17.7 (8.3, 32.8) 1.02 (1.00, 1.04) 42.6 (2.5, 254.1)

Model 3

Total effect 1.04 (1.00, 1.10)

Direct effect 1.02 (0.98, 1.07)

Indirect effect 1.02 (1.01, 1.04) 55.9 (−72.38, 337.2)

Model 1 was adjusted for age; model 2 was additionally adjusted for BMI, alcohol intake, DHD-13, level of education and total physical activity; model 3
was additionally adjusted for menopausal status and use of oestrogen-containing medication in women
a The proportion mediated (%) is calculated as ORDirect × (ORIndirect − 1)/(ORDirect × ORIndirect − 1) × 100
b Total effect represents association between IHL content and type 2 diabetes status; direct effect represents association between IHL and type 2 diabetes
status not attributable to serum SHBG; indirect effect represents association between IHL and type 2 diabetes attributable to serum SHBG (mediation)
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novo lipogenesis and consequently IHL accumulation [45].
As a result of the bi-directionality of these associations, the
observed estimates should be regarded as the maximummedi-
ation effects.

There was a noticeable difference in the mediation effect of
serum SHBG between men and women, with a higher contri-
bution observed in women. Of interest, previous observational
studies have reported similar sexually dimorphic associations
between IHL content and serum SHBG [7], in line with the
results of the univariate regression analyses in this study [8,
15]. Moreover, genetic studies have reported that variants in
the glucokinase regulator gene GCKR, which are associated
with higher rates of de novo lipogenesis and IHL content [46],
have a stronger, inverse association with serum SHBG in
women than in men [47]. However, the biological mecha-
nisms that account for these sex differences remain poorly
understood and deserve further investigation.

This study has several strengths. By using data from the
Maastricht Study, we were able to obtain a large cohort of
individuals with oversampling of participants with type 2
diabetes. The extensive phenotyping allowed for adjustment
for many well-defined confounders, such as use of oestrogen-
containing medication and physical activity, as assessed using
an accelerometer. Furthermore, IHL content was quantified
using state-of-the-art methodology (i.e. Dixon MRI). This
study also had several limitations. First, as a result of the
cross-sectional nature of the data, we cannot draw conclusions
on causality. Although experimental and genetic studies
support the assumptions of causality in this study, we cannot
exclude the possibility that, as mentioned above, the associa-
tions are bi-directional. Furthermore, although we adjusted for
the most important confounders, we cannot exclude the possi-
bility that there may be residual confounding. For instance,
other unmeasured confounders such as endogenous
oestrogens, thyroid hormone or adipokines, which all affect
IHL content, serum SHBG levels and type 2 diabetes, may
confound the current mediation analyses. Adjustment for
these unmeasured confounders may reduce the strength of
the observations. Furthermore, we cannot exclude the possi-
bility that other hepatokines, which are also associated with
IHL content [33], also mediate the association between IHL
content and type 2 diabetes status [48]; this deserves further
investigation. Lastly, the participants in the current study were
primarily of European descent, aged between 40 and 75 years,
which resulted in a relatively low number of premenopausal
women. Caution should therefore be exercised when extrapo-
lating to other groups.

In conclusion, in a large-scale population-based cohort
study, we show that serum SHBG is a mediator in the associ-
ation between IHL content and type 2 diabetes. The mediation
effect was larger in women. These findings extend our knowl-
edge on the potential mechanisms that link NAFLD with type
2 diabetes, and emphasise the importance of serum SHBG as a

hepatokine. Furthermore, the current data support the concept
that increasing serum SHBG (by reduction of IHL content)
may be used as a means to reduce type 2 diabetes risk.
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