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Abstract

Background: Hypertrophic cardiomyopathy (HCM), a disease with myocardial fibrosis 

manifestation, is a common cause of sudden cardiac death (SCD) due to ventricular arrhythmias 

(VA). Current clinical risk stratification criteria are inadequate in identifying patients who are at 

risk for VA and in need of an implantable cardioverter defibrillator (ICD) for primary prevention.

Objective: We aimed to develop a risk prediction approach based on imaging biomarkers from 

the combination of late gadolinium contrast-enhanced (LGE) MRI and T1 mapping. We then 

aimed to compare the prediction to a virtual heart computational risk assessment approach based 

on LGE-T1 virtual heart models.

Methods: The methodology involved combining short-axis LGE-MRI with post-contrast T1 

maps to define personalized thresholds for diffuse and dense fibrosis. The combined LGE-T1 

maps were used to evaluate imaging biomarkers for VA risk prediction. The risk prediction 

capability of the biomarkers was compared with that of the LGE-T1 virtual heart arrhythmia 

inducibility simulation. VA risk prediction performance from both approaches was compared to 

clinical outcome (presence of clinical VA).

Results: Image-based biomarkers, including hypertrophy, signal intensity heterogeneity, and 

fibrotic border complexity, could not discriminate high vs low VA risk. LGE-T1 virtual heart 

technology outperformed all the image-based biomarker metrics and was statistically significant in 

predicting VA risk in HCM.
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Conclusions: We combined two MR imaging techniques to analyze imaging biomarkers in 

HCM. Raw and processed image-based biomarkers cannot discriminate patients with VA from 

those without VA. Hybrid LGE-T1 virtual heart models could correctly predict VA risk for this 

cohort and may improve SCD risk stratification to better identify HCM patients for primary 

preventative ICD implantation.
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Introduction

Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiac disease with 

an incidence of 1 in 500, resulting in substantial morbidity, especially in young patients, 

and decreased quality of life [1]. The disease presents with fibrosis proliferation of 

the ventricular myocardium which can create substrates for ventricular arrhythmias (VA) 

leading to sudden cardiac death (SCD) in patients who are often asymptomatic [2]. 

Prophylactic implantable cardioverter defibrillator (ICD) deployment is used to prevent 

SCD due to VA in patients with HCM [3]. These procedures carry the risk of potential 

complications as well as morbidity. However, current risk stratification criteria, such as those 

adopted by the American Heart Association and European Society of Cardiology fail to 

accurately identify all patients at risk for SCD, leading to suboptimal rates of appropriate 

ICD implantation [4–6]. Thus, many HCM patients receive ICDs without gaining any health 

benefits, while others are not effectively safeguarded. Additionally, these risk criteria do not 

consider the extent of myocardial fibrosis caused by the disease.

Our group has previously developed virtual-heart technology to predict SCD risk due to 

VA for ischemic and non-ischemic cardiomyopathies [7–10]. In the ischemic population, 

the technology is based on assessing the arrhythmogenic propensity of the disease-induced 

focal fibrotic substrate derived from contrast-enhanced late gadolinium enhancement (LGE) 

cardiovascular magnetic resonance (MRI) [11]. In patients with cardiac sarcoidosis, positron 

emission tomography (PET) imaging was combined with the LGE-MRI data to represent 

the disease-specific active myocardial inflammation that contributes to arrhythmogenesis 

[7]. In the HCM population, we combined post-contrast T1 mapping and LGE-MRI data to 

represent the fibrotic remodeling that occurs in HCM [9].

Patient-specific myocardial diffuse fibrosis forms in patients with HCM as a result of 

hypertrophic remodeling. Fibrosis and image-based features can be quantified in various 

ways, including the amount, distribution, randomness, and complexity. The amount and 

distribution of fibrosis has been associated with arrhythmogenic risk [12]. Entropy has been 

used to measure ventricular myocardial tissue heterogeneity as a predictor of major adverse 

cardiac events [7,13]. Additionally, fractal dimension analysis, a measure of geometric 

complexity, has been used to characterize cardiac fibrosis and stratify arrhythmia risk 

[7]. However, an analysis of combined LGE-MRI imaging with post-contrast T1 mapping 

(LGE-T1), has never been assessed before, and it remains unclear whether these imaging 

biomarkers could be indicative of risk of VA.
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The aim of this article is to evaluate two novel approaches for arrhythmia risk prediction 

in HCM patients: 1) using imaging biomarkers from the combination of LGE-MRI with 

post-contrast T1 mapping (LGE-T1) and 2) using personalized mechanistic heart models 

reconstructed from the same combined images. In this retrospective study, we also assess 

the predictive capability of these two approaches compared with that of the current clinical 

metrics.

Methods

Study population and imaging data

In this retrospective study, we included 26 patients diagnosed with HCM based on the 

presence of left-ventricular (LV) wall thickness ≥ 15 mm in the absence of other ventricular 

diseases [12]. All 26 HCM patients in our study were deemed at high risk for SCD by AHA 

criteria and received ICDs for primary prevention, but only 13 patients, i.e., 50% of the 

cohort, actually experienced VA determined by appropriate ICD firing. Short-axis LGE-MRI 

and post-contrast T1 maps were acquired under institutional review board approval for all 26 

patients, previously described in full detail [9].

Combining LGE-MRI with post-contrast T1-mapping

For each patient, we incorporated the information of the single post-contrast T1 map to the 

short-axis LGE-MRI to find personalized thresholds of diffuse and dense fibrosis as shown 

in Fig. 1, previously described in full detail [9]. Briefly, regions of non-fibrotic myocardium 

(relaxation time (RT): >450 ms) and diffuse (RT: 350–450 ms) and dense fibrosis (RT: <350 

ms) of each mid-myocardial T1 map were delineated on the LV segmentation based on 

histopathological evidence [2]. Next, the distribution of signal intensity of the corresponding 

short-axis LGE-MRI myocardium was binarized into regions of high and low intensity, as 

we have done previously [7], with the mean of the lower-intensity region chosen as the 

reference of the non-fibrotic myocardium. We then used the amount of diffuse and dense 

fibrosis from the T1 map to calculate new, personalized thresholds on the corresponding 

LGE-MRI signal intensity, represented by standard deviations above the reference mean. 

This relationship was then applied to the entire myocardium of the LGE-MRI short-axis 

sequence to create a personalized, volumetric representation of non-fibrotic myocardium, 

diffuse fibrosis, and dense fibrosis. The personalized thresholds for diffuse and dense 

fibrosis were unique to each patient.

Image-based biomarkers of the combined LGE-T1 images were then evaluated for each 

patient.

Risk prediction approach 1: image biomarker selection

We hypothesized that features extracted from the raw (LGE-MRI, T1) and processed (LGE-

T1) images might provide prognostic information regarding risk of VA. The entropy and 

fractal dimension were chosen because previous studies relied on these biomarkers. The 

amount of fibrotic remodeling and distribution were included for comparison as previously 

described [9].
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The entropy of an MR image quantifies the heterogeneity of the signal intensity and has 

previously been used to predict SCD risk in ischemic cardiomyopathy. Using the raw 

MR images and segmentation masks, we calculated the entropy of the volumetric LGE-

MRI short-axis volume, intra-patient short-axis slices, and post-contrast T1 maps for each 

patient’s LV myocardium. Entropy was computed according to the following formula [14] 

using the normalized histogram of image intensity

ℎ = − ∑pk log pk (1)

where k is the number of gray levels in the image, and pk is the probability associated with 

each gray level.

Fractal dimension analysis quantifies the complexity of a geometry and has been previously 

used to characterize cardiac fibrosis in patients with cardiac sarcoidosis, another non-

ischemic cardiac disease [7]. Using an interpolated mask of the segmentation with fibrotic 

boundaries, we quantified the complexity, or fractal dimensions of the diffuse and dense 

fibrotic borders, individually and together. We also investigated the complexity of the 

fibrotic boundaries at the base, mid-myocardium, and apex. We used the box counting 

method for calculating the fractal dimension (FD) as follows

FD = log N
log r (2)

where N is the number of boxes that cover the pattern and r is the magnification of the box 

size.

Risk prediction approach 2: personalized LGE-T1 virtual heart models

Geometrical reconstructions of the LV myocardium with fibrotic remodeling were 

constructed using the combined LGE-T1 images for assessing VA risk via simulations of 

rapid pacing as previous described in full detail [9]. Briefly, high resolution finite-element 

tetrahedral meshes were constructed directly from the ventricular segmentations and fiber 

orientations were applied to each mesh using a previously validated approach [15,16]. 

Regions of non-fibrotic myocardium, diffuse fibrosis, and dense fibrosis were defined using 

the combined LGE-T1 data. Regions of non-fibrotic myocardium were represented by the 

human ventricular myocyte model by ten Tusscher et al [17] at the cellular level as done 

in our previous studies [7,8,11,18]. For regions of diffuse fibrosis, we modified the ionic 

conductances of the ten Tusscher model based on HCM-specific data reported by Coppini 

et al. [19] At the tissue level, conductivity values along the longitudinal and transverse 

fiber directions in fibrotic and non-fibrotic myocardium were the same as previously 

implemented for non-ischemic patient heart models [8]. Dense fibrosis was considered 

electrically inexcitable.

Full details regarding simulated electrical activity in the models can be found in previous 

publications [7,8,18,20]. Each virtual heart was paced sequentially from seven uniformly 

distributed endocardial LV locations using a validated rapid pacing protocol described in 

detail in previous studies [10,11,18]. Similar to our work on VA risk stratifications for 
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patients with ischemic cardiomyopathy [11], simulation results were analyzed to determine 

whether reentrant VA was induced in the LV HCM models following rapid pacing from any 

of the sites. If VA was induced from at least one pacing site in a given personalized HCM 

virtual heart, the patient was then considered at risk of VA. Simulation results were blind to 

clinical outcome.

The evaluation of the image-based biomarkers and HCM virtual heart technology were then 

compared to the clinical outcome for all patients.

Results

Overview of the two VA risk predictors

We introduce two approaches for VA risk prediction in HCM using a combination of 

LGE-MRI and post-contrast T1 maps. In the first approach, we extract and evaluate image-

based biomarkers from the individual and personalized combination of LGE-MRI and 

post-contrast T1 maps for each patient. In the second approach, each patient’s propensity 

to arrhythmia is non-invasively assessed using personalized LGE-T1 mechanistic heart 

models reconstructed using the same combined images. For each risk predictor, we compare 

the clinical outcome (i.e., presence of clinically diagnosed VA) to the assessment of the 

extracted features. Full details regarding the patients’ clinical characteristics can be found in 

our previous publication [9].

Approach 1: evaluation of the LGE-T1 image biomarkers risk prediction performance

Full analysis of the image-based biomarker approach can be found in Table 1.

Entropy

To evaluate the heterogeneity of the myocardial signal intensity, we used the entropy 

function described by Eq. (1). Fig. 2 presents a comparison of the entropy between patients 

with and without clinical VA. Fig. 2A, left, shows the comparison of entropy calculated from 

the entire short-axis LGE-MRI myocardial volume. There was not a statistically significant 

difference between the patients with and without clinical VA, although the heterogeneity of 

the signal intensity of the patients without VA was 9.03% higher on average. This suggests 

that the distribution of fibrotic substrate and non-fibrotic myocardium may play a role in 

arrhythmogenesis. Fig. 2A, right, investigates the entropy of the LGE-MRI at each location 

in along the short-axis slices, with the greatest difference occurring near the basal section of 

the heart. While not statistically significant, the entropy of the patients without VA maintains 

consistently greater values of heterogeneity. Fig. 2B shows the entropy comparison of 

the post-contrast T1 maps between the patients with and without VA. The relationship 

is statistically insignificant, which is expected since each T1 map only represents one 

cross-section of the short-axis myocardium. In addition, the post-contrast T1 maps were 

acquired from the mid-myocardial region for each patient which also corresponds to the 

least difference of the mid-myocardial LGE-MRI in Fig. 2A, right.
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Fractal dimensions

The complexity of the fibrotic substrate, diffuse and dense fibrosis, was evaluated using the 

fractal dimension described by Eq. (2). Fig. 3 shows the comparison of border complexity 

for the combined fibrotic substrate, left, and the individual analyses of diffuse, center, and 

dense fibrosis, right. The fractal dimension was greater in the patients with VA for all three 

scenarios, but without statistical significance. Interestingly, the complexity of the combined 

fibrotic border was more significant (p = 0.080) than the complexity of the diffuse fibrosis 

(p = 0.095) and dense fibrosis (p = 0.593), individually. The amount of diffuse fibrosis is 

significantly greater than the amount of dense fibrosis, resulting in a similar probability of 

complexity as the combined fibrotic substrate.

No statistical differences were found in the complexity of the combined fibrotic borders 

at the base, mid-myocardium, and apex (p = 0.10, 0.28, 0.90) as shown in Table 1. The 

probability was greatest for the basal region, which may be explained by the greater extent 

of hypertrophy and fibrosis across all patients.

The amounts of diffuse and dense fibrosis, and level of hypertrophy were all found to be 

statistically insignificant, as previously reported [9].

Approach 2: evaluation of the LGE-T1 virtual heart technology

Table 1 also shows the average number of VAs induced via rapid pacing per patient from 

all seven pacing locations. Patients without VA had an average of 0.46 ± 0.77 VAs induced 

whereas patients with VA had an average of 2.10 ± 1.29 (p < 0.01). We then considered the 

uniqueness of the VAs, or repetitive reentrant morphologies from different pacing locations 

within each patient heart model, and the patients without VA had an average of 0.38 ± 0.65 

VAs induced whereas patients with VA had an average of 1.45 ± 0.97 (p < 0.01).

Finally, we compared the performance of two approaches for VA risk prediction in HCM: 

image-based biomarkers and LGE-T1 virtual heart technology, both developed from the 

personalized incorporation of LGE-MRI and T1 mapping. While statistically insignificant, 

the image-based biomarkers offer insights into the role of fibrotic remodeling towards 

arrhythmogenesis. The approach of the LGE-T1 virtual heart technology outperformed all 

the image-based biomarkers, correctly predicting VA risk in 21 out of the 26 patients.

Discussion

In this study, we present two approaches for assessing VA risk prediction in patients with 

HCM, in the hope that they may be used to guide prophylactic ICD implantation. LGE-MRI 

and T1 mapping provide different information about ventricular structure and remodeling, 

thus we hypothesized that combining them might be predictive of VA risk, as both diffuse 

and focal fibrosis can be a substrate for arrhythmogenesis. The LGE-T1 combination 

provides a personalized adjustment of the threshold used to calculate the patient-specific 

diffuse fibrosis hallmark to HCM. For the first time, we present a methodology for analyzing 

combined LGE-T1 imaging biomarkers and compare the resulting efficacy to that of the 

LGE-T1 virtual heart technology.
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The image-based biomarkers were not significantly associated with VA risk for this 

cohort. However, certain insights can be gained from the analysis of the LGE-MRI signal 

intensity heterogeneity and fibrotic border zone complexity. Fractals of the fibrotic substrate 

showed more significance when considering the combined regions of diffuse and dense 

fibrosis versus discriminating either of them. The entropy for the patients without VA was 

consistently greater than the entropy of the patients with VA, for both the whole LGE-MRI 

volume and along the short axis of the LV. This suggests that VA inducibility may require 

coexistence of both non-injured and injured myocardium to produce an arrhythmogenic 

substrate. Previous studies have shown that entropy is independently associated with VAs, in 

patients with nonischemic and post-infarct related arrhythmias [13,14].

Our LGE-T1 virtual heart technology uses multiscale computational models of patients’ 

hearts reconstructed from LGE-MRI and T1 mapping. The HCM virtual-heart technology’s 

ability to comprehensively evaluate substrate arrhythmogenicity with electrophysiological 

characteristics underlies its superior performance. The virtual heart models represent the 

electrophysiology based on the combination of the imaging, with both the structural 

and functional properties of the myocardium. Furthermore, the virtual heart models are 

capable of uncovering emergent phenomena, such as the formation of reentrant VAs at 

specific locations, which may differ depending on the pacing location. The combination 

of electrophysiology and personalized structural remodeling, as well as the comprehensive 

evaluation of the substrate by pacing from different locations renders the approach of higher 

predictive capability. Our LGE-T1 virtual heart technology provided a much-improved risk 

assessment in this cohort compared to both the image biomarkers assessed herein and to the 

current clinical risk stratification methods [9].

Our study was limited by a small sample size, including the fact that a few LGE-MRI scans 

of HCM patients had imaging artifact, which prevented us from including more patients with 

LGE-MRI and T1 data.

Conclusions

For the first time, we combined two MR imaging techniques to analyze imaging biomarkers 

in HCM. Raw and processed image-based biomarkers cannot discriminate patients with VA 

from those without VA. The two imaging modalities were also the basis for constructing 

hybrid LGE-T1 technology. The LGE-T1-based virtual heart models could correctly predict 

VA risk for this cohort and may improve SCD risk stratification to better identify HCM 

patients for primary preventative ICD implantation.
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Fig. 1. 
Combining LGE-MRI with Post-Contrast T1 Mapping. A. Segmentation of short-axis LGE-

MRI myocardium. B. Segmentation of T1 map myocardium and thresholding of diffuse 

fibrosis (gray) and dense fibrosis (blue). C. Top left: Standard thresholds for gray zone and 

focal scar in the ischemic population, applied to the LGE-MRI segmentation from the mean 

of the low signal myocardium in (A). Top right: Representation of the change in thresholds 

based on distribution in (B). Bottom: The new personalized thresholds for fibrosis for this 

patient. D. Top: Application of personalized thresholds to each image in the LGE-MRI 

short-axis. Bottom: Personalized geometrical reconstruction of the LGE-T1 virtual heart. 

SD: standard deviation; LGE-MRI: late gadolinium enhanced magnetic resonance imaging.
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Fig. 2. 
Entropy of MR Signal Intensity. A. Left: Comparison of the volumetric entropy of the 

LGE-MRI signal intensity between patients with and without VA. Right: Analysis of the 

short-axis, slice-by-slice entropy from the volumetric LGE-MRI. B. Comparison of the 

single post-contrast T1 map entropy between patients with and without VA. LGE-MRI: late 

gadolinium enhanced magnetic resonance imaging; VA: ventricular arrhythmia.
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Fig. 3. 
Fractals of the Fibrotic Substrate. Left: Comparison of the fractal dimension of the 

combined fibrosis (diffuse and dense fibrosis) borders between patients with and without 

VA. Middle: Comparison of the fractal dimension of only the diffuse fibrosis borders 

between patients with and without VA. Right: Comparison of the fractal dimension of 

only the dense fibrosis borders between patients with and without VA. VA: ventricular 

arrhythmia.
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Table 1

Overview of image-based biomarkers and LGE-T1 virtual heart technology.

Without VA With VA P-value

Image-Based Biomarkers

Dense Fibrosis (%) 3.36 ± 1.23 2.99 ± 1.49 0.53

Diffuse Fibrosis (%) 39.49 ± 8.26 41.38 ± 10.59 0.59

Volumetric LGE-MRI Entropy 0.43 ± 0.07 0.39 ± 0.09 0.21

Entropy – Base 0.54 ± 0.09 0.49 ± 0.12 0.16

Entropy – Mid-Myocardium 0.43 ± 0.07 0.41 ± 0.10 0.51

Entropy – Apex 0.28 ± 0.09 0.22 ± 0.08 0.08

Entropy – Post-Contrast T1 Map 0.14 ± 0.03 0.14 ± 0.06 0.93

Fractal Dimension – Fibrotic Volume 2.23 ± 0.08 2.28 ± 0.08 0.08

FD – Diffuse Fibrosis 2.20 ± 0.08 2.26 ± 0.09 0.09

FD – Dense Fibrosis 1.77 ± 0.15 1.80 ± 0.14 0.60

FD – Base (diffuse & dense) 2.12 ± 0.09 2.18 ± 0.10 0.10

FD – Mid-Myocardium (diffuse & dense) 2.10 ± 0.10 2.14 ± 0.10 0.28

FD – Apex (diffuse & dense) 2.00 ± 0.11 2.01 ± 0.09 0.90

LGE-T1 Virtual Heart Model

Simulated VAs 0.46 ± 0.77 2.10 ± 1.29 < 0.01

Unique Simulated VAs 0.38 ± 0.65 1.54 ± 0.97 < 0.01

LGE-MRI: late gadolinium enhanced magnetic resonance imaging; VA: ventricular arrhythmia; FD: fractal dimension.

J Electrocardiol. Author manuscript; available in PMC 2022 December 08.


	Abstract
	Introduction
	Methods
	Study population and imaging data
	Combining LGE-MRI with post-contrast T1-mapping
	Risk prediction approach 1: image biomarker selection
	Risk prediction approach 2: personalized LGE-T1 virtual heart models

	Results
	Overview of the two VA risk predictors
	Approach 1: evaluation of the LGE-T1 image biomarkers risk prediction performance
	Entropy
	Fractal dimensions
	Approach 2: evaluation of the LGE-T1 virtual heart technology

	Discussion
	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Table 1

