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SUMMARY

Visual perception depends strongly on spatial context. A profound example is visual crowding, 

whereby the presence of nearby stimuli impairs discriminability of object features. Despite 

extensive work on perceptual crowding and the spatial integrative properties of visual cortical 

neurons, the link between these two aspects of visual processing remains unclear. To understand 

better the neural basis of crowding, we recorded simultaneously from neuronal populations 

in V1 and V4 of fixating macaque monkeys. We assessed the information available from the 

measured responses about the orientation of a visual target, both for targets presented in isolation 

and amid distractors. Both single neuron and population responses had less information about 

target orientation when distractors were present. Information loss was moderate in V1 and more 

substantial in V4. Information loss could be traced to systematic divisive and additive changes 

in neuronal tuning. Additive and multiplicative changes in tuning were more severe in V4; 

in addition, tuning exhibited other, non-affine transformations that were greater in V4, further 

restricting the ability of a fixed sensory readout strategy to extract accurate feature information 

across displays. Our results provide a direct test of crowding effects at different stages of the visual 

hierarchy. They reveal how crowded visual environments alter the spiking activity of cortical 

populations by which sensory stimuli are encoded and connect these changes to established 

mechanisms of neuronal spatial integration.
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Henry and Kohn investigate how visual crowding impairs the encoding of target orientation in 

macaque V1 and V4 neuronal populations. Distractor stimuli induce systematic additive and 

multiplicative changes in tuning, leading to moderate information loss for target discriminability in 

V1 and more substantial loss in V4.

INTRODUCTION

Crowding is a perceptual phenomenon in which a clearly visible stimulus (a target) becomes 

difficult to discern when other stimuli (distractors) are presented in spatial proximity1-4. 

Crowding has been studied extensively because it often limits visual function and because 

understanding its basis may provide insight into core aspects of visual processing.

Impairment of discriminability under crowding involves features from nearby stimuli being 

‘combined’ with those of a target. The challenge for mechanistic descriptions of crowding 

is to identify the form of this ‘combination’ at distinct stages of visual processing. There 

are numerous proposals of how crowding might arise, each invoking different computations 

and proposing different loci in the visual system. These proposals, some of which have 

conceptual overlap, include: lateral interactions between neurons within a cortical area 

that represent targets and distractors5-6; spatial pooling by neurons whose receptive fields 

encompass both the target and distractors1; an encoding strategy in which visual stimuli 

are represented using a set of summary statistics7-8 or simply averaged together9-10; or an 

erroneous readout of sensory information, involving either compulsory averaging or the 

substitution of signals encoding distractors for those encoding a target (e.g. 11), perhaps 

arising from fluctuations in attention12. These various bases of crowding have been proposed 

to occur in primary visual cortex (V1)5-6, V28, 13, V41, or a combination of these14.

To date, how crowding affects neural representations has been studied almost exclusively 

using coarse or indirect measures of brain activity, such as EEG or functional MRI15-20. 

These approaches provide important information, but they lack the resolution to elucidate 

how crowding affects the representation of visual information by neuronal spiking activity, 

the activity that encodes and transmits visual information in the brain. As a result, we have a 

limited understanding of how crowding arises.

We recently assessed the degree to which crowded visual displays limit neuronal population 

information about the orientation of a target stimulus, in the primary visual cortex (V1) of 

anesthetized macaque monkeys21. We found that distractors reduced information through 

a combination of divisive, suppressive modulation of responsivity in some neurons and 

additive facilitation in others. The information loss in V1 could account for much, but not 

all, of the perceptual crowding evident in humans and monkeys performing a discrimination 

task using the same stimuli. Thus, we proposed that spatial contextual modulation in V1 is a 

major contributor to crowding.

How crowded displays influence stimulus encoding in midlevel visual cortex is unknown. 

The more extensive spatial pooling performed by neurons in higher visual cortex22-23 

suggests additional mechanisms by which sensory information may be lost, though precisely 

how those neurons pool visual inputs across space is not well understood24-25. Here we 
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assess how information about target orientation is affected by the presence of distractors in 

neuronal populations in area V4 of fixating macaque monkeys. We find that V4 populations 

show greater information loss than in simultaneously recorded V1 populations, under 

identical stimulus conditions. Further, this loss is evident for a greater range of spatial 

offsets between targets and distractors. Information loss in V4 involves some of the same 

mechanisms seen in V1, but V4 neurons also show a complex dependence on the precise set 

of stimuli presented in or near their spatial receptive fields.

RESULTS

We carried out simultaneous extracellular recordings from V1 and V4 neuronal populations 

via chronic microelectrode arrays implanted in two awake macaque monkeys (Figure 1A). 

Animals viewed stimuli passively, while maintaining fixation within a 1.3 degree diameter 

window about a small central point.

We first obtained maps of the spatial receptive fields of the sampled neuronal populations in 

dedicated recording sessions. As expected, individual V1 receptive fields were small, and the 

receptive fields of V4 neurons were many-fold larger (Figure 1B, top). Aggregate receptive 

field maps showed substantial overlap in the visual field representation of recorded V1 and 

V4 populations in each animal (Figure 1B, bottom).

To assess feature encoding, we used a small target grating (1 degree diameter), positioned 

to drive both cortical populations. The target grating was located at 2.8 degrees eccentricity 

in the lower visual field of one animal, and at 3.6 degrees in the other (indicated by 

the black circle, Figure 1B). On each trial, stimuli were shown in two epochs separated 

by 0.35 s (Figure 1C). Target stimuli were chosen from an 18 degree range straddling a 

reference orientation (changed in each session), in increments of 4-6 degrees (Figure 1D). 

On each presentation, the target stimulus could be shown either in isolation or surrounded 

by 4 distractor stimuli, whose orientation was ±10 degrees of the reference orientation. 

The size and relative orientations of target and distractor stimuli were chosen to produce 

robust perceptual crowding effects, as shown previously21. The spacing of distractors around 

the target was varied because target-distractor distance is known to influence perceptual 

crowding26. Identical stimuli, save for a rotation in reference orientation by 90 degrees, 

were shown on half the presentations, to minimize the effects of adaptation27. Thus, each 

recording session probed cortical responses to two narrow ranges of target orientation, 

yielding distinct responses from the recorded neuronal populations that were analyzed 

independently.

We recorded in 11 sessions, yielding 22 neuronal populations in each area. The size of V1 

populations was on average 19 ± 1.9 neurons, and the size of V4 populations was 31 ± 3.4 

neurons.

Distractors limit target discriminability

We first assessed how the presentation of distractors affected the discriminability of target 

orientation afforded by responses of individual V1 (n = 396) and V4 neurons (n = 691). 

To quantify discriminability, we used receiver operating characteristic (ROC) analysis to 
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distinguish between the spike counts evoked by two target gratings differing 18 degrees in 

orientation (Figure 2A, abscissa; see Figure S1 for sample response distributions). Chance 

performance is indicated by a value of 0.5 in the area under the ROC curve. We assumed the 

orientation closer to 0 would evoke stronger responses, so better performance is indicated 

by the deviation from 0.5, with values of 0 or 1 both indicating perfect discriminability 

between stimuli (for neurons with opposing tuning slopes over the sampled target range). 

Note that performance for many neurons was near chance, because the narrow range of 

target orientations did not include those that modulated the neuron’s responses significantly 

(i.e. near the flank of the tuning function).

We compared single neuron discriminability for targets alone and targets with distractors. 

For V1 neurons, discriminability was better when targets were presented alone (Figure 

2A), evident as a regression slope that was significantly less than 1 (slope = 0.60, 95% 

confidence interval: [0.50 0.69]). When distractors were moved further from the target, 

effects on discriminability were slightly more moderate (Figure 2C, farthest spacing, slope 

= 0.74, [0.66 0.82]). In V4, the loss of discriminability with nearby distractors was stronger 

(Figure 2B, slope = 0.20, [0.14 0.26]) and remained pronounced even when distractors were 

placed farther from the target (Figure 2C, farthest spacing, slope = 0.44, [0.37 0.50]). Thus, 

distractors led to a greater impairment in single neuron discriminability of targets in V4 than 

V1, over all spatial scales.

We next quantified how distractors affected neuronal population information about target 

orientation. We used logistic regression analysis to determine how well two target stimuli 

could be distinguished using the measured neuronal population responses. We optimized 

decoders separately for each pairing of target stimuli, when targets were presented alone or 

with distractors. By allowing for separate decoding of these sets of responses, we provide an 

upper-bound estimate on the target information accessible to a linear readout strategy of the 

measured responses.

To provide good estimates of how distractors affect representational accuracy, we aggregated 

decoding performance across target grating pairings and sessions from each animal, for 

each cortical area and target-distractor spacing. An example is shown in Figure 2D,E for 

V1 and V4 of one animal, comparing performance for responses to targets alone and to 

targets with the nearest distractors. In V4, when decoder performance was above chance 

(Figure 2E, abscissa values greater than 0.5), performance for responses to targets with 

distractors tended to be lower (ordinate; p<0.001 for difference; addressed further below). In 

V1, performance loss was less evident (p>0.05 for difference; addressed further below), due 

in part to the low discriminability for both targets alone and targets with distractors.

To estimate how the change in decoder performance might translate to the strength of 

perceptual crowding, we fit a single parameter model to the decoder performance values 

aggregated across sessions. The model consisted of a psychometric function for target 

discrimination whose slope could change with the appearance of distractors. The single 

parameter provided an estimate of the discrimination threshold elevation that would be 

consistent with the change in population performance (see Figure S2). Sample predicted 
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performance trends for different changes in threshold are shown in Figures 2D,E (gray 

curves).

In V1, distractors led to a modest loss of population information about target orientation 

whose magnitude was consistent with a moderate elevation in discrimination threshold 

(Figure 2F, blue). Distractors at the closest spacing yielded the largest threshold elevations, 

1.31 ± 0.10; distractors at the farthest spacing yielded the smallest elevation, 1.15 ± 

0.08. The estimated threshold elevation was statistically significant for all but the farthest 

target-distractor separation (permutation test, p<0.05). In V4 populations, the estimated 

threshold elevations were greater than those in V1 (Figure 2F, red): 2.52 ± 0.23 for the 

closest distractors and 1.89 ± 0.19 for the farthest distractors (significant for all distractor 

separations, permutation test, p<0.001).

We were concerned that our estimates of threshold elevation might be poorly constrained 

by the limited decoding performance values which reflected the small size of the 

recorded populations, particularly in V1. We thus repeated our analysis using responses 

of larger ‘pseudo-populations’, constructed by combining neurons across sessions. Pseudo-

populations provided a broader range of performance values and yielded similar estimates of 

how distractors affected thresholds (Figure S3).

In summary, we found that distractors reduced population information about target 

orientation in both V1 and V4. In V1, there was a moderate threshold elevation for the 

closest distractors and little effect for distractors placed farther away. In V4, there was a 

greater threshold elevation, evident across a wider range of distractor spacings. We next turn 

to describing which changes in neuronal activity contribute to the loss of encoded feature 

information.

Distractors modulate neuronal responsivity and variability

The stimulus information encoded by neuronal populations (as extracted by linear decoders) 

is a function of the tuning and response variability of the individual neurons and of how their 

variability is shared28-29. All of these response statistics can be altered by changes in spatial 

context, such as the presentation of distractors 21,30-32. To understand why V1 and V4 

neuronal populations provide less information about target orientation in crowded displays, 

we assessed how distractors affected pairwise correlations (shared variability), individual 

neuronal variability, and neuronal responsivity, in turn.

We first determined whether the presence of distractors altered the strength of shared 

variability among neurons. For each pair of neurons, we calculated the strength of ‘noise 

correlations’ as the average of the correlations calculated for each stimulus separately. 

Distractors significantly reduced correlations compared to those evident in responses to 

targets alone. In V1 (Figure 3A; see Figure S1 for sample responses), pairwise correlations 

decreased from 0.07 ± 0.003 for targets alone to 0.05 ± 0.002 with the nearest distractors 

(paired t-test, p<0.001). In V4 (Figure 3B), the corresponding decrease in correlations 

was from 0.11 ± 0.001 to 0.06 ± 0.001 (paired t-test, p<0.001). To determine whether 

altered correlations contributed to information loss, we fit decoders to population responses 

after trial shuffling responses to reduce correlations. In these shuffled data, distractors led 
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to threshold elevations similar to those seen in the original data (Figure 3C), indicating 

changes in correlations, though substantial, played a minimal role in the information loss we 

observed.

To quantify how response variability was affected by distractors, we measured the response 

variance normalized by its mean (Fano factor). The Fano factor for each neuron was 

calculated as the geometric mean of the Fano factors measured for each stimulus condition 

(combination of target and distractor orientations) separately. In V1, distractors at the closest 

spacing led to a slight reduction in variability (Figure 3D, from 1.05 ± 0.02 for targets alone 

to 0.98 ± 0.01, paired t-test, p<0.001). In V4, distractors at all spacings led to a significant 

reduction in variability (Figure 3E, 1.00 ± 0.01 for targets alone to 0.93 ± 0.01 with closest 

distractors, paired t-test, p<0.001 for each spacing). All else being equal, the reduction in 

variability with distractors should result in better discriminability not worse. Thus, changes 

in variability must not be responsible for information loss we observe.

We next asked how distractors influenced neuronal responsivity to targets. We calculated 

a modulation index defined as the ratio of the response to targets with distractors relative 

to that for targets alone. For each neuron, we summarized this index across targets as 

the geometric mean of the indices computed for each target orientation separately. In V1, 

neurons exhibited diversity of modulation, with both suppression and facilitation evident. 

For distractors at the closest spacing, suppression and facilitation occurred in roughly 

equal proportion (Figure 4A, dark blue). To assess whether the modulation indices were 

meaningful, we determined the probability observing each measured modulation index by 

chance. Suppressive effects were statistically significant in 23% of neurons (permutation 

test, p<0.05); facilitation was significant in 27% cases. Whether distractors suppressed or 

facilitated responses was related to the alignment of the receptive field with the target 

stimulus (Figure S4). For distractors placed further from the target (Figure 4A, lighter 

blues), modulation was weaker; only 2.5% cases of significant facilitation were observed 

(the expected false positive rate) and 13% cases of suppression.

The responses of V4 neurons to targets could also be facilitated or suppressed by the 

presentation of distractors. For the closest distractors, most V4 neurons showed facilitation 

(Figure 4B, dark red points, 1.11 ± 0.38, t-test, p<0.001; 51% of cases of facilitation were 

statistically significant and 14% of suppressive cases) and the average modulation index 

was larger than in V1 (one sided t-test, p<0.01). As distractor spacing increased, a roughly 

equal proportion of V4 neurons exhibited facilitation and suppression (Figure 4B, light red 

points, 0.97 ± 0.48; 24% and 32% cases involved significant facilitation and suppression, 

respectively).

To quantify the strength of modulation by distractors, regardless of whether it facilitated or 

suppressed responsivity, we averaged the absolute value of each neuron’s modulation index 

(log-transformed). The modulation in both areas was statistically significant, for all target-

distractor spacings (permutation test, p<0.01). The average modulation was stronger in V4 

than in V1 at all separations (Figure 4C, one sided t-test, p=0.01 for closest distractors and 

p<0.001 for all other spacings). Further, modulation strength in V4 was largely maintained 

across target-distractor spacings (p=0.44, one sided t-test comparing nearest to farthest 
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distractors) whereas the farthest separation yielded weaker modulation in V1 than the 

nearest separation (one sided t-test, p<0.001).

To understand how response modulation by distractors influences the discriminability of 

target orientation, we must consider the functional form of changes in orientation tuning 

induced by distractors. We therefore fit a model in which each neuron’s target tuning amid 

distractors was described by either a multiplicative scaling and additive translation of the 

target alone tuning, or both (Figure 5A, shaded regions). The additive term was normalized, 

so that it reflected the proportion of the mean firing rate for targets alone that was needed 

to produce the appropriate translation in tuning. In this analysis, we only considered neurons 

that had reliable tuning over the narrow range of sampled orientations (see Methods).

We first considered a version of the model in which either multiplicative scaling or additive 

translation could occur. In prior work21, we had found that V1 neurons whose responses 

were suppressed were better described by the multiplicative model whereas those that 

were facilitated by distractors were better described by an additive model. In the V1 

and V4 responses reported here, we observed a similar outcome (Figure S5). We next 

determined how strongly these forms of modulation alter the encoding of target orientation 

by single neurons. Both forms of modulation reduce information21 divisive suppression 

makes responses to different stimuli more similar; additive facilitation results in greater 

response variability, since variability in cortical responses scales with the mean. Though 

additive and multiplicative modulation did reduce information about target orientation, these 

effects—considered in isolation—could not fully capture the loss of discriminability we 

observed (Figure 2).

We therefore considered a model in which both multiplicative and additive effects could 

occur. Figure 5 shows the fitted parameters for this model, for V1 (Figure 5B; see Figure 

S1 for sample tuning functions) and V4 (Figure 5C) neurons, with each point representing 

a neuron and distractor spacing condition, and darker points representing closer distractors. 

For V1 neurons (Figure 5B), the amplitude of the multiplicative term was significantly less 

than 1 on average (abscissa, 0.59 ± 0.03), indicating a compression of the tuning curve, and 

the additive term was positive (0.39 ± 0.16), indicating an upward translation of the tuning. 

For V4 neurons (Figure 5C), the amplitude of the multiplicative term was also less than 1 

(0.36 ± 0.01) and the additive term was positive (0.90 ± 0.02). The multiplicative term for 

V4 neurons was significantly smaller than for V1 neurons (t-test, p<0.001) and the additive 

term was significantly larger for V4 than V1 (t-test, p>0.001).

In both V1 and V4, there was a strong covariation between the additive and multiplicative 

terms, consistent with a flattening of the tuning function with maintained responsivity. For 

instance, for tuning that becomes flat with distractors, the multiplicative term would be 0 

and the additive term would be positive to reproduce the mean firing rate. For tuning that 

was only partially flattened, the multiplicative term would be more positive (but less than 1), 

so a smaller additive term would be required to sum to reproduce the tuning. In summary, 

the presence of distractors compressed the dynamic range of neuronal tuning in both areas, 

via a multiplicative scaling, and maintained or enhanced responsivity, via an additive offset.
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To test whether these two effects together capture the information loss we observe in V1 

and V4, we simulated crowded responses by scaling and translating the target alone tuning 

with the fitted multiplicative and additive terms (see Methods). We then calculated the 

discriminability for targets alone and for targets with distractors, using the area under the 

ROC curve (as in Figure 2). This simulation yielded some loss of discriminability in V1 

(Figure 5D) and more substantial effects in V4 (Figure 5E); the effects in simulations were 

similar but slightly stronger than the losses observed in the measured responses (Figure 2). 

In both areas, the loss of discriminability depended weakly on target-distractor spacing, as in 

the data. Together, these results demonstrate that divisive scaling and additive translation of 

target tuning in the presence of distractors limit the encoding of target orientation, and that 

additional impairment in V4 results from greater modulation by these factors compared to 

V1.

We note that the model fitting revealed cases in which the multiplicative term was negative; 

as a result, a large additive term was required to offset the negative responses and reproduce 

the firing rate. These cases occurred rarely in V1 but more often in V4 and correspond to 

changes in the slope of the tuning function. These striking changes in tuning are considered 

next.

Distractors alter neuronal tuning for target orientation

Both additive facilitation and divisive suppression of neuronal responsivity by distractors 

are consistent with well-established mechanisms of spatial integration by cortical neurons 

(see Discussion)33-35. Yet, previous work has also suggested more complex forms of spatial 

integration, particularly in V4. For instance, the tuning of V4 neurons for a small stimulus 

in the receptive field can change dramatically, and often seemingly idiosyncratically, when 

paired with other stimuli (e.g. 24-25). Consistent with this description, we often observed that 

V4 tuning for target orientation could be altered substantially when distractors were present 

(Figure 6B). V1 tuning for targets, in contrast, was usually (Figure 6A, left) but not always 

(right) scaled or translated by distractors.

To quantify the similarity of tuning for targets alone and targets with distractors, we 

calculated their Pearson correlation. If target tuning is simply scaled or translated by 

distractors, correlation values should be high. If distractors distort tuning, correlations 

should be lower. To provide a fair comparison of V1 and V4 tuning, we selected subsets 

of neurons in each area that exceeded a criterion that captured the reliability of tuning 

for targets alone, defined by calculating the correlation between the tuning from even 

versus odd trials. In V1, tuning for targets alone was well correlated with the tuning for 

targets with nearby distractors (Figure 6C, blue points). For instance, for cells exceeding a 

criterion of 0.5, the correlation between tuning with and without distractors was 0.38 ± 0.03. 

Tuning correlation was significantly lower in V4 neurons (Figure 6C, red points), with the 

corresponding value being 0.22 ± 0.03 (p<0.001 for comparison with V1, one-sided t-test).

We next assessed whether the change in tuning depended on the particular set of distractor 

gratings. We computed the correlation of target tuning for displays with different target-

distractor spacings (near and far). In this comparison too, correlations between target tuning 

were lower in V4 than V1 (Figure 6D, for cutoff of 0.5, correlations were 0.17 ± 0.02 and 
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0.36 ± 0.02, respectively, p<0.001, one-sided t-test). Even subtle changes in the composition 

of distractors could strongly alter tuning for the target. Specifically, we compared target 

tuning in the presence of two distractor configurations, for which the position of each 

distractor was fixed but its orientation differed by 20 degrees between configurations (with 

the same average orientation within each configuration). V4 tuning differed substantially 

between these two conditions, whereas V1 tuning was nearly unaffected (Figure 6E, for 

cutoff of 0.5, V4 correlation values were 0.24 ± 0.06 and V1 correlation values were 0.65 ± 

0.06, p<0.001 for difference between areas, one-sided t-test). Together, these results suggest 

that distractors introduce configuration-dependent changes in neuronal tuning for target 

orientation, particularly in V4.

The change in V4 tuning with distractors need not result in a loss of population information 

about target orientation, because changes in tuning could be compensated for by adjusting 

the readout strategy. The population decoding we have considered thus far had this 

flexibility, as it involved fitting separate decoders to the activity evoked by each display. 

However, circuits reading out V1 and V4 responses are unlikely to flexibly alter their 

strategy, to optimally decode responses for each stimulus condition. For a fixed decoding 

strategy, changes in tuning with distractors, as described above, would be expected to limit 

discriminability further. To assess this possibility, we projected population responses onto 

two fixed decoding axes: one that was optimized for responses to targets alone and one 

optimized for targets with nearby distractors.

Figure 7A shows example population responses from a single V1 session projected onto 

these two decoding axes, with ellipses indicating response distributions for each of the 4 

target orientations. In V1, projection of responses from either condition yielded similar 

separation of points on either decoding axis, indicating the information about target 

orientation can be decoded similarly well by a fixed decoder optimized either to responses to 

targets alone or to targets with distractors. In V4 (Figure 7B), projections were less aligned 

between the two decoding strategies, and the separation of points was reduced along the 

decoding axis of the opposing condition. Thus, in V4, projections depend heavily upon 

the decoding axis used, and decoding performance would be expected to generalize poorly 

between configurations.

To quantify how well a common decoding strategy worked across configurations, we 

calculated the dprime value between response distributions for each pair of target stimuli, 

when projected onto a decoding axis defined by a matching display condition (same 

projection) or the opposite configuration (cross projection). Discriminability between stimuli 

was high in V1 and V4 when using the matched decoder (‘same’, Figures 7C,D). When data 

were projected onto the decoding axis of the opposing condition (‘cross’), discriminability 

was largely preserved in V1 (dprime of 0.95 ± 0.13 for same projection and 0.88 ± 0.12 for 

cross projection, p=0.20, paired t-test). In contrast, discriminability dropped significantly for 

V4 (1.02 ± 0.13 vs. 0.67 ± 0.05, p=0.002, paired t-test). In additional analyses, we confirmed 

that the distinct decoding axes in V4 for different displays do not arise from relying on 

distinct subsets of neurons. (Figure S6). Thus, changes in V4 representation across displays 

do not result from dramatic changes in which neurons were relevant for encoding target 
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orientation, but rather from changes in the tuning of a common underlying pool of neurons 

between conditions.

In summary, V4 populations exhibit a more configuration-dependent representation of target 

orientation than V1 populations. Thus, not only does V4 show a greater loss of stimulus 

information for optimal decoders (Figure 2), but it also shows greater loss for a fixed linear 

readout of V4 responses for different displays (Figure 7).

DISCUSSION

We evaluated how neuronal population information about target orientation in areas V1 

and V4 is affected by the presence of distractors. V15,6,17-19 and V41,25 have each been 

suggested as a possible locus for the bottleneck limiting perception in crowded scenes. 

We found that distractors cause a moderate loss of information about target orientation in 

V1 and a more pronounced loss in V4. V4 effects extended over a larger range of target-

distractor separations than V1 effects. Distractors affected the responsivity, tuning, and 

variability of neurons in both areas. Responses were diversely modulated, but modulation 

often took the form of a divisive suppression and additive facilitation of responsivity, whose 

combined influence could explain the reduction in discriminability with distractors. Our 

results provide a direct test of crowding effects at different stages of the visual hierarchy 

using neuronal population spiking activity and connect changes in representational quality to 

established mechanisms of neuronal spatial integration.

The modulation of target responses by distractors is consistent with prior descriptions 

of how V1 and V4 neurons integrate visual signals spatially. Response suppression in 

V1 is expected when distractors fall in the receptive field surround, and this suppression 

acts divisively35,36. The neural mechanisms underlying surround suppression likely involve 

feedforward, lateral, and feedback components37. When targets and distractors fall within 

the receptive field, response summation—facilitation—would be expected33,36. Summation 

within the receptive field is additive, but modulated by normalization mechanisms (which 

act divisively)34,35. The combination of additive facilitation and divisive suppression would 

be expected to yield a ‘flattened’ tuning curve, as we often observed.

In V4, neuronal receptive fields are a few-fold larger than in V1, at matched eccentricity23, 

and thus more likely to span multiple elements of crowded displays. Within the classical 

receptive field, V4 neurons have been shown to sum multiple visual inputs38, as well as 

to show various forms of normalization39,40. In addition, V4 neurons possess a suppressive 

surround41,42 that would be expected to be engaged by the distractors in our displays, 

particularly when they are far from the target.

We have previously shown that discriminability in neurons with Poisson-like variability 

can be reduced if distractors recruit divisive suppression or additive facilitation of 

tuning21,43. We also reported that, in V1, suppressed neurons were better explained by a 

divisive modulation, and facilitated neurons better explained by an additive modulation. 

We replicated those findings for the V1 and V4 responses in the present study and 

confirmed that these forms of modulation impaired discriminability (Figure S5). However, 
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the information loss expected from each of these mechanisms in isolation was insufficient 

to account for the effects observed in the measured responses. We therefore considered a 

model in which additive facilitation and divisive suppression could co-occur, which revealed 

most neurons in V1 and V4 are better described as having both multiplicative and additive 

changes in target tuning amid distractors. These combined additive and multiplicative 

changes are required to describe the strong information loss we observe, particularly in 

V4.

The combined influence of these two mechanisms was less evident in our prior V1 study 

because most of those cases involved distractors which fell entirely in the surround, 

recruiting only response suppression. In the recordings reported here, response facilitation 

was more evident. In V4, this occurred because of the larger receptive fields; in V1, 

facilitation was more common because of the placement of the target and distractor stimuli 

relative to the receptive field (Figure S4). Importantly, both the mechanisms reported 

previously and those brought to light here, yield similar conclusions concerning a moderate 

information loss in V1 for target orientation.

Nearby distractors affect both perceptual detectability and discriminability (i.e., crowding) 

of a target stimulus1,4. Both impairments depend on the configuration of stimuli but differ 

in the form of that dependency, suggesting the two recruit distinct neural mechanisms44: 

Impaired detectability has been associated with neural surround suppression45; crowding 

has often been linked to summation within the receptive field1-4. We have previously 

shown that neuronal surround suppression can also reduce information about the features 

of suprathreshold stimuli (i.e., discriminability)21, as also observed here (see also 46). In 

addition, we show here that how signals are summed within the receptive field, particularly 

in V4, does indeed contribute strongly to information loss. Importantly, we provide a 

quantitative description of the form of that summation and why it reduces discriminability.

Beyond these general forms of response modulation under crowding, we showed that V4 

tuning for targets is more sensitive to the stimulus configuration than that in V1. V4 neurons 

have been shown to be selective either for elongated contours47 or for the curvature of 

an object within their receptive fields48-51. Additionally, V4 responses depend on the joint 

stimulus statistics shown within their receptive fields, as in studies of selectivity for stimulus 

textures52,53. Together, these studies suggest V4 neurons encode the relationship between 

spatially adjacent image features, to extract mid-level representations of object shape and 

surfaces54-58. While each of these studies probes distinct forms of selectivity, together they 

reinforce the notion that V4 tuning might differ strongly for a small target stimulus within 

the receptive field when it appears in isolation or amid other nearby stimuli. Indeed, a recent 

study25 showed that V4 neuronal responses to letter stimuli were strongly altered when the 

arrangement of the constituent line segments was changed. To the extent that downstream 

areas implement a fixed readout of V4 activity across displays, this context-dependent 

tuning will limit further the resolution of target features available for perception.

Our experiments involved targets and distractors of a fixed size. Would our results have 

been different if the displays were scaled down so that, for instance, multiple image features 

fell within individual V1 receptive fields? Crowding effects at a given eccentricity scale 
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with the spacing between target and distractors26; when stimuli are small relative to V1 

receptive field sizes, discrimination performance can be strongly impaired9. It remains 

unclear whether information loss in such displays would be stronger in early cortical areas, 

or instead remain more prominent in areas like V4. In contrast, if displays were scaled up 

such that target stimuli were similar in size to the receptive fields of V4 neurons, we would 

expect the response changes we observed in V1 and V4 to be greatly diminished, consistent 

with weaker perceptual crowding effects from distractors at increased spatial separation 

from the target26.

Previous work has suggested that crowding occurs in V1, V2, or V4, or that it arises 

from interactions across the visual hierarchy14. What do our results imply for where the 

bottleneck responsible for crowding resides? Using an optimal linear readout of neuronal 

population activity, we found moderate information loss in V1 and more pronounced loss in 

V4. We have previously shown21 that perceptual crowding in our displays, in humans and 

monkeys, produces a threshold elevation of roughly 50%, slightly greater than that evident 

in our V1 data and weaker than that evident in V4. Additionally, perceptual crowding 

occurs when the spacing between targets and distractors is within roughly half the target 

eccentricity26; we found substantial information loss in V4 for distractors placed farther 

away than this distance (2.6 deg for target eccentricity of roughly 3 degrees).

One interpretation of our results might be that crowding arises at some stage between 

V1 and V4, such as V2. However, discriminability is a function of both population 

information and the readout strategy. Observers have been shown to employ suboptimal 

readout strategies59,60. Deploying slightly suboptimal strategies for reading out responses 

could easily lead to stronger threshold elevation in V1 or V4 (or weaker if the readout of 

responses to targets alone was more suboptimal). Indeed, many aspects of crowding may be 

attributable to mechanisms of sensory readout. Attention12, substitution of distractor features 

for that of the target11, and perceptual averaging of nearby image features9 may all reflect 

sensory readout strategies that are either fixed and suboptimal or fluctuate trial-to-trial.

Together, this suggests a conceptual framework whereby crowding does not reflect a 

unitary bottleneck on spatial feature perception at a defined locus within the visual 

system, but instead the result of a series of diverse transformations in visual processing. 

Visual signals are encoded in cortical populations, then repeatedly re-coded in novel 

representational formats downstream. Those representations are affected by mechanisms 

of spatial integration both within each neuron’s receptive field and from the surround. 

Finally, these representations are interpreted through the lens of a readout strategy to 

determine perception in cluttered, natural environments. The recoding of visual information, 

the mechanisms of spatial integration, and the readout strategy can all contribute to the loss 

of sensory information under crowding.

STAR METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and request for resources should be directed to and 

will be fulfilled by the lead contact, Adam Kohn (adam.kohn@einsteinmed.edu).
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Materials availability—This study did not generate unique reagents.

Data and code availability—Recordings reported in this study have been deposited in 

the CRCNS data sharing web site [identifier to be added in proofs].

Any additional information required to reanalyze the data in this paper is available from the 

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We used two male, adult cynomolgus macaques (Macaca fascicularis). All procedures were 

approved by the Institutional Animal Care and Use Committee of the Albert Einstein 

College of Medicine and were in compliance with the guidelines set forth in the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals.

METHOD DETAILS

Task and visual display—Animals were first implanted with a titanium headpost to 

allow for head restraint. Surgery was performed under isoflurane anesthesia, following strict 

sterile procedures. Antibiotics (ceftiofur or enrofloxacin) and an analgesic (buprenorphine) 

were provided postoperatively. Animals recovered for a minimum of 6 weeks before 

behavioral training began.

Animals were trained to enter a primate chair (Crist Instruments) and the head was stabilized 

via the implanted headpost. Inside a recording booth, animals viewed a CRT monitor 

(Iiyama; 100 Hz refresh rate; 1024 x 768 screen resolution; 40 cd/m2 mean luminance) with 

linearized output luminance, from a distance of 64 cm. Visual stimuli were generated using 

custom software based on OpenGL libraries (Expo). Eye position was monitored using a 

video-based eye-tracking system (SR Research) running at 1 kHz sampling rate.

To initiate a trial, animals had to direct their gaze to a small central fixation point (0.2-

degree diameter) and maintain fixation within a 1.3-degree diameter window around that 

point for the duration of the trial (eye positions were typically < 0.5 degrees from the 

fixation point). 0.2 s after fixation onset, a visual stimulus was presented in the lower right 

visual field for 0.25 s. Stimulus offset was followed by 0.35 s of a blank screen (mean 

grey), and then a second stimulus shown for 0.25 s. If visual fixation was maintained for an 

additional 0.15 s after the last stimulus offset, animals were given a small liquid reward. Eye 

movements outside the fixation window led to an aborted trial and no reward; these trials 

were not analyzed. A typical session consisted of 1000-1300 successful trials.

Neurophysiological recording—Once fixation training yielded stable behavioral 

performance, we performed a second sterile surgery, making a craniotomy and durotomy 

in the left hemisphere of each animal and implanting microelectrode arrays (Blackrock 

Microsystems) into V1 and V4. Array placement was targeted to yield overlapping 

retinotopic locations in the two areas, based on anatomical landmarks and prior 

physiological studies22-23. Each electrode array had either a 10 x 10 or a 6 x 8 configuration. 

In one animal, we implanted 1 array in V4 (48 channel) and 2 in V1 (48 and 96 channel). 

In the other, we implanted 2 arrays in V4 (both 48 channel) and 2 in V1 (both 96 channel). 
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After insertion, we sutured the dura over the arrays and covered it with a matrix to promote 

dural repair (DuraGen; Integra LifeSciences). The craniotomy was covered with titanium 

mesh.

Extracellular voltage signals from the arrays were amplified and recorded using either 

Cerebus (Blackrock Microsystems) or Grapevine Scout (Ripple Neuro) data acquisition 

systems. Signals were bandpass filtered between 250 Hz and 7.5 kHz, and those exceeding 

a user-defined threshold were digitized at 30 kHz and sorted offline (Plexon Offline Sorter). 

The local field potential on each electrode was also recorded but not analyzed in this study. 

Criteria for sorting of individual units included a stable spike waveform and no spike within 

the neuronal refractory period. We confirmed that the changes in neuronal tuning shown in 

Figure 6 were evident when our analyses were limited to the most well-isolated neurons, as 

defined by those units having a waveform SNR in the top 33th percentile61.

Visual stimuli—In initial sessions, we mapped the neuronal receptive fields. We presented 

small grating stimuli on a 9 x 9 degree grid of locations (sampled at 1 degree resolution; 

each stimulus shown at 4 orientations separated by 45 degrees, luminance contrast 50 or 

100%, stimulus size 0.5-1.0 degrees). Using the resultant maps, we then placed the target 

stimuli to drive both the V1 and V4 populations. We also conducted a brief, coarse mapping 

of each neuron’s receptive field at the beginning of each recording session.

Target stimuli were drifting sinusoidal gratings (spatial frequency of 1.5 cycles per degree, 

temporal frequency of 4 Hz, 1 degree diameter) of 50% luminance contrast. For each 

session, a reference orientation was chosen, and target orientations were sampled from an 

18-degree range spanning that reference. On a subset of trials, 4 distractor stimuli (of the 

same size and spatiotemporal frequency as the target) were shown adjacent to the target 

stimulus. The orientation of the distractors was fixed at +/−10 degrees from the reference, 

and tilt was spatially alternated clockwise around the target. All stimuli had simultaneous 

onset and offset, and started their drift from a fixed phase. Across trials, the center-to-center 

spacing of distractors from the target was varied from 1.3 to 2.6 degrees. A second set 

of stimuli, identical to the first except for a 90-degree rotation of the ensemble reference 

orientation, was included in each session, to mitigate adaptation effects from repeated 

presentation of one range of orientations. All stimuli (targets alone, targets with distractors, 

and changes in distractor spacing and reference orientation) were randomly interleaved. 

In a separate set of experiments (N = 4 sessions, reported only in Figure 6E), we fixed 

the spacing of the distractor stimuli but instead varied their orientation, drawing from two 

distractor arrays with counterbalanced orientations.

QUANTIFICATION AND STATISTICAL ANALYSIS

Analysis was restricted to neurons that were driven by the target stimuli in isolation 

(responses ≥ 1 s.d. above spontaneous rate). All analyses were performed on the total spike 

count of each neuron during stimulus presentation on each trial (from 0-0.25 s after stimulus 

onset) using analysis code in Matlab 2014a (Mathworks).

Discriminability of target orientation in single neuron responses was quantified by applying 

receiver operating characteristic analysis62 to the spike count distributions evoked from 
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presentations of the two most extreme target orientations shown (18-degree separation). We 

used the area under the ROC curve as the measure of discriminability. We then used the 

slope of the regression line relating discriminability for targets alone to discriminability in 

the presence of distractors to quantify the average change in discriminability across neurons. 

95% confidence intervals for the slope were estimated using bootstrap with replacement 

across neurons.

Target orientation discriminability in neuronal populations was quantified using logistic 

regression, with Lasso regularization. The regularization parameter was set to the largest 

value that yielded maximal cross-validated performance on held out trials from the training 

set. For each pairwise combination of target orientations shown (and each distractor 

spacing), we fit a decoding model and evaluated performance on held out test data. The 

reported decoding performance is an average over cross-validation folds.

Crowding effect size for a given target-distractor separation was estimated by combining 

decoding performance values for target alone and crowded conditions across pairings 

of target stimuli and across recording sessions. We fit a single parameter model to 

the combined data to characterize the threshold elevation under crowding that best 

explained the change from target alone to crowded performance, using maximum likelihood 

estimation (validation on synthetic data is shown in Figure S2). Specifically, a target 

only discrimination model consisted of a cumulative normal distribution adjusted for 

chance performance in the 2AFC task. For each population and target only performance, 

we found the stimulus that yielded this performance by inverting the discrimination 

model. Then, for a given model threshold elevation under crowding, we could generate 

a predicted discrimination performance. This predicted model performance, assuming a 

binomial distribution, yielded a probability of the observed discrimination performance 

under crowding given this model of threshold elevation. For each model, we combined 

data points by taking the product of likelihoods, and threshold elevation was estimated to 

be the model with the maximum likelihood. We used a nonparametric bootstrap procedure 

(sampling from the data points with replacement) to generate confidence intervals for these 

estimates.

Spike count correlations (rSC) were computed using trials in which the responses of both 

neurons were within 3 s.d. of their mean responses, to avoid contamination by outlier 

responses63. Correlation values were calculated separately for each target orientation and 

distractor arrangement, and then averaged.

The statistical significance of each modulation ratio was evaluated using a permutation 

test. Specifically, for each neuron and distractor offset, we combined responses to targets 

alone and targets with distractors. We then sampled counts with replacement from this 

joint distribution, equal in number to those obtained experimentally. We calculated the 

modulation index for the sampled ‘target’ and ‘target with distractor’ responses. We repeated 

this 1000 times; significance was determined by the rank order of the observed ratio in this 

null distribution. To assess the significance of the modulation strength, we used a similar 

procedure. We calculated the modulation strength for each neuron by sampling from the 

combined distribution, and then averaged the modulation strength value across neurons. We 
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repeated this calculation 1000 times; significance of the reported values was determined by 

their rank order in the respective null distribution.

We assessed how the target orientation tuning of each neuron changed with distractors by 

fitting a model of the following form: rTD = m ∗ rT + a ∗ rT , where rTD are the predicted 

responses, rT are the measured responses to each isolated target (i.e. the response to each 

target stimulus), and rT  is the mean response averaged across isolated targets (i.e. the mean 

of the tuning function). Models were rectified at 0 to prevent negative firing rates. The 

values of the free parameters m and a were chosen by maximum likelihood, where the 

log-likelihood of each model was calculated as:

logL = ∑ log
rTDrTe−rT

rT !

which is the log-likelihood under the assumption of Poisson variability. We performed this 

analysis on neurons whose tuning was consistent, defined by calculating the correlation 

between the target-only tuning computed on even versus odd trials. Neurons with a 

correlation above 0.5 were included. In these neurons, the fit quality was 0.63 and 0.73 

in V1 and V4, respectively, where the fit quality was defined as a normalized likelihood, 

between a ‘null’ model which predicts the response to be the mean across all stimuli (a value 

of 0) and an ‘oracle’ model which predicts the measured response (a value of 1)64.

To understand how distractor-induced modulation of tuning affected discriminability, we 

conducted a simple simulation. We measured the area under the ROC curve for responses 

generated from a Poisson distribution, whose rate was defined by either the measured mean 

response to targets alone or the modulation of this mean by the model defined in the 

preceding paragraph (with parameters chosen optimally for each cell separately).

To assess the similarity of the population representation for targets under different 

crowding conditions, we compared population decoding performance across conditions 

using a shared, fixed decoding strategy. We fit linear decoders with regularization, 

as previously described, to the population responses to the two most differing target 

orientations. One decoder was estimated using responses to targets in isolation, and a 

second decoder (‘crowded’) was estimated from responses to target stimuli with nearby 

distractors. Responses on held out trials were projected onto these two readout axes, 

as were an equal number of trials from the other target orientations and conditions of 

crowding. Population discriminability for two target stimuli along a specific readout axis 

was quantified by the d-prime between the response distributions along the decoding 

axis, where d prime = (μ1 − μ2) ∕ (0.5 ∗ (σ1
2 + σ2

2)). We compared d-prime measures for 

responses projected onto the readout axis for the matching condition (‘same decoder’) to 

those projected onto an opposing crowding condition (‘cross decoder’).

We observed similar results in both animals so pooled the sampled neurons for most 

analyses. Effects of distractors on population information are shown separately for each 
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animal in Figure 2E; changes in single-neuron discriminability and tuning are shown 

separately for each animal in Figure S7.

All indications of variance in the text and figures are SEM unless otherwise noted.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Crowding impairs encoding of target orientation in macaque V1 and V4 

populations

• Target discriminability was moderately impaired in V1 and more substantially 

in V4

• The presence of distractors led to additive and multiplicative changes in 

tuning

• Fixed readout strategies were limited in performance by non-affine tuning 

changes
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Figure 1. Experimental approach
A. Microelectrode arrays were chronically implanted into V1 and V4 of one hemisphere 

of each animal. B. Top. Spatial receptive field maps of 4 example neurons from V1 (blue) 

and V4 (red). Darker colors indicate higher firing rates. Bottom. Aggregate receptive field 

maps of recorded neuronal populations, by cortical area (columns) and animal (rows). Black 

circle indicates target stimulus location and approximate size. C. Task structure. Animals 

maintained fixation of a central spot while target stimuli were presented in two 0.25s epochs 

on each trial, separated by a 0.35s blank period. D. Target stimuli were drifting gratings 

chosen from an 18 degree range around a reference orientation. When shown, distractors 

were presented at ±10 deg relative to this reference orientation. Target-distractor spacing was 

varied.
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Figure 2. Single neuron and population discriminability of target orientation
A. Target discriminability of V1 neurons for targets alone (abscissa) and targets with near 

distractors (ordinate), using responses to the two most differing target orientations. Solid 

blue line indicates linear regression fit to the data. B. Same as A, but for V4 neurons. C. 

Change in discriminability as a function of target-distractor spacing for V1 (blue) and V4 

(red), quantified using the slope of the regression line. Error bars indicate 95% confidence 

interval. D. Cross-validated V1 population discrimination performance for targets alone 

(abscissa) and targets with distractors (ordinate). Each point represents a single pairing of 

two target stimuli. Data are combined across pairings and sessions, for one animal and 

the nearest target-distractor spacing (n=84 cases). Gray lines indicate expected performance 

for the indicated threshold elevations. E. Same as D. but for V4. F. Estimated threshold 

elevation for populations as a function of target-distractor separation. Points represent the 

mean across both animals (V1, blue; V4, red); error bars indicate s.e.m., estimated via 

bootstrapped resampling of the data. Gray lines represent the mean values for each animal 

and cortical area. See also Figures S1, S2, S3, and S7.
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Figure 3. Effect of distractors on neuronal variability
A. Average pairwise ‘noise’ correlations (rSC) for V1 neuronal pairs for targets alone (black) 

and with distractors of varied spacing (blue). Points and error bars represent mean ± s.e.m. 

B. Average correlations for V4 neuronal pairs, same conventions as in A. C. Crowding effect 

size for V1 and V4 populations when decoding was performed on trial-shuffled population 

activity. Points and error bars represent mean ± s.e.m. D. Individual neuron variability was 

quantified as the average Fano factor for V1 neurons for targets alone (black) and with 

distractors at various spacings (blue). Points and error bars represent the geometric mean ± 

s.e.m. over all neurons. E. The average Fano factor for V4 neurons, same conventions as in 

A.
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Figure 4. Response modulation with distractors
A. Modulation indices were calculated as the average response to targets with distractors 

over the response to targets alone. Points represent sorted modulation indices for all 

V1 neurons, with target-distractor spacing indicated by blue shading. Distributions of 

modulation indices are shown at the right, with median values for each distribution indicated 

by white lines. B. Modulation indices for V4 neurons in red, same conventions as in A. C. 

Average modulation strength as a function of target-distractor spacing for V1 (blue) and V4 

(red). Points represent mean ± s.e.m (V1: n=396, V4: n=691 neurons). See also Figure S4.
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Figure 5. Additive and multiplicative changes in target tuning with distractors
A. Schematic illustration of how target tuning amid distractors (dashed line) might involve 

additive translation, multiplicative scaling, or combined changes in target only tuning 

(solid line). B. Multiplicative and additive terms fit to V1 neurons under crowding. Each 

point represents one neuron and distractor spacing condition, darker shades indicate closer 

distractor spacing. Marginal distributions of parameters are shown along the axes. C. Same 

as in B, but for V4 neurons. D. Change in V1 discriminability as a function of target-

distractor spacing by applying the additive and multiplicative changes in target only tuning 

from B. Change in discriminability was quantified using the slope of the regression line 

relating discriminability for target only and target with distractors conditions. Error bars 

indicate 95% confidence interval. E. Same as in D, but for V4. See also Figures S5 and S7.
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Figure 6. Change in target tuning with distractors
A. Target orientation tuning for 2 example V1 neurons for targets alone (black) and for 

targets with near (dark blue) or far (light blue) distractors. B. Target orientation tuning 

for 2 example V4 neurons for targets alone (black) and with distractors (red). C. Average 

correlation between tuning for targets alone and targets with near distractors for V1 (blue) 

and V4 (red), as a function of target tuning quality (since the ability to detect a change in 

tuning will depend on how consistent and well-defined the tuning is for targets alone). Target 

tuning quality is defined as the correlation between the tuning for targets along, calculated 

from even and odd trials (i.e., a measure of whether tuning was similar in each half of the 

data, a measure of tuning quality or consistency). Points and error bars represent mean ± 

s.e.m. D. Average correlation between target tuning with near and far distractors. E. Average 

correlation between target tuning for two near distractor configurations, counterbalanced for 

distractor orientation.
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Figure 7. Generalization of discriminability across decoding axes
A. An example V1 population response projected onto two distinct decoding axes, one 

optimized for target only responses (abscissa) and one optimized for responses to targets 

with distractors (ordinate). Gray ellipses represent mean ± s.e.m. of the spike counts 

projected onto the relevant decoding axis, over repeated trials of a single target stimulus. The 

4 ellipses represent the distinct target orientations shown. Blue ellipses represent the same, 

but for responses to targets with distractors. Marginal distributions are shown at the sides 

of the plot. B. An example V4 population response, same conventions as in A. C. Average 

V1 discriminability is measured as the d-prime between two distributions, when projected 

onto the same decoding axis as the data (same, filled circles) or the decoding axis from 

the opposing condition of crowding (cross, open circles). Points and error bars represent 

mean ± s.e.m. Points are offset slightly along abscissa for visualization. D. Average V4 

discriminability, same conventions as in C. See also Figure S6.
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KEY RESOURCES TABLE

LIFE SCIENCE TABLE WITH EXAMPLES FOR AUTHOR REFERENCE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal anti-Snail Cell Signaling Technology Cat#3879S; RRID: 
AB_2255011

Mouse monoclonal anti-Tubulin (clone DM1A) Sigma-Aldrich Cat#T9026; RRID: 
AB_477593

Rabbit polyclonal anti-BMAL1 This paper N/A

Bacterial and virus strains

pAAV-hSyn-DIO-hM3D(Gq)-mCherry Krashes et al.1 Addgene AAV5; 44361-
AAV5

AAV5-EF1a-DIO-hChR2(H134R)-EYFP Hope Center Viral Vectors 
Core

N/A

Cowpox virus Brighton Red BEI Resources NR-88

Zika-SMGC-1, GENBANK: KX266255 Isolated from patient (Wang 
et al.2)

N/A

Staphylococcus aureus ATCC ATCC 29213

Streptococcus pyogenes: M1 serotype strain: strain SF370; M1 GAS ATCC ATCC 700294

Biological samples

Healthy adult BA9 brain tissue University of 
Maryland Brain & 
Tissue Bank; http://
medschool.umaryland.edu/
btbank/

Cat#UMB1455

Human hippocampal brain blocks New York Brain Bank http://
nybb.hs.columbia.edu/

Patient-derived xenografts (PDX) Children's Oncology Group 
Cell Culture and Xenograft 
Repository

http://cogcell.org/

Chemicals, peptides, and recombinant proteins

MK-2206 AKT inhibitor Selleck Chemicals S1078; CAS: 
1032350-13-2

SB-505124 Sigma-Aldrich S4696; CAS: 694433-59-5 
(free base)

Picrotoxin Sigma-Aldrich P1675; CAS: 124-87-8

Human TGF-β R&D 240-B; GenPept: P01137

Activated S6K1 Millipore Cat#14-486

GST-BMAL1 Novus Cat#H00000406-P01

Critical commercial assays

EasyTag EXPRESS 35S Protein Labeling Kit PerkinElmer NEG772014MC

CaspaseGlo 3/7 Promega G8090

TruSeq ChIP Sample Prep Kit Illumina IP-202-1012

Deposited data

Raw and analyzed data This paper GEO: GSE63473

B-RAF RBD (apo) structure This paper PDB: 5J17
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Human reference genome NCBI build 37, GRCh37 Genome Reference 
Consortium

http://
www.ncbi.nlm.nih.gov/
projects/genome/
assembly/grc/human/

Nanog STILT inference This paper; Mendeley Data http.//dx.doi.org/
10.17632/wx6s4mj7s8.2

Affinity-based mass spectrometry performed with 57 genes This paper; Mendeley Data Table 
S8; http.//dx.doi.org/
10.17632/5hvpvspw82.1

Experimental models: Cell lines

Hamster: CHO cells ATCC CRL-11268

D. melanogaster: Cell line S2: S2-DRSC Laboratory of Norbert 
Perrimon

FlyBase. FBtc0000181

Human: Passage 40 H9 ES cells MSKCC stem cell core 
facility

N/A

Human: HUES 8 hESC line (NIH approval number NIHhESC-09-0021) HSCI iPS Core hES Cell Line: HUES-8

Experimental models. Organisms/strains

C. elegans: Strain BC4011: srl-1(s2500) II; dpy-18(e364) III; 
unc-46(e177)rol-3(s1040) V.

Caenorhabditis Genetics 
Center

WB Strain: 
BC4011; WormBase: 
WBVar00241916

D. melanogaster: RNAi of Sxl: y[1] sc[*] v[1]; P{TRiP.HMS00609}attP2 Bloomington Drosophila 
Stock Center

BDSC:34393; FlyBase: 
FBtp0064874

S. cerevisiae: Strain background: W303 ATCC ATTC: 208353

Mouse: R6/2: B6CBA-Tg(HDexon1)62Gpb/3J The Jackson Laboratory JAX: 006494

Mouse: OXTRfl/fl: B6.129(SJL)-Oxtrtm1.1Wsy/J The Jackson Laboratory RRID: 
IMSR_JAX:008471

Zebrafish: Tg(Shha:GFP)t10: t10Tg Neumann and Nuesslein-
Volhard3

ZFIN: ZDB-
GENO-060207-1

Arabidopsis: 35S::PIF4-YFP, BZR1-CFP Wang et al.4 N/A

Arabidopsis: JYB1021.2: pS24(AT5G58010)::cS24:GFP(-G):NOS #1 NASC NASC ID: N70450

Oligonucleotides

siRNA targeting sequence: PIP5K I alpha #1: ACACAGUACUCAGUUGAUA This paper N/A

Primers for XX, see Table SX This paper N/A

Primer: GFP/YFP/CFP Forward: GCACGACTTCTTCAAGTCCGCCATGCC This paper N/A

Morpholino: MO-pax2a GGTCTGCTTTGCAGTGAATATCCAT Gene Tools ZFIN: ZDB-
MRPHLNO-061106-5

ACTB (hs01060665_g1) Life Technologies Cat#4331182

RNA sequence: hnRNPA1_ligand: 
UAGGGACUUAGGGUUCUCUCUAGGGACUUAGGGUUCUCUCUAGGGA

This paper N/A

Recombinant DNA

pLVX-Tight-Puro (TetOn) Clonetech Cat#632162

Plasmid: GFP-Nito This paper N/A

cDNA GH111110 Drosophila Genomics 
Resource Center

DGRC:5666; 
FlyBase:FBcl0130415

AAV2/1-hsyn-GCaMP6- WPRE Chen et al.5 N/A

Mouse raptor: pLKO mouse shRNA 1 raptor Thoreen et al.6 Addgene Plasmid #21339

Software and algorithms
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ImageJ Schneider et al.7 https://imagej.nih.gov/ij/

Bowtie2 Langmead and Salzberg8 http://bowtie-
bio.sourceforge.net/
bowtie2/index.shtml

Samtools Li et al.9 http://
samtools.sourceforge.net/

Weighted Maximal Information Component Analysis v0.9 Rau et al.10 https://github.com/
ChristophRau/wMICA

ICS algorithm This paper; Mendeley Data http://dx.doi.org/
10.17632/5hvpvspw82.1

Other

Sequence data, analyses, and resources related to the ultra-deep sequencing of the 
AML31 tumor, relapse, and matched normal

This paper http://
aml31.genome.wustl.edu

Resource website for the AML31 publication This paper https://github.com/
chrisamiller/
aml31SuppSite

PHYSICAL SCIENCE TABLE WITH EXAMPLES FOR AUTHOR REFERENCE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

QD605 streptavidin conjugated quantum dot Thermo Fisher Scientific Cat#Q10101MP

Platinum black Sigma-Aldrich Cat#205915

Sodium formate BioUltra, ≥99.0% (NT) Sigma-Aldrich Cat#71359

Chloramphenicol Sigma-Aldrich Cat#C0378

Carbon dioxide (13C, 99%) (<2% 18O) Cambridge Isotope 
Laboratories

CLM-185-5

Poly(vinylidene fluoride-co-hexafluoropropylene) Sigma-Aldrich 427179

PTFE Hydrophilic Membrane Filters, 0.22 μm, 90 mm Scientificfilters.com/Tisch 
Scientific

SF13842

Critical commercial assays

Folic Acid (FA) ELISA kit Alpha Diagnostic 
International

Cat# 0365-0B9

TMT10plex Isobaric Label Reagent Set Thermo Fisher A37725

Surface Plasmon Resonance CM5 kit GE Healthcare Cat#29104988

NanoBRET Target Engagement K-5 kit Promega Cat#N2500

Deposited data

B-RAF RBD (apo) structure This paper PDB: 5J17

Structure of compound 5 This paper; Cambridge 
Crystallographic Data 
Center

CCDC: 2016466

Code for constraints-based modeling and analysis of autotrophic E. coli This paper https://gitlab.com/
elad.noor/sloppy/tree/
master/rubisco

Software and algorithms

Gaussian09 Frish et al.1 https://gaussian.com

Python version 2.7 Python Software 
Foundation

https://www.python.org

ChemDraw Professional 18.0 PerkinElmer https://
www.perkinelmer.com/
category/chemdraw
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Weighted Maximal Information Component Analysis v0.9 Rau et al.2 https://github.com/
ChristophRau/wMICA

Other

DASGIP MX4/4 Gas Mixing Module for 4 Vessels with a Mass Flow Controller Eppendorf Cat#76DGMX44

Agilent 1200 series HPLC Agilent Technologies https://
www.agilent.com/en/
products/liquid-
chromatography

PHI Quantera II XPS ULVAC-PHI, Inc. https://
www.ulvacphi.com/en/
products/xps/phi-
quantera-ii/
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